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Background: Accumulating evidence has suggested that the extracellular matrix (ECM)
plays a vital role in the development and progression of cancer, and could be recognized
as a biomarker of the response to immunotherapy. However, the effect of the ECM
signature in hepatocellular carcinoma (HCC) is not well understood.

Methods: HCC patients derived from the TCGA-LIHC dataset were clustered according
to the ECM signature. The differences in prognosis, functional enrichment, immune
infiltration, and mutation characteristics between distinct molecular clusters were
examined, and its predictive value on the sensitivities to chemotherapy and
immunotherapy was further analyzed. Then, a prognostic model was built based on
the ECM-related gene expression pattern.

Results:HCC patients were assigned into twomolecular subtypes. Approximately 80% of
HCC patients were classified into cluster A with poor prognosis, more frequent TP53
mutation, and lower response rate to immunotherapy. In contrast, patients in cluster B had
better survival outcomes and higher infiltration levels of dendritic cells, macrophages, and
regulatory T cells. The prognostic risk score model based on the expression profiles of six
ECM-related genes (SPP1, ADAMTS5, MMP1, BSG, LAMA2, and CDH1) demonstrated a
significant association with higher histologic grade and advanced TNM stage. Moreover,
the prognostic risk score showed good performance in both the training dataset and
validation dataset, as well as improved prognostic capacity compared with TNM stage.

Conclusions: We characterized two HCC subtypes with distinct clinical outcomes,
immune infiltration, and mutation characteristics. A novel prognostic model based on
the ECM signature was further developed, which may contribute to individualized
prognostic prediction and aid in clinical decision-making.
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INTRODUCTION

Hepatocellular carcinoma (HCC) accounts for approximately
80% of liver cancers and is the fourth leading cause of cancer-
related death worldwide (Bray et al., 2018). Unfortunately,
although surgery may effect a radical cure, as many as 70% of
HCC patients would have tumor recurrence after surgery at
5 years (Villanueva, 2019). With an estimated survival time of
approximately 1 year, sorafenib and lenvatinib remained the only
effective systemic therapies for frontline therapy until immune
checkpoint inhibitor (ICI)-based combination therapy showed
desirable efficacy, but clinically available biomarkers to predict
response to systemic therapies are still needed (Villanueva, 2019;
Pinter et al., 2021). Therefore, it is urgent to further explore the
underlying mechanisms of cancer development and detect novel
prognostic and therapeutic targets of HCC.

Most biomarkers used for cancer classification and
stratification are still “cancer-cell oriented” (such as TNM
stage and tumor markers), leaving out key factors associated
with cancer development, such as the tumor microenvironment
(TME) and antitumor immunity (Lecchi et al., 2021). The TME is
composed of three interrelated components, including stromal
cells such as immune cells and fibroblasts, cytokines, and the
extracellular matrix (ECM) (Théret et al., 2021). Previous studies
have proven that HCC classification based on molecular features
of immune infiltration could aid in prognosis evaluation and
predicting response to ICIs (Sia et al., 2017; Kurebayashi et al.,
2018). Accumulating evidence has suggested that the ECM is
associated with tumor aggression, metastasis, treatment
sensitivity, and prognosis (Deligne and Midwood, 2021). The
ECM was also reported to not only provide a physical barrier,
preventing interaction between immune effectors or drugs and
tumor cells, but can also modulate immune cell proliferation,
differentiation, motility, and activation (Zhang et al., 2021).
However, the role of the ECM signature in HCC classification
has not been estimated, although a dynamic ECM was associated
with HCC carcinogenesis, progression, and prognosis (Jeng et al.,
2015).

In the present research, we first classified patients from The
Cancer Genome Atlas liver hepatocellular carcinoma (TCGA-
LIHC) cohort into distinct molecular subtypes according to
ECM-related gene expression. The relationships between
molecular subtypes and clinicopathological features,
prognosis, and drug sensitivity were further examined. Then,
an ECM-related prognostic signature was developed and
validated.

MATERIALS AND METHODS

Data Sources
Gene expression, somatic mutation, and corresponding
clinicopathological data of 369 HCC samples were obtained
from TCGA database (https://portal.gdc.cancer.gov/) in
December 2021. One International Cancer Genome
Consortium (ICGC) (https://dcc.icgc.org/) and two Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/

geo/) HCC cohorts (there were 232, 80, and 81 HCC patients
with complete follow-up information in ICGC-LIRI, GSE10141,
and GSE76427 cohorts, respectively) were obtained for external
validation. The gene expression values were transformed into
transcripts per kilobase million (TPM) (Wagner et al., 2012). The
mean value was reserved if one gene matched multiple probes.
The ComBat method was used to remove the batch effects.

Consensus Clustering Analysis
Three hundred and one ECM-related genes were retrieved from
Reactome (https://reactome.org/) (Jassal et al., 2020). Consensus
unsupervised clustering analysis was conducted by the R package
“ConsensusClusterPlus” (Wilkerson and Hayes, 2010) (1,000
iterations, resample rate of 80%) to classify patients from the
TCGA-LIHC cohort into distinct molecular subtypes according
to ECM-related gene expression. This clustering was conducted,
and the optimal cluster number was confirmed based on the
following criteria: First, the cumulative distribution function
(CDF) curve increased gradually and smoothly. Second, after
clustering, the intracluster correlation increased, while the
intercluster correlation decreased. Last, no clusters had a too
small sample size.

Exploring the Differences Between Distinct
Molecular Clusters of HCC Patients
The differences in overall survival (OS) among different subtypes
were assessed using Kaplan–Meier curves generated by the R
packages “survival” and “survminer”. The top 20 highest
mutational frequencies in the TCGA-LIHC cohort were
recognized and visualized via the R package “maftools”.
Tumor mutation burden (TMB) was defined as the total gene
mutation number per million base pair, which was calculated
using a Perl script and corrected by dividing by the total length of
exons. The immune cell infiltration abundance data in the TCGA
database were retrieved from xCell (https://xcell.ucsf.edu/) (Aran
et al., 2017), and the CIBERSORT algorithm was used to evaluate
the immune and stromal scores of each patient (Newman et al.,
2015). xCell is a transcriptome-based method learned from
thousands of pure cell types from various sources that
performs cell type enrichment analysis from gene expression
data for 64 immune cell types (Aran et al., 2017). Furthermore,
gene set enrichment analysis (GSEA) was conducted to
investigate the functional enrichment of differentially
expressed genes in distinct molecular clusters using the R
packages “limma”, “org.Hs.eg.db”, “clusterProfiler”, and
“enrichplot”. Gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) gene sets (c5.all.v7.1 and c2.cp.
kegg.v7.1) were downloaded from the MSigDB database (https://
www.gsea-msigdb.org/gsea/index.jsp).

Drug Sensitivity Analysis
The half-maximal inhibitory concentration (IC50) of several
chemotherapy or targeted drugs in each HCC sample from
TCGA database was estimated via Genomics of Drug
Sensitivity in Cancer (GDSC; https://www.cancerrxgene.org/)
(Yang et al., 2013) using the R package “pRRophetic”
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(Geeleher et al., 2014), which is extensively utilized in studies
evaluating drug sensitivity in cancers (Xiao et al., 2021; Liu et al.,
2021a). Each sample’s IC50 value was evaluated by ridge
regression, and 10-fold cross-validation was used to ensure
prediction accuracy based on the GDSC training model. The
Tumor Immune Dysfunction and Exclusion (TIDE) (https://
tide.dfci.harvard.edu/) algorithm was implemented to predict
the ICI therapy response of each patient (Jiang et al., 2018).
TIDE is a prevalent algorithm used to assess immune evasion
mechanism and predict the immunotherapeutic response (Jiang
et al., 2018; Liu et al., 2021b). TIDE scores and estimated
immunotherapeutic responses were obtained after uploading
the input data as described in the instructions, and higher
TIDE scores mean a lower likelihood of response to
immunotherapy.

Construction of an ECM-Related
Prognostic Signature
Least absolute shrinkage and selection operator (LASSO)
regression analysis with the R package “glmnet” was used to
identify the candidate genes of the ECM-related prognostic
signature. Based on the common genes and corresponding
expression profiles in the four independent cohorts mentioned
above, six ECM-related genes were selected to build the risk
signature according to the optimal lambda value and the
corresponding coefficients using the TCGA-LIHC dataset.
The risk score of the prognostic signature for each patient
was calculated as follows: risk score = (exp Gene1 × coef
Gene1) + (exp Gene2 × coef Gene2) + . . . + (exp GeneN ×
coef GeneN).

Validation of the ECM-Related Prognostic
Signature
Patients were divided into two risk groups (low/high)
according to their risk score and based on the optimal
cutoff value of OS calculated by the R package “survminer”.
Propensity-score matching (PSM) was used in the TCGA-
LIHC dataset to minimize the impact of confounding factors.
The propensity scores were calculated by the R package
“MatchIt” using multivariable logistic regression based on
age, TNM stage, histologic grade, Child–Pugh grade,
vascular invasion, alpha fetoprotein, and residual tumor
after surgery. Then, the risk scores of each patient in three
validation cohorts were calculated and divided using the same
formula and optimal cutoff value. The OS of the two risk score
groups was compared using Kaplan–Meier curves. Univariate
and multivariate Cox proportional hazard models were
performed by the R package “finalfit” to calculate the
hazard ratios (HR) with 95% confidence intervals (CI) of
variables associated with OS in HCC patients. Based on the
results of multivariate Cox analysis, a nomogram was
constructed by the R package “rms” and assessed by the
receiver operating characteristic (ROC) curve, concordance
index (C-index), and calibration curves. Ultimately, decision
curve analysis (DCA) was performed by the R package “rmda”
to compare the prognostic capacity of the nomogram model
and TNM stage.

Statistical Analysis
The Mann–Whitney U test and Pearson’s chi-square test or
Fisher’s exact test were applied to the comparison of the
difference between the continuous and categorical variables

FIGURE 1 | Identification of consensus clusters of extracellular matrix-related genes in hepatocellular carcinoma from the TCGA database. (A) Consensus
clustering matrix for k = 2. (B) Consensus clustering CDF for k = 2–9. CDF, cumulative distribution function.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8398063

Tang et al. ECM in HCC

https://tide.dfci.harvard.edu/
https://tide.dfci.harvard.edu/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


between two groups, respectively. Strawberry Perl (version 5.30.0,
https://strawberryperl.com/) was used to extract gene expression
and mutation data from downloaded datasets and transfer them
into a data matrix for subsequent analyses. All statistical analyses

and visualization were performed using R software (version 3.6.1,
https://www.r-project.org/). A two-tailed value of P or FDR (false
discovery rate) q < 0.05 was considered to be statistically
significant.

FIGURE 2 | Relationship between molecular subtypes and clinicopathological features and prognosis. (A) Kaplan–Meier survival curves of the two molecular
subtypes. (B, C) Distribution and phenotype of the top 20 gene mutations in clusters (A, B). (D) Analysis of the frequency difference of gene mutations in the two
molecular subtypes. (E, F) GO and KEGG analysis of enriched biological pathways in cluster (A) versus cluster (B).

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8398064

Tang et al. ECM in HCC

https://strawberryperl.com/
https://www.r-project.org/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


RESULT

Consensus Clustering of ECM-Related
Genes Identified two Clusters of HCC
To examine the roles of ECM-related genes in HCC, 371
patients with transcriptome data who were retrieved from
the TCGA-LIHC dataset were categorized using a consensus
clustering algorithm based on the expression profiles of
301 ECM-related genes. Unsupervised consensus clustering
analysis indicated that k = 2 was the optimal selection; thus,
patients in the entire cohort were sorted into subtypes A (n =
294, 79.2%) and B (n = 77, 20.8%) (Figures 1A,B).

Relationship Between Molecular Subtypes
and Clinicopathological Features and
Prognosis
As shown in Figure 2A, the results of survival analysis showed
that the patients’ prognosis was significantly different between
the two subtypes. This suggested that there may be certain
distinct differences apart from clinical outcomes between the
two subtypes. However, there was no significant difference in
clinical characteristics between the two molecular subtypes,
including age, sex, TNM stage, histologic grade, Ishak score,
Child–Pugh grade, and vascular invasion (Supplementary
Table S1). To further explore the differences between the
two molecular subgroups, three hundred and sixty-one
HCC patients with somatic mutation data were included for
mutational feature analysis. Mutation profile features
indicated that missense mutation was the most common
type in both molecular subtypes (Figures 2B,C). The top 20
mutated genes were visualized by a horizontal histogram, and
the results showed that TP53 (35.8 vs. 7.0%), MUC4 (10.9 vs.
0%), XIRP2 (8.4 vs. 1.4%), HMCN1 (8.4vs.vs 0%), and RYR3
(6.3 vs. 0%) mutations were more frequent in cluster A, while
IL6ST (0.4 vs. 9.9%), TRIP12 (1.4vs. 7.0%), and MAP2 (1.4 vs.

7.0%) mutations were more frequent in cluster B (Figure 2D).
Furthermore, mutant CTNNB1, TTN, and ALB were the most
common mutations in both subtypes.

To elucidate the potential influence of the ECM-related
subtypes on the expression profiles of HCC, GSEA was
applied to compare clusters A and B. Functional enrichment
analysis showed that immune-related pathway terms (GO_
B_CELL_DIFFERENTIATION, GO_DEFENSE_RESPONSE_
TO_ BACTERI-UM, GO_RESPONSE_TO_TYPE_I_INTERFERON,
KEGG_ANTIGEN_PROCES-SING_AND_PRESENTATION,
KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_ PATHWAY,
and KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY)
were significantly enriched in cluster A, while some pathway terms
relevant to amino acid metabolism were significantly enriched in
cluster B (GO_AMINO_ACID_BETAINE_METABOLIC_PROCESS,
GO_ARGININE_METABOLIC_PROCESS, KEGG_BE-TA_
ALANINE_METABOLISM, and KEGG_TAURINE_AND_
HYPOTAURINE_ METABOLISM) (Figures 2E,F).

ICI-based combination therapy is one of the most
important breakthroughs in the treatment of HCC in recent
years, while TMB and tumor-infiltrating immune cells may be
potential biomarkers to predict the response to ICIs (Pinter
et al., 2021). Therefore, we examined the differences in TMB
and immune microenvironment between the two molecular
subtypes. For TMB, the results showed that patients in cluster
A had significantly higher TMB, but almost all HCC patients
derived from TCGA database had low TMB (<10 mutations
per megabase) (Figure 3A). In contrast, patients in cluster B
had higher immune and stromal scores. Furthermore, the
infiltration levels of dendritic cells (DCs), macrophages, M1
and M2 macrophages, and regulatory T cells (Tregs) were
significantly higher in cluster B, while mast cells, B cells,
memory B cells, Th1 and Th2 cells, and CD8+ naive T cells
had significantly lower infiltration in cluster B than in cluster
A. In addition, there was no significant difference in the
infiltration levels of fibroblasts, monocytes, CD4+ T cells,

FIGURE 3 |Comparison of TMB and immune cell infiltration abundance between two hepatocellular carcinomamolecular subtypes. (A) TMB in different molecular
subtypes. (B) Immune cell infiltration abundance in different molecular subtypes. TMB, tumor mutation burden. *p < 0.05, **p < 0.01, ***p < 0.001.
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and CD8+ T cells between the two molecular subtypes
(Figure 3B).

Drug Sensitivity Estimation
The differences in the sensitivity of immunotherapy, several
chemotherapy and targeted therapy drugs between the two
HCC clusters were analyzed using the TIDE and GDSC
databases. As shown in Figure 4A, the response rate to
ICIs predicted by the TIDE database was significantly
higher in cluster B patients. Furthermore, the estimated
IC50 values of doxorubicin, etoposide, gemcitabine,
axitinib, lapatinib, and lenalidomide were significantly
lower in cluster A samples than in cluster B samples, while
the estimated IC50 values of dasatinib, erlotinib, motesanib,
and ponatinib were significantly lower in cluster B samples
(Figures 4B–K). However, the estimated IC50 value of
cisplatin was not significantly different between clusters A
and B (Figure 4L).

Development and Validation of the
ECM-Related Prognostic Signature
Three hundred forty-one HCC patients with complete TNM stage
and follow-up information were used for the development of an
ECM-related prognostic signature. Following LASSO regression
analysis, six genes remained according to the minimum partial
likelihood deviance (Figures 5A,B). According to the results of
LASSO regression, the ECM-related prognostic risk score was
constructed as follows: Risk score = (0.055493666* expression of
SPP1) + (0.275597331* expression of ADAMTS5) + (0.058747561*
expression of MMP1) + (0.118350341* expression of BSG) +
(-0.119029579* expression of LAMA2) + (-0.009262772*
expression of CDH1). The risk score of each patient was
calculated using this formula. According to the optimal cutoff
value of the risk score, patients were divided into high- and low-
risk groups. As shown in Table 1, the risk score was not significantly
associated with sex, Ishak score, alpha fetoprotein (AFP), or residual
tumor status. However, the high-risk group was significantly
correlated with higher histologic grade, advanced age and TNM
stage, indicating that a higher risk score may be correlated with HCC
progression. Kaplan–Meier survival analyses showed that high-risk
patients had remarkably reducedOS compared with low-risk patients
in the TCGA-LIHC dataset, even if confounding factors (age, TNM
stage, histologic grade, Child–Pugh grade, vascular invasion,AFP, and
residual tumor status after surgery) were adjusted after PSM analysis
(Figures 6A,B). Furthermore, the prognostic value of the risk score
was robust when validated in three external validation datasets
(Figures 6C–E).

Construction and Evaluation of the
ECM-Related Prognostic Nomogram
Univariate analysis demonstrated that risk score, vascular
invasion status, and TNM stage were significantly associated
with the OS of HCC patients. Further multivariate analysis
confirmed that a higher risk score (HR: 4.45, 95% CI:
2.75–7.23, p < 0.001) and advanced TNM stage were

FIGURE 4 | Comparison of the difference in estimated drug sensitivity
between two hepatocellular carcinoma molecular subtypes. (A) The response
to immunotherapy estimated by the TIDE database in different molecular
subtypes. (B–L) Estimated IC50 values of chemotherapy or targeted
therapy drugs in the two molecular subtypes. The higher the sensitivity to the
drug, the lower the IC50 value. IC50, half maximal inhibitory concentration.
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independent indicators of unfavorable OS (Table 2). According
to the results of multivariate Cox analyses, a nomogram
predicting the OS of HCC patients was constructed based on
TNM stage and risk score (Figure 7A). The C-index of the
nomogram for OS prediction was 0.722 (95% CI:
0.697–0.748). As shown in the calibration plot (Figure 7B),
the nomogram demonstrated excellent agreement between the
predicted and actual survival outcomes (1-, 3-, and 5-years OS)
after surgery. The areas under the curve (AUC) for 1-, 3-, and 5-
years OS were 0.794, 0.754, and 0.726, respectively (Figure 7C).
In addition, the DCA curve demonstrated that the
signature–stage nomogram showed better prognostic capacity
than TNM stage (Figure 7D).

DISCUSSION

With advancements in high-throughput sequencing
technology, accumulated prognostic biomarkers and
therapeutic targets have been identified and have promoted
our understanding of cancer. Previous studies have proven
that the ECM-related signature is associated with prognosis
and the immune microenvironment in breast cancer and
esophageal cancer (Lecchi et al., 2021; Zhang et al., 2021).
However, reliable biomarkers for the immunotherapy
response and prognosis in HCC based on the ECM are still
very rare. Considering the influence of ECM alteration in the
TME shares a common molecular mechanism in
carcinogenesis and progression, it can be regarded as a
pancancer effect (Yu et al., 2021). In addition, liver
cirrhosis is closely related to liver cancer, which is also a
well-known pathological condition linked to ECM stiffening
(Piersma et al., 2020). It is understandable that the ECM plays
an important role in HCC.

In the current study, using data from the TCGA-LIHC dataset,
we first found that HCC patients could be categorized into two
subtypes by the expression profile of ECM-related genes.

Moreover, there was a significant difference in survival
outcome between the two molecular subtypes, which
confirmed the role of the ECM in HCC prognosis.
However, it is difficult to speculate which subtype a
patient belongs to based only on clinical features.
Furthermore, mutation characteristics analysis revealed
that cluster A, with poor prognosis and higher TMB, had
higher mutation frequencies of TP53, MUC4, XIRP2,
HMCN1, and RYR3, while cluster B had higher mutation
frequencies of IL6ST, TRIP12, and MAP2. This is consistent
with previous reports that mutant MUC4 was correlated with
higher TMB and potentially associated with prognosis in
pancancer (Yang Y. et al., 2020), while XIRP2 mutation
was potentially associated with metastasis in breast cancer
(Paul et al., 2020). Previous studies have reported that genetic
mutations in HCC have something to do with risk factors and
centered on CTNNB1 (alcohol) and TP53 (HBV) (Schulze
et al., 2015), which may be one of the underlying mechanisms
of grouping. In addition, mutant TP53 has been consistently
associated with poor prognosis in a wide variety of cancers,
including HCC (Olivier et al., 2010; Villanueva, 2019). IL6ST
is recognized as an oncogene involved in tumorigenesis and
associated with inflammatory hepatocellular adenomas (Sun
et al., 2014). Functional enrichment analysis demonstrated
that immune-relevant pathways were significantly enriched
in cluster A, while some pathways related to amino acid
metabolism were significantly enriched in cluster B. This is
consistent with a previous study that the HCC subgroup with
enriched amino acid metabolism-relevant pathways showed a
good prognosis (Yang C. et al., 2020). Moreover, inflating
immune cells are involved in various steps of antitumor
immunity, high infiltration levels of DCs and high-PD-L1-
expressing Tregs were reported to be indicators of favorable
prognosis in patients treated by ICIs (Wu et al., 2018; Huang
et al., 2022). Thus, downregulated immune-related pathways,
high infiltration levels of DCs and Tregs may partly explain
why patients in cluster B had a higher response to ICIs in our

FIGURE 5 | Identification of the extracellular matrix-related prognostic signature. (A) LASSO coefficient profiles of the prognostic genes. (B) Parameter selection in
the LASSO model. LASSO, least absolute shrinkage and selection operator.
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study. However, tumor-infiltrating immune cells are highly
heterogeneous. For instance, different DC subsets have
significantly different effects on immunity and tolerance in
cancer settings (Wculek et al., 2020). The prognosis of
colorectal cancer patients with increased numbers of Tregs
has also been controversial, which may be attributed to an
improper interpretation of heterogeneous FOXP3+ cells as a
single population of Tregs (Tanaka and Sakaguchi, 2017).
More coming studies based on single-cell sequencing may
help elucidate this issue.

The IMbrave150 phase 3 study reported that ICI plus
antiangiogenesis-based therapies could improve the
survival outcomes of HCC patients over sorafenib alone in
the first-line setting, but not all patients can benefit from ICIs
(Pinter et al., 2021). Intriguingly, our results suggested that
HCC patients in ECM-related cluster A had significantly

higher TMB, but almost all HCC patients derived from
TCGA database had low TMB. In contrast, patients in
cluster B had higher immune and stromal scores.
Importantly, we also found that cluster B patients may
have a higher response rate to ICIs. Besides, 10
chemotherapy and targeted drugs had great differences in
estimated IC50 values between the two molecular subtypes,
further indicating that this signature could play a pivotal role
in the prognosis and therapeutic responses of HCC patients.

After that, for the convenience of clinical application, we
constructed an ECM-related prognostic risk score model
using the expression profiles of six genes (SPP1,
ADAMTS5, MMP1, BSG, LAMA2, and CDH1), which was
internally and externally validated using four independent
cohorts. Our results suggested that the expression levels of
SPP1, ADAMTS5, MMP1, and BSG were associated with
poor prognosis of HCC, while LAMA2 and CDH1 were
related to longer survival. Intriguingly, SPP1
overexpression was reported to be associated with HCC
progression and immune escape in lung adenocarcinoma
(Zhang et al., 2017; Wang et al., 2019). MMP1 and BSG
overexpression are also well-known poor prognostic markers
of HCC (Liu H. et al., 2021; Ma et al., 2021). High CDH1
mRNA expression was also significantly correlated with
better survival outcomes in HCC patients (Wu et al.,
2019). However, the prognostic effect of ADAMTS5 in
hepatocellular carcinoma remains controversial (Théret
et al., 2021). Furthermore, the ECM-related prognostic
nomogram demonstrated excellent agreement between the
predicted and actual survival outcomes, as well as better
prognostic capacity than TNM stage.

In addition to being a prognostic marker, targeting the
ECM-mediated immunosuppressive stromal
microenvironment and physical barrier in combination
with other systemic therapies could promisingly
ameliorate the response to those drugs. For example, ECM
deposition was related to immunosuppression and
gemcitabine resistance in pancreatic cancer (Peran et al.,
2021), while the proteolysis of ECM proteoglycans was
associated with T cell infiltration in colorectal cancer
(Hope et al., 2017). Although various studies targeting
different components of the ECM (such as degradation of
stromal collagen and hyaluronic acid) have reported
desirable success, this strategy has repeatedly failed in
clinical studies (Abyaneh et al., 2020), which may be
partly explained by the nonspecificity of drugs and
complex context-specific roles of the ECM (Mushtaq et al.,
2018). Excessive depletion of ECM would compromise or
even worsen the outcomes. This was shown in transgenic
mouse models exhibiting reduced stromal content. Both
fibroblast-depleted tumors and hedgehog-inhibited tumors
showed more aggressive behaviors (Rhim et al., 2014;
Özdemir et al., 2014). Moreover, excessive removal of
ECM components may result in matrix collapse and
decreased drug penetration (Abyaneh et al., 2020).
Therefore, normalization of the ECM rather than its
depletion may be the better goal (Abyaneh et al., 2020).

TABLE 1 | Association between risk score and the clinicopathological variables in
HCC patients (n = 341).

Risk group p

Total High Low

(N = 341) (N = 125) (N = 216)

Age
<60 159 (46.6%) 49 (39.2%) 110 (50.9%) 0.048
≥60 182 (53.4%) 76 (60.8%) 106 (49.1%)

Gender
Female 109 (32.0%) 45 (36.0%) 64 (29.6%) 0.273
Male 232 (68.0%) 80 (64.0%) 152 (70.4%)

Family history of cancer
No 196 (57.5%) 69 (55.2%) 127 (58.8%) 0.214
Yes 100 (29.3%) 43 (34.4%) 57 (26.4%)
Unknown 45 (13.2%) 13 (10.4%) 32 (14.8%)

TNM stage
I 170 (49.9%) 44 (35.2%) 126 (58.3%) <0.001
II 84 (24.6%) 35 (28.0%) 49 (22.7%)
III 83 (24.3%) 45 (36.0%) 38 (17.6%)
IV 4 (1.2%) 1 (0.8%) 3 (1.4%)

Histologic grade
G1–G2 212 (62.2%) 69 (55.2%) 143 (66.2%) 0.032
G3–G4 127 (37.2%) 54 (43.2%) 73 (33.8%)
Unknown 2 (0.6%) 2 (1.6%) 0 (0%)

Ishak score
0–4 124 (36.4%) 39 (31.2%) 85 (39.4%) 0.253
5–6 74 (21.7%) 27 (21.6%) 47 (21.8%)
Unknown 143 (41.9%) 59 (47.2%) 84 (38.9%)

Child–Pugh grade
A 207 (60.7%) 60 (48.0%) 147 (68.1%) 0.001
B-C 21 (6.2%) 9 (7.2%) 12 (5.6%)
Unknown 113 (33.1%) 56 (44.8%) 57 (26.4%)

Vascular invasion
Macro 16 (4.7%) 9 (7.2%) 7 (3.2%) 0.001
Micro 84 (24.6%) 33 (26.4%) 51 (23.6%)
None 193 (56.6%) 56 (44.8%) 137 (63.4%)
Unknown 48 (14.1%) 27 (21.6%) 21 (9.7%)

Alpha fetoprotein
Negative 87 (25.5%) 24 (19.2%) 63 (29.2%) 0.057
Positive 254 (74.5%) 101 (80.8%) 153 (70.8%)

Residual tumor
R0 301 (88.3%) 105 (84.0%) 196 (90.7%) 0.068
R1-R2 14 (4.1%) 5 (4.0%) 9 (4.2%)
Unknown 26 (7.6%) 15 (12.0%) 11 (5.1%)

The bold values indicate they are statistically significant (p < 0.05).
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On the other hand, targeting the ECM for drug delivery is
another promising therapeutic strategy. For example,
matrix-binding ICIs could enhance antitumor efficacy and
reduce adverse events in a preclinical melanoma model
(Ishihara et al., 2017). However, ECM-targeting drug
delivery strategies are mainly explored in animal studies
and deserve further validation in clinical trials.

To the best of our knowledge, this is the first and
comprehensive study classifying HCC patients based on
ECM-related gene expression profiles. Furthermore, an
ECM-related prognostic signature and nomogram were
developed and validated. However, there were still some
limitations in our study, although the prognostic signature
was validated by three independent cohorts and demonstrated

FIGURE 6 | Validation of the prognostic value of the extracellular matrix-related prognostic signature in different datasets. The Kaplan–Meier survival curves
showed the overall survival outcomes of patients from a dataset who were stratified into two groups according to the optimal cutoff values for the risk scores. (A) TCGA-
LIHC dataset. (B) TCGA-LIHC dataset (adjusted after propensity score matching analysis). (C) ICGC-LIRI dataset. (D) GSE10141 dataset. (E) GSE76427 dataset.
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TABLE 2 | Univariate and multivariate analyses of overall survival.

Variables Univariate analysis Multivariate analysis

HR (95% CI) p HR (95% CI) p

Age (≥ 60 vs. < 60) 1.25(0.87,1.81) 0.234 − −

Gender (Female vs. Male) 1.28(0.88,1.86) 0.197 − −

Family history of cancer (Yes vs. No) 1.13(0.77,1.68) 0.532 − −

TNM stage (II vs. I) 1.42(0.87,2.32) 0.158 1.02(0.57,1.82) 0.944
TNM stage (III vs. I) 2.68(1.75,4.08) <0.001 1.76(1.07,2.88) 0.025
TNM stage (IV vs. I) 5.5(1.7,17.82) 0.005 3.84(1.17,12.57) 0.026
Histologic grade (G3–G4 vs. G1–G2) 1.14(0.79,1.67) 0.481 − −

Ishak score (5–6 vs. 0–4) 0.87(0.5,1.5) 0.613 − −

Child–Pugh grade (B–C vs. A) 1.66(0.82,3.36) 0.159 − −

Vascular invasion (Micro vs. None) 0.51(0.23,1.14) 0.101 0.77(0.33,1.82) 0.556
Vascular invasion (Macro vs. None) 0.44(0.21,0.93) 0.032 0.87(0.39,1.93) 0.735
Alpha fetoprotein (Positive vs. Negative) 1.2(0.78,1.83) 0.412 − −

Residual tumor (R1–R2 vs. R0) 1.16(0.47,2.86) 0.74 − −

Risk score (High vs. Low) 5.29(3.35,8.35) <0.001 4.45(2.75,7.23) <0.001

The bold values indicate they are statistically significant (p < 0.05).

FIGURE 7 | Validation of the prognostic value of the extracellular matrix-related prognostic signature based on the nomogram. (A) The nomogram predicting overall
survival. (B) The calibration curve of the nomogram. (C) The ROC curve of the nomogram. (D) The DCA curve of the nomogram. ROC, receiver operating characteristic.
DCA, decision curve analysis.
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good accuracy. First, HCC patient classification and the
prognostic signature were conducted based on retrospective
data, and prospective validation is needed. Moreover,
considering ECM components and structures are quite
dynamic being subject to protein changes, further
proteomics studies are also warranted to better evaluate the
impact of ECM on HCC. Second, due to methodological
limitations, we were unable to analyze and predict the
sensitivity of some essential drugs for HCC patients, such as
sorafenib and lenvatinib, which may be addressed in other
databases or prospective studies. Third, the candidate genes
enrolled in our study were restricted to the ECM-related
signature, while the immune microenvironment in tumors
is a complex consisting of the ECM and a variety of cells.
Thus, the prognostic predictive power of the signature may be
limited. Nonetheless, the ECM-related signature provides
abundant information about the immune microenvironment
and demonstrates good accuracy, which proves to some extent
that developing a prognostic model based on an ECM-related
signature is rational.

CONCLUSION

Collectively, based on ECM-related gene expression profiles, two
molecular subtypes in HCC patients were characterized, with
distinct clinical outcomes, somatic mutation profiles, and drug
sensitivity. Ultimately, an ECM-related prognostic signature was
developed and validated. These findings may improve our
understanding of the ECM signature in HCC and pave a new
path for the assessment of prognosis and drug sensitivity.
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