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Mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cells are 
innate-like T cells that function at the interface between innate and adaptive immunity. 
They express semi-invariant T  cell receptors (TCRs) and recognize unconventional 
non-peptide ligands bound to the MHC Class I-like molecules MR1 and CD1d, respec-
tively. MAIT cells and iNKT cells exhibit an effector-memory phenotype and are enriched 
within the liver and at mucosal sites. In humans, MAIT cell frequencies dwarf those of 
iNKT cells, while in laboratory mouse strains the opposite is true. Upon activation via 
TCR- or cytokine-dependent pathways, MAIT cells and iNKT cells rapidly produce cyto-
kines and show direct cytotoxic activity. Consequently, they are essential for effective 
immunity, and alterations in their frequency and function are associated with numerous 
infectious, inflammatory, and malignant diseases. Due to their abundance in mice and 
the earlier development of reagents, iNKT cells have been more extensively studied than 
MAIT cells. This has led to the routine use of iNKT cells as a reference population for the 
study of MAIT cells, and such an approach has proven very fruitful. However, MAIT cells 
and iNKT cells show important phenotypic, functional, and developmental differences 
that are often overlooked. With the recent availability of new tools, most importantly 
MR1 tetramers, it is now possible to directly study MAIT cells to understand their biol-
ogy. Therefore, it is timely to compare the phenotype, development, and function of 
MAIT cells and iNKT cells. In this review, we highlight key areas where MAIT cells show 
similarity or difference to iNKT cells. In addition, we discuss important avenues for future 
research within the MAIT cell field, especially where comparison to iNKT cells has proven 
less informative.

Keywords: mucosal-associated invariant T cells, natural killer T cells, innate-like T cells, phenotype, development, 
activation, effector function, subsets

iNTRODUCTiON

Mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cells are two 
populations of innate-like T cells that have emerged in recent years as crucial players in the develop-
ment and maintenance of immunity. This is demonstrated by the array of infectious, inflammatory, 
and malignant diseases in which they have been implicated and in which they play diverse roles 
(1–5). Depending on the nature of the infectious or inflammatory setting, these can range from 
host protective functions, for example, antimicrobial or antitumor responses, to the augmentation 
of disease (1–5).
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Mucosal-associated invariant T cells and iNKT cells function 
at the bridge between innate and adaptive immunity. While they 
express a T cell receptor (TCR), similar to conventional T cells 
of the adaptive immune system, their TCRs are semi-invariant 
and recognize a limited range of non-peptide ligands presented 
by monomorphic MHC-like molecules (6, 7). Consequently, the 
TCRs of MAIT cells and iNKT cells may function in a manner 
more akin to that of the pattern-recognition receptors expressed 
on innate immune cells, for example, macrophages and dendritic 
cells (DCs). Furthermore, MAIT cells and iNKT cells display an 
effector-memory phenotype prior to antigen exposure, can be 
activated by cytokines independent of their TCR, and can rapidly 
exert their effector functions upon activation without the require-
ment for clonal expansion, properties more analogous to innate 
immune cell types (8, 9). Given these distinctive characteristics, 
they are likely to play particularly important roles during the 
early stages of an immune response, prior to the differentiation 
of conventional effector T cells.

Although MAIT  cells and iNKT  cells exhibit many 
similarities, they also show important differences that are often 
disregarded. For instance, MAIT  cells are the largest subset of 
donor-unrestricted T  cells in humans, and their frequency in 
peripheral blood and certain tissues can be more than 100-fold 
greater than that of iNKT cells, whereas in mice iNKT cells are 
the more abundant population in most tissues (10, 11). Moreover, 
while MAIT  cells in humans form a homogeneous population 
with mixed Th1/Th17 functionality, iNKT cells are highly diverse 
and can be divided into functionally distinct subsets (5, 11).

Given their much higher frequency in mice and the earlier 
availability of tetramers for their specific identification, iNKT cells 
have been more widely studied than MAIT cells. Furthermore, 
because of the similarities in their phenotypes, findings from 
the iNKT  cell field have often been assumed to also apply to 
MAIT cells. With the discovery of MAIT cell ligands and the recent 
generation of tetramers for accurate MAIT cell identification (7, 
12, 13), it is timely to consider the phenotype, development, and 
function of MAIT cells, how this relates to iNKT cells, and where 
gaps remain in our understanding. This review will focus on 
key areas of similarity and difference between MAIT  cells and 
iNKT cells and will highlight important remaining questions in 
the MAIT  cell field, many of which should now be feasible to 
address using the newly available tetramers.

KeY CHARACTeRiSTiCS

Frequency and Localization
Mucosal-associated invariant T cells represent a relatively large 
population of lymphocytes in humans, comprising up to 10% of 
peripheral blood T cells (14). iNKT cells are comparatively rare, 
with an average frequency of around 0.1% of T cells, although 
both MAIT and iNKT  cell frequencies are highly variable 
between individuals (15–17). Interestingly, iNKT  cells are far 
more abundant than MAIT cells in mice (18, 19).

Mucosal-associated invariant T cells preferentially localize to 
peripheral tissues (11), analogous to iNKT cells (10). In humans, 
MAIT  cells are particularly enriched in the liver (5–50% of 

T cells) and are also abundant in adipose tissue, in the lung, in 
the female genital tract, and to varying degrees in the gut, while 
their frequency is low in peripheral lymph nodes (12, 14, 20–26). 
MAIT cells and iNKT cells in mice show a largely similar tissue 
distribution to human MAIT cells, with enrichment in the liver 
and lung (18, 19). Due to their low abundance, the tissue distribu-
tion of human iNKT cells remains poorly characterized, although 
they are particularly enriched in adipose tissue (27), comparable 
to human MAIT cells (20).

Evidence from parabiosis studies in mice suggests that 
iNKT cells comprise predominantly tissue-resident populations 
that do not recirculate, in contrast to conventional CD4+ and CD8+ 
T cells (28, 29). The capacity of tissue MAIT cells to recirculate has 
not yet been examined. In support of a tissue-resident phenotype, 
MAIT cells lack expression of the lymph node homing receptors 
CD62L and CCR7 (14) and express tissue-resident T cell markers 
in mucosal tissue, including CD69, CD103, and CRTAM (25, 
30). In addition, human liver MAIT cells express LFA-1 (31), a 
molecule that is required for retention of liver iNKT cells in mice 
(28). MAIT cells accumulate in the lungs of mice following intra-
nasal infection with Salmonella enterica serovar Typhimurium 
and remain in  situ for at least 7 weeks post-infection, implying 
long-term retention in tissues (32). Finally, MAIT  cells express 
the transcription factor PLZF (33), and conventional CD4+ T cells 
in mice acquire a tissue-resident phenotype following ectopic 
expression of PLZF (28). However, CCR7−CD103− MAIT  cells 
have recently been identified in human thoracic duct lymph at 
a similar frequency to that in peripheral blood (34). As CCR7 is 
required for lymph node entry, the authors suggest that MAIT cells 
in the lymph must have exited from non-lymphoid tissues. Based 
on these findings, it is possible that tissue MAIT cells comprise 
largely resident populations, while MAIT cells in certain tissues 
and/or particular subsets, are capable of recirculation. Such a 
model would need to be tested in mouse parabiosis experiments.

In mice, MAIT cell frequency is under considerable genetic 
control. MAIT  cells show differential abundance in different 
strains of mice (19), and increased MAIT cell numbers in CAST/
EiJ mice can be mapped to a single genetic locus (35). Similarly, 
iNKT cell frequency is strongly regulated by genetic factors, as 
indicated by longitudinal and twin studies in humans, and analyses 
of iNKT cell frequency in different wild-type and congenic mouse 
strains (36–40). In addition to genetics, MAIT cell frequency is 
influenced by a number of environmental factors. Their frequency 
decreases in the blood with age (after ~25 years old) and in numer-
ous diseases, while they expand in certain tissues upon infection 
or inflammation (3, 32, 41–44), comparable to iNKT cells (10, 
45, 46). Moreover, the frequency of Vα7.2+CD161hi T  cells (a 
proxy for MAIT cell frequency) shows no correlation in human 
mothers and neonates, and the correlation in Vα7.2+CD161hi 
T  cell frequency at birth is equally high in monozygotic and 
dizygotic twins (47). This suggests that environmental factors 
may dominate over genetic factors in regulating MAIT cell fre-
quency in humans. However, these findings need to be confirmed 
using the MR1/5-OP-RU [5-(2-oxopropylideneamino)-6-d-
ribitylaminouracil] tetramer for MAIT  cell identification, as 
MR1/5-OP-RU tetramer+ MAIT  cells comprise only a small 
fraction (<20%) of Vα7.2+CD161hi T cells at birth, in contrast to 
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adults, where Vα7.2+CD161hi T cells are typically >95% MR1/5-
OP-RU tetramer+ (47). Therefore, further research is required to 
establish the relative role of genetic and environmental factors in 
regulating MAIT cell frequency in mice and humans.

TCR Usage
The semi-invariant αβ TCRs of MAIT  cells and iNKT  cells 
comprise a largely invariant TCRα chain paired with a biased 
repertoire of Vβ chains. In humans, MAIT cells express a Vα7.2-
Jα33/12/20 (TRAV1-2/TRAJ33/12/20) TCRα chain preferentially 
paired with Vβ2 or Vβ13 (TRBV20 or TRBV6) (12, 48–50), while 
the iNKT TCR comprises a Vα24-Jα18 (TRAV10/TRAJ18) TCRα 
chain paired exclusively with Vβ11 (TRBV25) (Table  1) (48, 
51, 52). Conventional T  cells recognize short peptide antigens 
presented by highly polymorphic MHC Class I or MHC Class 
II molecules. By contrast, MAIT cells and iNKT cells recognize 
non-peptide ligands bound to monomorphic MHC Class I-like 
molecules, namely riboflavin metabolites bound to MR1 (7, 13, 
22), and glycolipid/phospholipid antigens bound to CD1d (6), 
respectively (Table 1).

Phenotype
In humans, MAIT cells are predominantly CD8+ (70–90%), with 
some CD4−CD8− (DN) (10–20%), and a minor population of 
CD4+ cells (Table 1) (12, 16, 43). iNKT cells can also be CD8+ 
(absent in mice), DN, or CD4+ (Table 1) (60–62, 98, 99). Within 
the CD8-expressing subset, both MAIT  cells and iNKT  cells 
predominantly express CD8αα homodimers or are CD8α+βlow 
(Table 1) (12, 61–63), in contrast to conventional T cell popula-
tions that are mainly CD8αβ+ (>90%). CD8αα homodimers 
might function to inhibit T cell activation, although their physi-
ological role remains poorly defined (100).

Human MAIT cells display an effector-memory phenotype and 
characteristic expression of several surface molecules (CD161, 
CD26), cytokine and chemokine receptors (IL-18Rα, CCR5, 
CCR6), and transcription factors (PLZF, RORγt, T-bet) (Table 1) 
(11). As their phenotype is largely homogeneous and MR1 
tetramers have only recently been developed, human MAIT cells 
are routinely identified using surrogate markers, most commonly 
as Vα7.2+CD161hi T cells, but also using Vα7.2 combined with 
IL-18Rα or CD26. In contrast to the homogeneity of MAIT cells, 
iNKT  cells show considerable heterogeneity and thus must be 
directly identified using CD1d/α-galactosylceramide (αGalCer) 
tetramers or with an antibody to the invariant Vα24-Jα18 TCRα 
chain in humans. While CD4+ and CD4− iNKT cell populations 
show disparate expression of memory markers, chemokine 
receptors, and natural killer (NK) cell receptors (62, 65, 84), the 
predominant CD4− population shows resemblance to MAIT cells, 
displaying an effector-memory phenotype and similar expression 
of surface receptors (Table 1) (65, 84, 101). Human MAIT cells 
coexpress the transcription factors PLZF, T-bet, and RORγt 
(91, 102), whereas their expression is subset specific for mouse 
MAIT cells, with cells expressing PLZF and either T-bet or RORγt 
(Table 1) (19, 102). This dichotomous expression of T-bet and 
RORγt is also seen in mouse iNKT cells (Table 1) (86). Therefore, 
the expression of a mixed Th1/Th17 transcription factor profile 
appears unique to human MAIT cells.

In summary, MAIT cells and iNKT cells show many overlap-
ping characteristics, including expression of semi-invariant TCRs, 
recognition of non-peptide ligands, and an innate-like effector-
memory phenotype. However, the phenotype of iNKT  cells 
is considerably more heterogeneous than that of MAIT  cells. 
MAIT cells and iNKT cells predominantly localize to peripheral 
tissues under homeostatic conditions, especially the liver and 
mucosal tissues, and are therefore optimally positioned to act as 
a first line of defense at the site of microbial infection.

MOUSe MODeLS

TCR Transgenic
Transgenic mouse models are widely used to study the phenotype 
and function of MAIT cells and iNKT cells, and their role in dif-
ferent disease settings. While use of these models has provided 
major contributions to our understanding of both cell subsets, it 
is also important to be aware of their limitations.

Mice that constitutively express the MAIT and iNKT  cell 
invariant TCRα chain, namely, Vα19-Jα33 (termed iVα19 in sev-
eral studies) (16, 103, 104) and Vα14-Jα18 (Vα14-Jα281 nomen-
clature used in early studies) (105, 106), respectively, have been 
generated on a Cα−/− background. As intended, these mice have 
an increased frequency of the target cell population. However, 
as is commonly observed in TCRα transgenic models, normal 
T  cell development is dysregulated. TCR diversity is greatly 
reduced, T cell numbers are significantly decreased in the thymus 
and many peripheral tissues, and the mice harbor an expanded 
population of DN T cells. In addition, as mice overexpressing the 
MAIT or iNKT invariant TCRα chains also harbor other T cell 
populations (16, 103–105), comparison of mice deficient and 
sufficient in MR1 or CD1d, respectively, is necessary in order to 
identify features specific to the cell subset of interest.

Along with global changes in T cell development, MAIT cells 
and iNKT cells from TCRα transgenic mice exhibit certain dif-
ferences in their phenotype, function, subset distribution, and 
tissue localization compared with their wild-type counterparts. 
For example, MAIT  cells from iVα19 TCRα transgenic mice 
display a naïve phenotype, lack expression of PLZF, and secrete 
considerable amounts of IL-10 and Th2 cytokines (16, 103, 104), 
in contrast with MAIT cells from wild-type mice (19). Moreover, 
while wild-type iNKT cells produce both IL-4 and IFN-γ, T cells 
from Vα14-Jα18 TCRα transgenic mice produce high levels of 
IL-4, but little IFN-γ following stimulation with αCD3 (105). 
However, several groups have generated refined Vα14-Jα18 
TCRα mouse models using somatic cell nuclear transfer (107) 
or induced pluripotent stem cells (108), in which iNKT cells can 
secrete high levels of both IL-4 and IFN-γ.

Vβ transgenic mice, for example, Vβ6 and Vβ8 transgenic 
mice, can be studied as an alternative to TCRα transgenics or can 
be crossed with TCRα transgenics to further increase MAIT or 
iNKT cell frequency, and to decrease unwanted TCR specificities 
(16, 109). An important limitation of these models is that, as MAIT 
and iNKT cell populations utilize multiple TCRβ chains, the forced 
usage of a single Vβ will bias the antigen specificity, and thereby 
the functionality of the generated population. In addition to the 
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TABLe 1 | Characteristics of human and mouse mucosal-associated invariant T (MAIT) and invariant natural killer T (iNKT) cells.

T cell receptor (TCR) 
usage

MHC-like 
molecule

Ligands CD4/CD8 Naïve/
memory

Chemokine receptors Cytokine 
receptors

Cytokines 
produced

Transcription 
factors

Human 
MAiT

Vα7.2-Jα33/12/20 
(TRAV1-2/TRAJ33/12/20) 
TCRα. Biased repertoire 
of Vβ chains – Vβ2, 
Vβ13 (TRBV20, TRBV6). 
Oligoclonal CDR3β

MR1 Activating – riboflavin metabolites 
(5-OP-RU, 5-OE-RU), drug 
metabolites (e.g., diclofenac 
metabolites). Inhibitory – folic acid 
metabolites (6-FP, Ac-6-FP), small 
organic molecules  
(e.g., salicyclates)

70–85% CD8+ (~50% 
CD8α+α+, ~50% 
CD8α+β+), 10–20% 
DN, <5% CD4+

CD45RO+ 
CCR7−CD62Llo 
effector-
memory

CCR2, CCR5, CCR6, 
CXCR6

IL-12R, 
IL-18R, 
IL-7R, 
IL-15R, 
IL-23R

IFN-γ, TNF-
α, IL-17A, 
MIP-1β

PLZF+, RORγt+, 
T-betint, Eomeshi, 
Heliosint

Mouse 
MAiT

Vα19-Jα33 (TRAV1/TRAJ33) 
TCRα. Biased repertoire 
of Vβ chains – Vβ6, Vβ8 
(TRBV19, TRBV13)

MR1 Activating – riboflavin metabolites 
(5-OP-RU, 5-OE-RU). Inhibitory 
– folic acid metabolites (6-FP, Ac-6-
FP), small organic molecules  
(e.g., salicyclates)

B6 mice – 55–90% 
DN, <25% CD8+ 
(~50% CD8α+β−, 
~50% CD8α+β+), 
<20% CD4+. Variation 
across tissues

CD44hiCD62Llo 
effector-
memory

CXCR6 IL-18R, 
IL-7R

IFN-γ, IL-17A, 
MIP-1α

PLZF+, RORγt+ 
(subset), T-bet+ 
(subset)

Human 
iNKT

Vα24-Jα18 (TRAV10/
TRAJ18), Vβ11 (TRBV25). 
Diverse CDR3β

CD1d Activating – glycolipids 
(e.g., glycosphingolipids, 
diacylglycerols, cholesteryl 
α-glucosides) and phospholipids 
(including lysophospholipids, 
e.g., ether-bonded mono-alkyl 
glycerophosphates)

10–100% CD4− 
(average = 60%; 
~50% CD8+ [>95% 
CD8α+α+], ~50% 
DN), 0–90% CD4+ 
(average = 40%)

Predominantly 
CD45RO+ 
CCR7−CD62Llo 
effector-
memory

Majority express CXCR3, 
CXCR4, CCR2, CCR5. 
Subset-specific:  
CD4+ – CCR4.  
CD4− – CXCR6, CCR6, 
CCR1

IL-12R, 
IL-18R, 
IL-7R, 
IL-15R

MIP-1α, 
MIP-1β. 
CD4+ – IFN-γ, 
TNF-α, IL-4, 
IL-13, IL-10, 
GM-CSF. 
CD4− – IFN-γ, 
TNF-α

PLZF+, T-bet+ 
(~50%), Eomes+ 
(~30%), FoxP3+ 
(in vitro)

Mouse 
iNKT

Vα14-Jα18 (TRAV11/
TRAJ18). Biased repertoire 
of Vβ chains – Vβ8.2, Vβ7, 
Vβ2 (TRBV13-2, TRBV29, 
TRBV1). Diverse CDR3β

CD1d Activating – glycolipids 
(e.g., glycosphingolipids, 
diacylglycerols, cholesteryl 
α-glucosides) and phospholipids 
(including lysophospholipids, 
e.g., ether-bonded mono-alkyl 
glycerophosphates)

B6 mice – 60–80% 
CD4+, 20–40% DN. 
Variation across 
tissues

CD44hiCD62Llo 
effector-
memory

CXCR3, CXCR4, CXCR6, 
CCR9

IL-12R, 
IL-18R, 
IL-7R, 
IL-15R, 
IL-23R

NKT1 – IFN-γ, 
NKT2 – IL-4, 
NKT17 – IL-17, 
NKT10 – IL-10

NKT1 – PLZFloT- 
bet+, NKT2 – PLZFhiT-
bet− RORγt−, NKT17 - 
PLZFint RORγt+,  
NKT10 – E4BP4+, 
NKTFH – Bcl-6+, 
iNKTreg – FoxP3+

Reference (12, 22, 48–54) (17, 21, 
22, 55, 
56)

(7, 12, 13, 57–59) (12, 15, 19, 43, 
60–64)

(14, 16, 62, 
65–69)

(14, 19, 65, 70–72) (14, 17, 
19, 70, 
73–83)

(14, 17, 
19, 50, 62, 
84–90)

(14, 19, 33, 86, 
91–97)

DN - double-negative/CD4−CD8−
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use of double transgenics, MAIT or iNKT cell frequency can be 
increased by studying transgenic mice on a RAG−/− or TAP−/−Ii−/− 
background (16, 109). However, in these mice, interactions 
between MAIT or iNKT cells, and other conventional T cells (and 
B cells in RAG−/− mice), which might influence their phenotype 
and development in a wild-type setting, are completely absent.

Non-Transgenic
Given the scarcity of MAIT  cells in mice and the limitations 
of TCR transgenic models, alternative models with increased 
MAIT  cell frequency have been developed. A mouse strain 
(CAST/EiJ) with 20-fold greater frequency of MAIT cells than 
C57BL/6 mice was identified, and crossing these strains generated 
a B6-MAITCAST strain with increased frequencies of MAIT cells 
(35). These MAITCAST cells display a phenotype more consistent 
with MAIT cells from wild-type animals, including expression of 
PLZF, but some phenotypic and functional abnormalities remain. 
An alternate, non-genetic approach to increase the frequency of 
MAIT cells in mice is through the intranasal administration of 
MR1 ligand (5-OP-RU) combined with a toll-like receptor (TLR) 
agonist, which increases their frequency to approximately 50% 
of lung αβ T cells (32). Further work will be required to under-
stand how this “boosting” may impact on the phenotype and 
function of MAIT cells, and thereby to establish the robustness 
of this experimental approach. Regardless of potential current 
shortcomings, efforts to develop mouse models with increased 
MAIT  cell frequencies, while avoiding the limitations of TCR 
transgenic systems, appear promising.

MHC/TCR Knockout
Models with reduced, rather than increased, MAIT or iNKT cell 
frequencies have also been generated either by altering the TCR 
repertoire or by removing the MHC molecules that are essential 
for MAIT or iNKT cell selection. iNKT cell-deficient Jα18−/− mice 
are widely used; however, a recent study showed that TCRα rear-
rangement is perturbed in the original Jα18−/− strain (110, 111). 
TCRα rearrangements using Jα segments upstream of Jα18 are 
almost completely absent, and therefore, along with other T cell 
populations, MAIT cell frequency is reduced. Consequently, lack 
of MAIT cells may contribute to the phenotype of Jα18−/− mice. 
However, newer Jα18−/− models have now been generated that 
exhibit a normal TCRα repertoire (except for the lack of Jα18) 
(112–115), thus addressing this concern.

Mice lacking MR1 or CD1d lack MAIT cells (22) or iNKT cells 
(116–118), respectively. However, they also lack other MR1- or 
CD1d-restricted T  cells. A population of MR1-restricted non-
MAIT T  cells was recently identified in humans (119), which 
if present in mice would be absent in MR1−/− animals. CD1d−/− 
mice lack not only iNKT cells (type I) but also diverse (type II) 
NKT cells. In addition, CD1d−/− mice on the BALB/c background, 
and to a lesser extent the C57BL/6 background, exhibit a marked 
increase in the frequency of MAIT  cells, which might further 
confound studies using these mice (102). Jα18−/− mice have 
the advantage that they lack only iNKT cells. It is important to 
bear this in mind when using MR1−/− and CD1d−/− mice, as any 
identified phenotypes may not be directly attributable to MAIT 
or iNKT cells, respectively.

Therefore, while transgenic mouse models enable the role of 
MAIT cells and iNKT cells to be interrogated in vivo in health 
and disease, caution is necessary when using these models. Newer 
models continue to be developed that aim to overcome some of 
the drawbacks of existing models. Nevertheless, results from 
any mouse model should be validated in other models to avoid 
findings that result from peculiarities of the chosen experimental 
system. Moreover, it is important to bear in mind that discoveries 
from mouse studies may not directly translate to humans, given 
the vastly different frequencies of MAIT and iNKT cells in these 
species, in addition to other differences, for example, in functional 
subsets and tissue distribution.

DeveLOPMeNT

Thymic Development
Selection
The earliest stages of MAIT cell development in the thymus show 
many similarities to the thymic development of iNKT cells. As 
with conventional T cells, the semi-invariant TCR of MAIT cells 
is generated via random recombination (49, 120); however, its 
formation requires an extended CD4+CD8+ (DP) thymocyte lifes-
pan. Initial rearrangement of the TCRα locus utilizes 3′ Vα and 5′ 
Jα segments, with later rearrangements using progressively more 
5′ Vα segments and more 3′ Jα segments (termed proximal to dis-
tal rearrangement) (121, 122). Thus, formation of the MAIT cell 
semi-invariant TCR that incorporates the 5′ most Vα segment 
(TRAV1-2) occurs late in the lifespan of DP thymocytes. A long 
DP thymocyte half-life is likewise necessary for generation of the 
iNKT TCR and hence for iNKT cell development. iNKT cells are 
absent in Rorc−/− mice (RORγt-deficient) that show a reduced 
DP thymocyte lifespan, but their development is rescued upon 
expression of the rearranged Vα14-Jα18 TCRα chain or the anti-
apoptotic protein Bcl-xL (123, 124). In peripheral blood T cells 
from RORC−/− patients, 5′ Vα-3′ Jα TCRα pairings are absent, and 
hence these patients lack both MAIT cells and iNKT cells (125), 
presumably due to lack of rearrangement of their characteristic 
TCRα chains at the DP thymocyte stage.

Following TCR expression, conventional T  cells undergo 
positive selection on cortical thymic epithelial cells that present 
self-peptides on MHC Class I and MHC Class II. By contrast, 
MAIT cells are selected by MR1-expressing DP thymocytes (126, 
127), comparable to the CD1d-dependent selection of iNKT cells 
(128, 129) (Figure 1A). For iNKT cells, selection is dependent 
on the presentation of endogenous lipid antigens by CD1d 
(Figure 1A) (130). Based on this paradigm and circumstantial 
evidence (131, 132), it is highly plausible that MAIT cell selec-
tion also involves an endogenous ligand(s), although such ligands 
have yet to be identified.

Conventional T  cells are positively selected in the thymus 
when their TCR exhibits moderate affinity for MHC/self-peptide, 
while thymocytes expressing high affinity TCRs are removed 
from the repertoire. The strength of the TCR-MR1/ligand inter-
action required for MAIT  cell positive selection has not been 
investigated, but agonist selection is hypothesized based on the 
following information. First, a number of unconventional T cell 
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lineages are selected by agonist ligands, including iNKT  cells, 
regulatory T cells, and CD8αα gut intraepithelial T cells (133). 
Second, compared with conventional thymocytes, the high avid-
ity interaction between the iNKT TCR and selecting glycolipids 
results in strong TCR signaling (134) and therefore prolonged 
upregulation of the TCR-induced transcription factors Egr1 and 
Egr2 (135). The transcription factor PLZF, encoded by Zbtb16, is 
a direct downstream target of Egr2 (135), and both MAIT cells 
and iNKT  cells upregulate PLZF expression during thymic 
development, contrasting to conventional T cells. Finally, mouse 
MAIT cells upregulate CD44 expression, and mouse and human 
MAIT cells can acquire effector function within the thymus (102), 
properties of antigen-experienced conventional T cells.

MR1 is essential for MAIT cell positive selection (Figure 1A) 
(126). However, whether engagement of other cell surface recep-
tors is required, is currently unknown. By contrast, homotypic 
interactions between at least two signaling lymphocyte activation 
molecule (SLAM) family members (SLAMF1 and SLAMF6) are 
required alongside TCR-CD1d/ligand engagement, for iNKT cell 
development (Figure 1A). In mixed bone marrow chimeras, the 
frequency of iNKT cells in Slamf1/Slamf6-deficient populations is 
significantly reduced compared with wild-type, with a specific defect 
at the transition from stage 0 (CD24hi) to stage 1 (CD24lo) (136). 
SLAMF6 costimulation has been shown to augment TCR signaling, 
resulting in increased Egr2 expression and consequently enhanced 
expression of PLZF (137). MAIT  cell development is independ-
ent of SLAM receptors, as patients deficient in SLAM-associated 
protein, an intracellular adaptor required for SLAM signaling, lack 
iNKT cells but show normal numbers of MAIT cells (16).

The role of negative selection in MAIT cell development has not 
been investigated (Figure 1B). By contrast, although not explic-
itly demonstrated, highly autoreactive iNKT cells likely undergo 
negative selection on DCs (Figure 1B) (138, 139). Addition of 
the agonist glycolipid αGalCer or CD1d overexpression during 
iNKT cell development results in decreased iNKT cell frequency 
in vitro and in vivo (138, 139). It seems likely that high avidity 
self-reactive MAIT thymocytes also undergo negative selection. 
Alternatively, peripheral MAIT cell activation could be controlled 
by other mechanisms, for example, dampened TCR signaling 
compared with conventional T cells (85).

Differentiation
The differentiation of thymic MAIT  cells following selection 
remains relatively unexplored. However, a recent paper by 

Koay et  al. identified three stages of MAIT  cell development 
in mice and humans (102). The described developmental path-
way in mice, with stages defined by the expression of CD24 
and CD44 (stage 1 – CD24+CD44−, stage 2 – CD24−CD44−, 
stage 3 – CD24−CD44+), is remarkably similar to the linear 
differentiation model of iNKT  cell development (Figure  1C) 
(130). In mice, thymic stage 1 (CD24loCD44lo) and stage 2 
(CD24loCD44hi) iNKT cells are highly proliferative (Figure 1C) 
(140). Intrathymic iNKT cell proliferation requires expression 
of the transcription factor c-Myc (141). Mouse MAIT  cells 
accumulate in the thymus with age, and stage 3 MAIT cells are 
more abundant than stage 1 and stage 2 in fetal thymic organ 
culture (102). These data suggest that murine MAIT  cells 
proliferate in the thymus, similar to iNKT  cells, but direct 
measures of in  vivo proliferation have not been performed. 
By contrast, human thymic MAIT  cells are present at low 
frequency irrespective of age (16, 102, 127), and T cell recep-
tor excision circle (TREC) analysis of MAIT  cells in human 
thymus and cord blood identified no differences in TREC 
concentration compared with conventional T  cells (127). 
Whether human thymic and cord blood iNKT  cells show 
enhanced proliferative capacity relative to conventional T cells 
is unclear, as prior studies have reported conflicting findings  
(73, 74). Thus, additional independent direct assessments of 
MAIT and iNKT thymocyte proliferation are needed to clarify 
the extent of their intrathymic proliferative capacity.

Development of MAIT cells along the linear developmental 
pathway requires a number of different factors, some of which 
are also necessary for iNKT cell development (Figure 1C). MR1 
is essential at all stages of MAIT cell development in vitro, and 
peripheral MAIT cells are nearly absent in MR1-deficient mice 
(16, 19, 22, 102). Likewise, CD1d is essential for the development 
of iNKT  cells (116–118, 142). In the absence of commensal 
bacteria and IL-18 in vivo, stage 3 MAIT cells are reduced, while 
the frequency (but not number) of stage 1 cells is increased  
(22, 102). Moreover, MAIT  cell development beyond stage 1 
requires microRNAs (miRNAs), as the abundance of stage 2 and 
stage 3 MAIT cells is decreased in Drosha-deficient mice (102). 
By contrast, PLZF is necessary only for MAIT  cell maturation 
from stage 2 to stage 3 and for their acquisition of effector func-
tion (19, 102).

Invariant natural killer T cell development similarly requires 
miRNAs and PLZF (33, 92, 143). Consistent with a shared devel-
opmental niche, MAIT cell frequency is markedly increased in 
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CD1d-deficient mice on a BALB/c background, with only minor 
differences to wild-type on the C57BL/6 background, although 
the increase in both strains is statistically significant (102). By 
contrast, the number of iNKT  cells in the spleen and thymus 
of MR1-deficient mice is similar to that of wild-type, perhaps 
due to the much lower frequency of MAIT cells compared with 
iNKT cells in these mouse strains (102). In addition, the frequency 
of MAIT cells and iNKT cells in humans is positively correlated in 
adult peripheral blood (43). Despite shared development needs, 
the absolute requirement for commensal bacteria appears unique 
to MAIT  cells (22, 102), as iNKT  cell frequency is relatively 
conserved in germ-free (GF) mice compared with either specific 
pathogen-free (SPF) mice or mice harboring a conventional 
microflora (144, 145).

Stage 3 mature MAIT cells in human thymus coexpress RORγt 
and T-bet (102). By contrast, stage 3 MAIT cells in mice comprise 
two subsets, namely, RORγt+T-bet− and T-bet+RORγt− cells 
(102). Analogous to MAIT cells, thymic iNKT cell subsets have 
not been identified in humans, while iNKT cells comprise at least 
three different subsets in mouse thymus, named NKT1, NKT2, 
and NKT17 (discussed in more detail in Section “Subsets”) (86, 
146, 147). It is unclear whether RORγt+T-bet− and T-bet+RORγt− 
MAIT cells represent different developmental stages or distinct 
subsets derived from a shared progenitor. Recent studies suggest 
that iNKT  cell subsets arise from a common PLZFhi precursor 
population and represent stable lineages with distinct tran-
scriptional and epigenetic programs (86, 146, 147). However, 
whether the classic developmental stages model or the newer 
lineage segregation model best describes iNKT  cell develop-
ment, remains uncertain. Moreover, the specific signals required 
for commitment to the different iNKT  cell subsets are largely 
unknown, although a multitude of factors, including cytokines 
and transcriptional regulators, can differentially regulate NKT1, 
NKT2, and NKT17 development (148). It would be worth inves-
tigating whether similar factors also modulate the differentiation 
of thymic MAIT cell subsets.

Acquisition of Innate-Like Effector Function
Mucosal-associated invariant T cells can acquire innate-like effec-
tor function in the thymus and secrete cytokines upon activation 
(102), comparable to iNKT cells (15, 140, 149, 150). Expression 
of the transcription factor PLZF is necessary and sufficient 
to drive innate-like effector differentiation (33, 92, 151–153). 
In PLZF-deficient mice, MAIT and iNKT  cell development is 
almost completely abrogated and residual cells exhibit a CD44lo 
phenotype, reduced expression of characteristic phenotypic 
markers, and impaired cytokine secretion (19, 33, 92, 102). In 
addition to direct regulation by Egr2 (135), PLZF expression is 
regulated by the binding of Runx1 to a shared intronic enhancer 
in several innate lymphoid lineages, including iNKT  cells 
(154). Therefore, Runx1 likely also regulates PLZF expression 
in MAIT  cells. During thymic MAIT  cell development, PLZF 
expression begins at stage 2 (mouse – CD24−CD44−, human – 
CD161−CD27+) and is highest at stage 3 (mouse – CD24−CD44+, 
human – CD161+CD27pos-lo) (Figure  1C) (102). By contrast, 
PLZF expression is induced immediately following positive 
selection in iNKT cells and its expression peaks in thymic stage 

1 cells (CD24loCD44lo) (Figure 1C) (33, 92, 135). Consequently, 
thymic stage 1 iNKT cells can secrete cytokines upon stimulation  
(140, 149, 150), while MAIT cells do not acquire this functional-
ity until stage 3 of thymic differentiation (102).

Although they can acquire effector function within the 
thymus, MAIT cells in humans are typically thought to exit the 
thymus as naïve cells and acquire their effector-memory pheno-
type in the periphery (14, 16, 47, 63, 127). This is supported by 
the naïve phenotype of MAIT cells in thymus and cord blood, 
and their rapid acquisition of CD45RO in neonates, such that 
>80% of blood MAIT cells express CD45RO by 1 month of age 
(14, 16, 47, 63, 127). However, further studies are required to 
fully define exactly when and where MAIT  cells acquire their 
effector-memory phenotype and function, given that some 
thymic MAIT cells express PLZF and CD45RO (16, 102, 155). 
Naïve stage 2 (CD161−CD27+) MAIT cells were recently shown 
to predominate in human thymus and were found to a lesser 
degree in cord blood and young blood (102). Thus, the majority 
of MAIT cells may exit the thymus at stage 2 and undergo further 
maturation in the periphery, while a small population matures 
to stage 3 in the thymus (102). Stage 3 mature MAIT  cells 
(CD24−CD44+) are the main population in mouse thymus (102). 
Therefore, contrasting to human MAIT cells, but comparable to 
mouse iNKT cells, mouse MAIT cells probably exit the thymus 
as CD44+ memory cells (140). Similarly, human iNKT cells may 
leave the thymus as effector-memory cells, as they already dis-
play a CD45RO+ memory phenotype in thymus and cord blood  
(66, 67, 156).

In conclusion, thymic MAIT  cell development shows many 
similarities to that of iNKT  cells, including selection on DP 
thymocytes, development through similar stages post-selection, a 
shared requirement for developmental factors, and the possibility 
to acquire innate-like effector function in the thymus. However, 
the role of MAIT cell negative selection and the extent of their 
intrathymic proliferation have yet to be examined. While mouse 
iNKT cells and likely mouse MAIT cells exit the thymus as CD44+ 
effector-memory cells, human MAIT  cells appear to leave the 
thymus as naïve cells and acquire innate-like effector function 
extrathymically, although the exact timing of their thymic exit 
needs to be clarified. The reason for such disparity between mouse 
and human MAIT cells in the location of effector maturation is 
currently unclear.

Peripheral Development
Changes in Abundance
While their frequency is relatively constant in the thymus, 
MAIT  cells undergo a large population expansion in the 
periphery, reminiscent of intrathymic iNKT  cell expansion in 
mice, increasing over 100-fold from <0.01% of T cells at birth to 
1–10% of T cells by adulthood (14, 41–43, 47, 102). The increase 
in MAIT cell numbers is gradual and occurs over a number of 
years, although estimates for the age at which adult frequencies 
are reached vary between studies (6–25 years of age) (14, 41–43, 
47, 102). By contrast, peripheral iNKT  cell frequencies remain 
relatively constant from birth to adulthood (66, 157, 158).

Though MAIT cell thymic selection is independent of B cells 
(16), B cells are crucial for peripheral MAIT cell expansion in mice 
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(Figure  1D). Peripheral MAIT  cells are almost entirely absent 
in B  cell-deficient mice, and transfer of B  cells is sufficient to 
induce MAIT cell expansion in iVα19/Vβ6 RAG−/− mice (16, 22). 
Whether cognate interactions between B cells and MAIT cells are 
necessary for such expansion has not been established. In humans, 
the role of B  cells remains uncertain. Treiner et  al. observed a 
reduced frequency of MAIT cells (as measured by the presence 
of Vα7.2-Jα33 TCRα transcripts) in the blood of patients who 
lack B cells due to a mutation in Bruton tyrosine kinase (BTK) 
(22). However, only four patients were analyzed, one of which 
had a normal number of MAIT cells. A study of common variable 
immunodeficiency (CVID) provides indirect evidence against a 
role for B cells in regulating human MAIT cell frequency (159). 
Although the abundance of B cells and MAIT cells was variably 
decreased in CVID patients, the frequency of MAIT cells showed 
no correlation with that of B cells. A major confounding factor in 
these human studies is the increased occurrence of infections in 
patients with BTK deficiency and CVID, which can independently 
modulate MAIT cell frequency. Thus, whether B cells have a role 
in MAIT cell expansion or at other stages of their development 
in humans requires further investigation. B cells are not essential 
for iNKT cell development, but they do play an important role 
in human peripheral iNKT cell homeostasis (160), as discussed 
below.

It is widely hypothesized that peripheral MAIT cell expansion 
and maturation is driven by the presentation of microbial antigens 
on MR1, derived from either commensal or pathogenic bacteria 
(Figure 1D). Although this has yet to be formally proven, a variety 
of evidence supports this hypothesis. In humans, MAIT  cells 
are naïve in thymus, cord blood, and in newborns, but rapidly 
acquire a memory phenotype in the blood during the first month 
of life (14, 16, 47, 102), concomitant with exposure to bacteria. 
MAIT cells are absent in GF mice (22) and expand upon microbial 
reconstitution with a single strain of bacteria (17). Furthermore, 
MAIT  cells undergo MR1-dependent proliferation in  vitro and 
in vivo in response to bacteria, for example, in the lungs of mice 
infected with Salmonella enterica serovar Typhimurium (32, 91, 
161). The TCR repertoire of MAIT cells also supports microbe-
mediated expansion. While the TCR repertoire is polyclonal in 
cord blood, it is oligoclonal in adult blood (47, 49, 50, 63), consist-
ent with the hypothesized expansion of specific clones in response 
to particular bacteria. This is plausible, as MAIT cells with distinct 
TCRs are activated in  vitro following stimulation with different 
bacteria (162), and in a human in vivo Salmonella enterica serovar 
Paratyphi A challenge setting, the relative abundance of different 
MAIT cell clonotypes changes in response to infection (163).

Phenotypic and Functional Maturation
In addition to expansion, MAIT  cells undergo maturation in 
the periphery, as indicated by marked phenotypic changes. 
Approximately half of MAIT cells in the thymus are either DP 
or CD4+, whereas MAIT cells in adult blood are predominantly 
DN or CD8+ (Figure  1D) (16, 49, 102). Furthermore, CD8+ 
MAIT cells in the thymus and cord blood are CD8αβ+, whereas 
roughly half of CD8α+ MAIT cells in adult blood express CD8αα 
homodimers (16, 63, 102). CD8αα+ MAIT  cells are thought 
to arise from CD161hiCD8αβ+ cells in the periphery (47, 63). 

iNKT cells undergo similar phenotypic changes with age. CD4+ 
cells comprise 80–90% of iNKT cells in human thymus and cord 
blood, and progressively decline in the periphery to comprise 
on average 40% of iNKT cells in adult blood (15, 73, 158). This 
may result from the preferential peripheral expansion of CD4− 
iNKT  cells, as CD4− iNKT  cells show reduced TREC content 
and increased proliferation in response to IL-15 compared with 
CD4+ iNKT cells (73). However, alternative explanations, such as 
CD4 downregulation, remain possible. It is unknown if CD4+ and 
CD8+ MAIT cells show differences in their proliferative capacity. 
Analogous to MAIT cells, a large proportion of CD8+ iNKT cells 
in human blood express CD8αα (61, 62), but whether these arise 
in the periphery has not been investigated.

Following thymic exit, MAIT cells acquire a memory CD45RO+ 
phenotype and upregulate the expression of characteristic pheno-
typic markers, such as CD161 and IL-18Rα (Figure 1D), while 
downregulating the expression of lymph node homing receptors, 
including CD62L and CCR7 (14, 47, 63, 102, 127, 155). These 
changes are gradual, as MAIT cells in cord blood, young blood, 
and adult blood exhibit an increasingly mature phenotype (47, 63, 
102, 127, 155). iNKT cells undergo similar extrathymic phenotypic 
changes (15, 67, 73, 156, 158, 164), although they already exhibit a 
memory phenotype in the thymus and cord blood (15, 66, 67, 140).  
Upregulation of NK  cell receptors on mouse iNKT  cells is 
dependent on CD1d (142), while IL-7 can upregulate CD161 on 
human cord blood iNKT cells in vitro (74). The signals required 
for NK cell receptor upregulation on developing MAIT cells are 
currently unknown.

As well as phenotypic changes, MAIT cells undergo further 
functional differentiation following thymic exit. Although stage 
3 MAIT cells in human thymus can produce IFN-γ and TNF-α 
following PMA and ionomycin stimulation, their capacity to do 
so is significantly decreased compared with peripheral blood 
MAIT cells (102). Moreover, the majority of human MAIT cells 
may exit the thymus at stage 2 before they acquire effector capac-
ity. In contrast to adult blood Vα7.2+CD161hi T cells, cord blood 
Vα7.2+CD161hi T cells are unable to produce IFN-γ or Granzyme 
B in response to overnight stimulation with Escherichia coli-
infected THP-1 cells (47). However, as MAIT cells comprise the 
majority of Vα7.2+CD161hi T cells in adult blood, but only a small 
fraction of Vα7.2+CD161hi T cells in cord blood (47), whether this 
finding also applies to MAIT cells needs to be confirmed using the 
MR1 tetramer. Similar to the findings for MAIT/Vα7.2+CD161hi 
T cells, human thymic and cord blood iNKT cells appear func-
tionally immature compared with adult blood iNKT cells. Early 
reports suggested that thymic and cord blood iNKT cells were 
incapable of cytokine production without prior in vitro expan-
sion (66, 73). However, more recently, freshly isolated iNKT cells 
from the thymus and cord blood were shown to secrete cytokines, 
including IFN-γ, TNF-α, and IL-4, in response to TCR and/
or PMA and ionomycin stimulation (15, 74). Consequently, 
the capacity of human thymic and cord blood iNKT  cells to 
produce cytokines needs to be clarified. In contrast to human 
MAIT cells and iNKT cells, mouse thymic MAIT (102) and iNKT  
(140, 149, 150) cells strongly produce cytokines, suggesting pos-
sible species-specific differences in when cytokine-producing 
capacity is acquired.
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Homeostasis
The requirements for MAIT  cell proliferation and survival in 
the periphery are poorly understood (Figure 1E). Conventional 
memory T cells depend predominantly on cytokines for periph-
eral maintenance (165), suggesting stimulation with cytokines, 
as opposed to MR1, might be key for MAIT  cell homeostasis. 
iNKT  cells exhibit subset-specific requirements for cytokines. 
While IL-15 is indispensable for the survival and functional 
maturation of most iNKT  cells in mice (75, 166), NKT17 cell 
homeostasis is exclusively dependent on IL-7 (76) (Figure 1E). 
Moreover, IL-15 and IL-7 preferentially stimulate the prolifera-
tion of CD4− and CD4+ human iNKT cells, respectively (73). In 
contrast to iNKT cells, MAIT cells proliferate only in response to 
IL-15 (161), and not IL-7 (91), despite their exquisite sensitivity to 
stimulation with either cytokine (30, 91, 167–169). Cytokines that 
signal via STAT3 are required for human MAIT and iNKT cell 
development and homeostasis, as indicated by the 4- and 20-fold 
reduction in their frequency, respectively, in patients with het-
erozygous loss-of-function mutations in STAT3 (77). The central 
role of STAT3 appears to be downstream of the IL-23 receptor (and 
possibly the IL-21 receptor) in MAIT cells, and the IL-21 receptor 
in iNKT cells. IL-18 is similarly necessary for MAIT cell develop-
ment and/or survival, as IL-18-deficient mice exhibit reduced 
thymic and peripheral MAIT cell frequencies (102). Interestingly, 
the role of IL-18 appears independent of IL-18 receptor signal-
ing, as MAIT  cell development is normal in IL-18Rα-deficient 
mice (102). Therefore, further work is necessary to determine the 
specific role of IL-23 and IL-18 in regulating MAIT cell frequency 
and to establish the requirement for IL-7, IL-15, and additional 
cytokines in MAIT  cell homeostasis. Furthermore, it remains 
to be investigated whether RORγt+ MAIT  cells and T-bet+ 
MAIT cells in mice are differentially regulated by cytokines, as has 
been demonstrated for the equivalent murine iNKT cell subsets.

It is unknown if tonic TCR signaling is necessary for MAIT cell 
homeostasis (Figure 1E). iNKT cell homeostasis in mice appears 
independent of CD1d (Figure  1E). iNKT  cells can survive for 
weeks in the periphery of mice in the absence of CD1d (142, 170), 
and the homeostatic expansion of iNKT  cells in lymphopenic 
hosts is CD1d independent (75, 166). By contrast, CD1d may 
play a role in human iNKT cell homeostasis through lipid antigen 
presentation on B  cells. Compared with iNKT  cells from total 
PBMCs, iNKT cells from B cell-depleted PBMCs (but not from 
PBMCs depleted of other CD1d+ populations) display reduced 
proliferation and cytokine production in  vitro upon stimula-
tion with αGalCer + IL-2 (160). In addition, iNKT cells exhibit 
decreased frequency and altered functionality in systemic lupus 
erythematosus patients, associated with reduced CD1d expres-
sion on immature B cells (160, 171, 172). Restoration of CD1d 
expression is sufficient to reverse these defects both in vitro and 
in  vivo (160). Thus, it is worth examining whether MR1 has a 
role in MAIT cell homeostasis, particularly in humans. However, 
although MR1 is widely expressed by hematopoietic and non-
hematopoietic cells, it is largely retained in the endoplasmic 
reticulum prior to ligand exposure (132, 173–175). Consequently, 
the ability of MR1 to modulate MAIT cell homeostasis may be 
limited compared with CD1d, which is frequently present at the 
cell surface (176).

In conclusion, MAIT  cells and iNKT  cells undergo further 
extrathymic maturation. However, while peripheral iNKT  cell 
frequency remains relatively constant with age, MAIT  cells 
undergo a large population expansion from birth to adulthood. 
B cells have an important, but differing, role in MAIT cell and 
iNKT cell peripheral development. Compared with MAIT cells, 
more is known about the role of cytokines in the peripheral 
maintenance of iNKT cells. Given that MAIT cells express similar 
cytokine receptors to iNKT cells, including the receptors for IL-7 
and IL-15 (14), it is worth investigating the role of these cytokines 
in MAIT cell homeostasis and peripheral maturation. With the 
availability of MR1 tetramers (12, 13) and mice with an increased 
frequency of MAIT cells (35), this can now be examined in vivo 
using cytokine-deficient mice.

Fetal Development
Similar to human iNKT cells (64), human MAIT cells develop 
in fetal thymus and can be identified in both lymphoid and 
non-lymphoid peripheral tissues in the second trimester of 
fetal development (155). As the timing of early MAIT cell and 
iNKT cell development in humans is comparable (47, 64, 155), 
and iNKT cells develop postnatally in mouse thymus (150, 177), 
it is likely that MAIT cells also undergo postnatal development 
in mice.

Before discussing human fetal MAIT cell development, it is 
important to note that, while fetal iNKT  cell development has 
been studied using the CD1d tetramer, fetal MAIT  cell devel-
opment has so far only been investigated using the surrogate 
MAIT cell markers Vα7.2 and CD161. As previously mentioned, 
the MAIT cell populations defined as MR1/5-OP-RU tetramer+ 
or Vα7.2+CD161hi are essentially the same in adult blood, 
while MR1/5-OP-RU tetramer+ MAIT  cells comprise <20% of 
Vα7.2+CD161hi T  cells at birth (47). Moreover, the majority of 
MAIT  cells in human thymus are CD161−CD27+ stage 2 cells, 
and stage 2 MAIT cells are also present at lower frequencies in 
cord blood and young blood (~20% and ~10% of MR1/5-OP-RU 
tetramer+ MAIT cells, respectively) (102). Therefore, using Vα7.2 
and CD161 for fetal MAIT cell identification will fail to capture 
these CD161− MR1/5-OP-RU tetramer+ MAIT  cells. Overall, 
findings from the study of Vα7.2+CD161hi T cell development in 
fetal tissues may not accurately reflect the developmental pathway 
of MAIT  cells. This should be taken into consideration when 
interpreting the findings discussed below, all of which were made 
using Vα7.2 and CD161 to identify “MAIT” cells.

Frequency and Localization
During fetal development, Vα7.2+CD161hi T  cells comprise 
~0.05% of T cells in human thymus, significantly lower than their 
frequency in adult blood (155). Their frequency in the thymus 
remains low and relatively constant after birth, at least up until the 
age of 14 (102). In contrast to MAIT cells, iNKT cell frequency 
in early fetal thymus is similar to that in adult blood (~0.1% of 
T cells) (156). However, their frequency decreases with gestational 
age in the thymus, cord blood, and neonatal peripheral blood, 
such that they are rare in postnatal thymus, while it increases in 
fetal peripheral tissues, particularly the small intestine and spleen 
(47, 64, 73, 156, 158, 178). This suggests a wave of iNKT  cell 
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development in the thymus early during fetal life (156), accom-
panied by the gradual population of peripheral tissues. This might 
also be true for MAIT cells, as the frequency of Vα7.2+CD161hi 
T  cells in the blood of neonates decreases with gestational age 
(47). However, whether their thymic frequency also decreases, 
is currently unknown. Contrary to iNKT  cells, no correlation 
was observed between gestational age and Vα7.2+CD161hi T cell 
frequency in fetal tissues (155), although the sample size was 
relatively low.

As in adults, Vα7.2+CD161hi T  cells are enriched in fetal 
peripheral tissues, including the lung, liver, and small intestine, 
with lower frequencies in the thymus and secondary lymphoid 
organs (SLOs) (155). iNKT  cells are similarly enriched in the 
small intestine, but relatively depleted in the liver, lung, and SLOs 
(64). The frequency of Vα7.2+CD161hi T cells in fetal tissues is low 
compared with the corresponding adult tissues, particularly in the 
liver, where they are ~100-fold less frequent in the fetus (14, 155). 
The frequency of human iNKT cells in adult peripheral tissues is 
poorly characterized, due to their low abundance. Nonetheless, 
at least in liver and spleen (15, 179, 180), their frequency appears 
largely similar to that in fetal tissues.

Phenotypic and Functional Maturation
In all fetal tissues, Vα7.2+CD161hi T cells are less differentiated 
than in adult blood (155), analogous to iNKT cells (64, 74, 156). 
Nevertheless, Vα7.2+CD161hi T cells in fetal peripheral tissues, 
particularly the small intestine, show a more mature phenotype 
than those in the thymus and SLOs, with increased expression of 
IL-18Rα and CD45RO, and reduced expression of CD62L (155). 
In addition, peripheral tissue Vα7.2+CD161hi T cells are function-
ally more mature than their counterparts in lymphoid organs, 
producing increased IFN-γ in vitro following E. coli stimulation 
(155). Similarly, iNKT cells are phenotypically and functionally 
more mature in peripheral tissues compared with lymphoid 
organs (64). However, while Vα7.2+CD161hi T  cells are naïve 
in cord blood (16) and only a fraction express CD45RO in fetal 
thymus (155), >80% of iNKT cells exhibit a memory CD45RO+ 
phenotype in both cord blood (66, 67) and fetal thymus (156). 
Moreover, the proportion of Vα7.2+CD161hi T cells that produce 
IFN-γ is significantly reduced in fetal peripheral tissues compared 
with adult blood (155), whereas iNKT cells in fetal small intestine 
and adult blood show largely comparable IFN-γ production in 
response to αGalCer (64). As iNKT cells from GF mice exhibit 
reduced cytokine production compared with their counterparts 
from standard SPF mice (181), and the fetal environment is typi-
cally thought to be sterile (182), it is perhaps surprising that fetal 
iNKT cells do not display reduced functionality compared with 
those in adult peripheral blood. However, this could be under-
stood if the fetal environment was not entirely sterile, conflicting 
with the “sterile womb hypothesis” (182). In support of this 
suggestion, a number of recent papers provide evidence for the 
presence of microbes during fetal development, although these 
findings remain highly controversial [reviewed in Ref. (182)].

The discovery of mature CD45RO+ Vα7.2+CD161hi T  cells 
in fetal peripheral tissues appears at odds with the requirement 
for commensal bacteria for the development and maturation of 
MAIT cells in mice (17, 22, 102). Moreover, MAIT cells exhibit a 

naïve CD45RA+ phenotype in cord blood (16) and neonates (47), 
and rapidly upregulate CD45RO following birth, concomitant 
with their exposure to riboflavin-synthesizing commensal bac-
teria (14, 16, 47, 102). This suggests microbe-driven maturation 
of human MAIT  cells, akin to mouse MAIT  cells. The reason 
for the discordant findings in fetal tissues and postnatal blood 
is currently unclear. As mentioned earlier, it is possible that 
MAIT cells in peripheral tissues comprise largely tissue-resident 
populations distinct from those in blood, similar to what has 
been proposed for iNKT cells based on parabiosis experiments 
in mice (28, 29). However, this has yet to be investigated for 
MAIT cells. Regardless, this would not explain why MAIT cells 
undergo maturation in fetal peripheral tissues. Maturation could 
be understood if the fetal environment was not completely GF, as 
discussed above. Alternatively, it is possible that other unknown 
factors can mediate fetal MAIT cell maturation.

In summary, we have a very limited understanding of fetal 
MAIT cell development. Only one paper has addressed MAIT cell 
development in human fetal tissues and the MR1 tetramer was not 
used in this study. Nevertheless, the findings for Vα7.2+CD161hi 
T  cells are reminiscent of iNKT  cell fetal development, with 
Vα7.2+CD161hi T cells undergoing maturation in fetal peripheral 
tissues, particularly at mucosal sites. Now that MR1 tetramers are 
readily available, it will be necessary to establish whether MR1/5-
OP-RU tetramer+ MAIT  cells show similar fetal maturation to 
Vα7.2+CD161hi T  cells and if so, to explore the factors driving 
such maturation.

ACTivATiON

Mechanisms
Analogous to iNKT cells, MAIT cells can be activated by TCR 
signals, cytokine signals independent of the TCR, or by combined 
TCR and cytokine signals (Figure 2).

The MAIT  cell semi-invariant TCR recognizes bacterial  
and yeast riboflavin metabolite ligands in the context of MR1,  
with the most potent ligands being 5-OP-RU and 5-OE-RU 
[5-(2-oxoethylidene amino)-6-d-ribitylaminouracil] (Table  1; 
Figure  2A) (7, 13). By contrast, iNKT  cells recognize various 
glycolipid and phospholipid antigens bound to CD1d (Table 1; 
Figure  2A), including glycosphingolipids from Sphingomonas 
spp. and Bacteroides fragilis, diacylglycerols from Borrelia 
burgdorferi and Streptococcus pneumoniae, and endogenous 
lysophospholipids (57). Although a wide range of lipid antigens 
have been identified for iNKT cells, compared with only a few for 
MAIT cells, the list of known antigens for both subsets is likely 
not exhaustive.

As the riboflavin synthesis pathway is present in diverse 
pathogenic and commensal bacteria, as well as in yeast, but 
absent in mammals, recognition of riboflavin metabolites ena-
bles MAIT cells to effectively discriminate self from non-self. No 
endogenous ligands have been identified for MAIT cells, although 
this is an active area of research. The ability of bacteria to activate 
MAIT cells in vitro strongly correlates with the presence of the 
riboflavin metabolic pathway (7) and activation of MAIT cells by 
a number of viruses, including dengue, influenza A, and hepatitis 
C, is MR1-independent (168, 183–185). Thus, presentation of 
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endogenous ligands by MR1 does not appear to be important for 
MAIT  cell activation in bacterial or viral infections. However, 
endogenous ligands could have a key role in vivo in inflammation 

and cancer, or in specific infectious settings. This is plausible, as 
MR1 can bind endogenous ligands to activate non-MAIT T cells 
(119). In contrast with MAIT cells, self-lipid ligands are known 
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to play a key role in iNKT cell biology. Although a number of 
endogenous ligands can activate iNKT cells, including lysophos-
phatidylcholine (human iNKT  cells only) and ether-bonded 
mono-alkyl glycerophosphates (186, 187), recent evidence sug-
gests that, at least in mice, α-linked glycosylceramides are the 
major endogenous ligands (188).

In the absence of riboflavin metabolites, MAIT cells can be 
activated by cytokines independent of their TCR (Figure  2B). 
Similar to iNKT cells (189–192), they are potently activated by 
IL-12 + IL-18, as well as by various combinations of IL-12, IL-15, 
IL-18, and type I interferons (30, 167, 168, 193). In general, a 
single cytokine is insufficient to induce significant activation. 
MAIT  cells express high levels of IL-18Rα and IL-18 appears 
dominant for their TCR-independent activation, at least in 
viral infections (Figure 2B) (17, 168, 183). By contrast, IL-12 is 
key for iNKT cell activation in the absence of TCR stimulation 
(Figure 2B) (78, 191, 192).

It is unknown if MAIT  cells are permanently amenable 
to TCR-independent cytokine stimulation. The capacity of 
human iNKT  cells to respond to cytokine stimulation alone 
appears to reflect a transitory state that depends on prior TCR 
stimulation. In response to weak TCR stimulation by CD1d/
self-lipid, histone H4 acetylation at the IFNG locus leads to a 
transient increase in the responsiveness of iNKT cells to innate 
stimulation with IL-12 + IL-18 independent of additional TCR 
signaling, which decays over a period of hours to days (79). As 
iNKT cells adoptively transferred into CD1d−/− or CD1d+/+ mice 
show comparable responses to a number of bacteria and viruses 
(191, 194), cytokine-dependent activation of mouse iNKT cells 
may be entirely TCR independent. However, it remains possible 
that iNKT cells undergo TCR signaling in donor mice prior to 
adoptive transfer.

Mucosal-associated invariant T  cells can integrate both 
TCR- and cytokine-dependent signals to augment functional 
capacity (30, 91, 167, 169, 193, 195, 196), similar to iNKT cells 
(197–199) (Figure 2C). Many of the cytokines that can drive TCR-
independent activation have been shown to costimulate TCR 
signaling for MAIT cells, including IL-12, IL-15, and/or IL-18. 
These are typically produced by antigen-presenting cells (APCs) 
downstream of TLR activation. MAIT cell activation following 
E. coli stimulation of THP-1 cells is mediated by TLR4-induced 
IL-12 + IL-18, combined with MR1-dependent TCR activation 
by microbial ligand(s) (193). In this model, early MAIT cell acti-
vation depends predominantly on TCR signals, while both TCR 
and cytokine signals are crucial at later time points. In a similar 
manner, iNKT  cells are activated by self-lipids together with 
IL-12 following TLR4 or TLR7/8 stimulation of DCs (197, 198, 
200). The mechanisms underlying TCR and cytokine synergy in 
MAIT cells and iNKT cells remain to be established. However, 
TCR signaling-induced histone acetylation at the IFNG locus 
(79), as discussed above, may play a role in iNKT cells.

As MAIT cells are hyporesponsive to stimulation via the TCR 
alone, synergy between TCR and cytokine signaling likely plays a 
key role in robust MAIT cell activation in vivo (30, 85, 169). This 
is supported by a recent study showing that both metabolites from 
the riboflavin biosynthesis pathway and costimulatory signals are 
required for MAIT cell accumulation in vivo following bacterial 

lung infection (32). For iNKT cells, innate signaling from IL-12 
provides the dominant signal for activation in many bacterial 
infections, even in the presence of cognate microbial lipid anti-
gens (78). Cytokine signaling might also dominate in activating 
MAIT cells. TCR stimulation is insufficient to induce sustained 
MAIT cell effector responses in vitro (30), and in certain bacterial 
settings, blocking cytokines, as opposed to MR1, has a greater 
impact on MAIT cell activation (195, 201). Moreover, a central 
role for cytokines would potentially explain why MAIT  cells 
are not constitutively activated by TCR-dependent sensing of 
commensal bacteria. However, the relative role of TCR- and 
cytokine-mediated activation will be influenced by many factors, 
including the nature of the APC. MAIT cell activation in response 
to Streptococcus pneumoniae in vitro is driven purely by cytokines 
when THP-1 cells are used as the APC, whereas in the presence 
of monocyte-derived macrophages, activation is driven by both 
MR1 and cytokines (201).

In addition to TCR- and cytokine-dependent activation, 
MAIT cells could potentially be activated via NK cell receptors, 
some of which can directly activate iNKT cells (Figure 2B). For 
example, NKG2D engagement triggers degranulation of human 
CD4− iNKT  cells (202), and mouse iNKT  cells produce IFN-γ 
following crosslinking of NK1.1 (203), although the significance 
of TCR- and cytokine-independent activation in  vivo remains 
unknown. In contrast to iNKT cells, direct NK cell receptor-medi-
ated activation of MAIT cells has yet to be reported. Despite high 
expression of NKG2D (14), the cytotoxic activity of MAIT cells 
against E. coli-infected HeLa cells (overexpressing MR1) in vitro 
is unaffected by the presence of anti-NKG2D antibody (204). 
Nevertheless, reports have suggested both costimulatory and 
coinhibitory roles for the NK cell receptor CD161 on MAIT cells 
(80, 204). Similarly, CD161 can costimulate the activation of 
human iNKT cells (205).

Regulation
Costimulatory and coinhibitory molecules, including CD28, 
ICOS, OX40, and PD-1, have an important role in regulating 
iNKT  cell activation and effector function in  vitro and in  vivo 
(Figure  2A) (206, 207). In addition to simply augmenting or 
dampening the magnitude of responses, engagement of specific 
costimulatory receptors on iNKT cells has been shown to skew 
the induced effector response (206, 207). For example, blocking 
the interaction of CD28 with CD86 more strongly inhibits IFN-γ 
production compared with IL-4 production by murine iNKT cells 
in  vitro in response to αGalCer, thus promoting a Th2-biased 
response (208). While MAIT cells express various costimulatory 
and coinhibitory molecules (209), we have limited understand-
ing of their functional role, although a few have been shown to 
modulate MAIT  cell effector function in  vitro (85, 210–212). 
For example, costimulation with αCD28 augments MAIT  cell 
cytokine production and proliferation upon αCD3 stimulation 
(85). By contrast, the coinhibitory molecule PD-1 is upregulated 
on MAIT cells in several bacterial and viral infections, including 
hepatitis C (213) and tuberculosis (TB) (211), and PD-1 blockade 
leads to enhanced IFN-γ production by MAIT cells from active 
TB patients in response to in vitro stimulation with live bacillus 
Calmette–Guérin (211). Nevertheless, the role of costimulatory 
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and coinhibitory molecules in modulating MAIT cell activation 
in vivo, and their capacity to differentially skew the MAIT cell 
effector response, has yet to be investigated.

In addition to the expression of coinhibitory molecules, two 
additional mechanisms may function to negatively regulate 
MAIT cell activation and/or to switch off MAIT cell effector func-
tions upon resolution of infection or inflammation. First, MR1-
binding antagonist ligands, including 6-FP (6-formylpterin) and 
Ac-6-FP (acetyl-6-formylpterin), competitively inhibit MAIT cell 
activation in vitro in response to synthetic agonist ligand (Table 1) 
(58, 59, 214). Furthermore, intranasal administration of Ac-6-FP 
can inhibit MAIT cell accumulation in a dose-dependent manner 
in the lungs of mice following intranasal administration of 5-OP-
RU and a TLR agonist (riboflavin-deficient Salmonella enterica 
serovar Typhimurium) (59). Second, MAIT cells exhibit a proa-
poptotic phenotype driven by PLZF, akin to iNKT  cells (215). 
This sensitivity to activation-induced cell death may function to 
restrain the MAIT  cell effector response in order to minimize 
immunopathology. However, the role of these mechanisms in 
regulating MAIT cell activation in physiological settings is cur-
rently unknown.

Therapeutic Modulation
Although microbe-driven TCR-dependent MAIT  cell activa-
tion requires expression of the riboflavin biosynthesis pathway 
(7), non-riboflavin activating and inhibitory MR1 ligands have 
recently been identified (59). Keller et al. used various in  silico 
approaches to screen libraries of small organic molecules and 
drugs for potential MR1 ligands (59). Identified targets were then 
tested for their ability to modulate MR1 expression and MAIT cell 
activation. Metabolites of the drug diclofenac were found to 
activate certain Jurkat MAIT  cell lines in  vitro, depending on 
their TCRβ chain usage, whereas 3-F-SA (3-formylsalicylic acid) 
could inhibit 5-OP-RU-dependent MAIT cell activation in vitro 
and in vivo (Table 1). While these findings imply that common 
therapeutics might inadvertently affect human MAIT cell activ-
ity in  vivo, they also indicate the potential to design drugs to 
modulate MAIT cell function. Whether iNKT cell activation and 
function might also be influenced by common drugs is unknown. 
However, as lipid-based drug delivery systems are increasingly 
employed to improve oral bioavailability (216), it will be impor-
tant to investigate the impact of such lipid-based formulations on 
iNKT cell function.

To summarize, diverse activation mechanisms are available 
for MAIT cells that are largely shared with iNKT cells. However, 
whereas iNKT cells can be activated by self-ligands in combination 
with cytokines, endogenous ligands for the MAIT cell TCR are 
yet to be identified. Due to their capacity for cytokine-mediated 
activation, MAIT cells and iNKT cells can play key roles in diverse 
infectious, as well as inflammatory and malignant diseases, even 
in the absence of their cognate microbial antigens. The relative 
importance of TCR- and cytokine-dependent activation in vivo is 
likely to be context-dependent and influenced by the nature of the 
pathogen and its TCR/TLR ligands, the type of activated APCs, 
the availability of costimulatory/coinhibitory molecules, and the 
stage of infection or inflammation. Nevertheless, the role for 
cytokines appears more important than for conventional T cell 

activation and may even dominate in MAIT cell and iNKT cell 
activation in some settings, despite the presence of microbial 
TCR ligands.

eFFeCTOR FUNCTiONS

Cytokine Production
Upon activation, MAIT  cells rapidly produce cytokines such 
as IFN-γ, TNF-α, and IL-17 (Table  1) (14). MAIT  cells typi-
cally secrete a limited range of pro-inflammatory cytokines. By 
contrast, iNKT cells secrete a huge variety of both pro- and anti-
inflammatory cytokines, including IL-4, IFN-γ, IL-10, and IL-17 
(Table 1) (9).

The factors that govern which cytokines MAIT cells produce 
under different stimulatory conditions remain poorly character-
ized. Human MAIT cells secrete IFN-γ following both TCR- and 
cytokine-dependent activation, whereas TNF-α production is 
more contingent on TCR signaling (Figure 2) (14, 30). Though 
all human MAIT cells express RORγt, in addition to other type 
17-associated molecules, such as CCR6 and the IL-23 receptor 
(14, 70), IL-17 production ex vivo is usually only detected follow-
ing PMA and ionomycin stimulation (14, 70), and not upon TCR 
or cytokine stimulation alone (14, 30, 85, 169). However, certain 
cytokines, such as IL-7 or IL-23 + IL-1β, can induce IL-17 pro-
duction when combined with a TCR stimulus (169). In addition, 
MAIT cells may exhibit functional plasticity driven by cytokines, 
as has been demonstrated in vitro. For example, CD161hiCD8α+ 
T  cells (predominantly MAIT  cells) develop a more Tc1-like 
phenotype following culture with αCD3/αCD28  +  IL-12 for 
14 days (85).

Similar to MAIT cells, the profile of cytokines produced by 
iNKT  cells varies under different stimulation conditions and 
there is limited knowledge regarding the factors that regulate 
this. iNKT cells secrete both IFN-γ and IL-4 upon TCR stimula-
tion with microbial antigens (Figure  2A) (217). By contrast, 
cytokine-dependent activation by viruses or TLR ligands stimu-
lates predominantly IFN-γ production and not IL-4 (Figure 2B) 
(217). Chemically modified analogs of the iNKT  cell ligand 
αGalCer have been identified that induce qualitatively different 
cytokine responses in vitro and in vivo, specifically Th1-biased, 
Th2-biased, or mixed Th1/Th2 responses (218–220). Although 
the exact mechanisms for this remain unknown, the stability 
of ternary TCR-CD1d/glycolipid complexes appears to have an 
important role, with prolonged TCR stimulation favoring Th1-
biased responses (218, 220). As discussed, activation of different 
costimulatory pathways can also skew the iNKT cell response to 
antigen stimulation (206, 207). Therefore, the type of lipid anti-
gens and costimulatory molecules available to activate iNKT cells 
in vivo will alter the nature of the cytokine response. Whether 
different MAIT cell ligands/chemical modifications of MAIT cell 
ligands, or costimulatory pathways, can skew MAIT cell cytokine 
production, remains to be investigated. As the range of cytokines 
produced by MAIT cells is less functionally diverse than that of 
iNKT cells, the capacity to drastically alter the overall immune 
response by skewing MAIT  cell cytokine production may be 
more limited than with iNKT cells.
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Human MAIT  cells in different tissues exhibit differential 
cytokine production. MAIT  cells in the female genital mucosa 
appear skewed toward type 17 functions, secreting increased 
IL-17 and IL-22, and decreased IFN-γ and TNF-α, compared 
with blood MAIT  cells (26). IL-22-secreting MAIT  cells are 
also enriched in fetal small intestine (155), while MAIT cells in 
adipose tissue exhibit the unique capacity to secrete IL-10 (20). 
Different iNKT cell subsets preferentially localize to certain tis-
sues in mice (18, 87). As a result, challenge with αGalCer induces 
distinct cytokine responses depending on the route of antigen 
delivery and thus the nature of the iNKT cell subsets activated 
(18). Whether variation in MAIT cell cytokine production across 
tissues can similarly be explained by the tissue-specific enrich-
ment of different MAIT  cell subsets is currently unknown. Of 
interest, IL-10-producing NKT10 cells preferentially localize 
to adipose tissue (87, 221), suggesting that the adipose tissue-
enriched IL-10-producing MAIT cells in humans could comprise 
a distinct subset (20).

Cytotoxic Activity
In addition to cytokine secretion, MAIT  cells and iNKT  cells 
display direct cytotoxic activity. MAIT cell killing is mediated via 
the Perforin/Granzyme pathway and is independent of Fas/FasL 
and NKG2D (91, 161, 204). While their cytotoxic capacity (i.e., 
Perforin and Granzyme expression) is enhanced upon activation 
via the TCR and/or with cytokines, target cell killing is MR1 
dependent (Figure 2) (91, 161, 204). In contrast to MAIT cells, 
iNKT cell killing can be mediated via both Perforin/Granzyme- 
and Fas/FasL-dependent pathways (Figure 2) (62, 98, 222). The 
cytotoxic capacity of iNKT cells varies between subsets. Human 
CD4− iNKT  cells show increased expression of cytotoxic mol-
ecules and superior cytotoxic activity compared with CD4+ cells 
(62, 223, 224). Whether CD4+, CD8+, and DN MAIT cells show 
differences in cytotoxic activity is currently unknown. Akin to 
MAIT cells, iNKT cell cytotoxicity is largely dependent on CD1d 
and antigen, although alternative CD1d-independent mecha-
nisms have been described (202, 222, 224). In particular, human 
CD4− iNKT cells can kill targets through a CD1d-independent 
NKG2D-dependent pathway (202). MR1-independent pathways 
for MAIT cell killing have yet to be identified.

immune interactions
While knowledge of MAIT cell crosstalk with other immune cell 
subsets remains relatively limited, recent studies have identified 
important interactions with a number of immune cell types, includ-
ing DCs, B cells, and NK cells. Through contact with myeloid cells, 
MAIT cells appear to have important immune regulatory func-
tions. For example, upon antigen-specific activation, MAIT cells 
upregulate CD40L and induce CD40-dependent DC maturation, 
and in synergy with TLR ligands, promote the secretion of IL-12 
(225). DC-derived IL-12 can subsequently enhance MAIT  cell 
activation. MAIT cells can also influence monocyte differentiation 
in vivo. MR1−/− mice show enhanced susceptibility to pulmonary 
infection with Francisella tularensis live vaccine strain and delayed 
bacterial clearance (44). In this setting, MAIT cells promote early 
GM-CSF production in the lungs, resulting in the differentia-
tion of inflammatory monocytes into DCs and the recruitment 

of activated CD4+ T cells into the lungs (44, 226). In addition to 
their effects on myeloid populations, MAIT cells can provide non-
cognate B cell help in vitro (227). In response to TCR-dependent 
or TCR- and cytokine-dependent activation, MAIT cells secrete 
factors that act on B cells to promote the differentiation of memory 
cells into plasmablasts and to increase antibody production (227). 
In these experiments, TCR stimulation was essential for the capac-
ity of MAIT cells to provide B cell help (227). Finally, in the context 
of whole blood, activated MAIT cells promote NK cell transactiva-
tion in an MR1- and IL-18-dependent manner (225). Although 
MAIT cells can facilitate monocyte differentiation in vivo, whether 
the described crosstalk with DCs, B  cells, and NK  cells, occurs 
in  vivo, and exactly where such interactions would take place, 
remains to be determined.

More is known about the immune interactions of iNKT cells. 
Through crosstalk with an array of immune cell types, iNKT cells 
can profoundly influence the nature and quality of both innate 
and adaptive immunity. iNKT cells engage in similar interactions 
to those described for MAIT cells; however, differences can be 
identified in the requirements for MAIT/iNKT  cell activation 
in these settings and in the downstream effects on the immune 
response. Human iNKT cell clones drive monocyte differentia-
tion in a CD1d-dependent manner (228). By contrast, MAIT cell-
mediated monocyte differentiation is MR1-independent, at least 
for transgenic MAIT cells in vitro (226). Analogous to MAIT cells, 
bidirectional interaction between iNKT  cells and DCs leads to 
DC maturation and NK cell transactivation, but also results in 
increased peptide-specific CD4+ and CD8+ T cell responses (229–
232). A similar function has yet to be described for MAIT cells. 
In addition to non-cognate B cell help, iNKT cells can provide 
cognate B cell help (233). In some settings, help is provided by a 
dedicated subset of iNKT cells, known as follicular helper NKT 
(NKTFH) cells (93, 94, 234). Other specialized iNKT cell subsets 
also engage in key immune interactions. For example, mouse and 
human Foxp3+ invariant regulatory NKT (iNKTreg) cells have 
been shown to suppress naïve T cell proliferation in vitro (95, 96). 
Whether comparable functions can be performed by specialized 
MAIT cell subsets is currently unknown.

In summary, iNKT  cells and MAIT  cells rapidly produce 
cytokines, exhibit cytotoxic activity, and can influence the 
function of both innate and adaptive immune cell populations. 
MAIT  cells typically produce pro-inflammatory cytokines, 
whereas iNKT cells secrete vast amounts of both pro- and anti-
inflammatory cytokines. While immunoregulation via cytokine 
secretion is the dominant function of iNKT  cells, the relative 
importance of cytokine secretion versus cytotoxic activity for 
MAIT cells, is currently unknown. iNKT cells profoundly influ-
ence the immune response through their crosstalk with other 
immune cell subsets, and limited studies reveal similar interac-
tions for MAIT cells. Given their abundance in humans and their 
rapid effector function, MAIT cells are likely key orchestrators of 
innate and adaptive immunity in humans.

SUBSeTS

Although human MAIT cells are thought to be largely homogene-
ous in phenotype and function, recent findings suggest that they 
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may be more diverse than currently appreciated. Lepore et  al. 
identified subpopulations of human MAIT  cells with distinct 
cytokine secretion profiles (50), although whether these represent 
separate lineages is currently unknown. Human MAIT cells also 
show heterogeneous expression of certain NK  cell-associated 
receptors, including CD56 and CD84, the expression of which 
correlates with their functional response to cytokine stimula-
tion (209). Finally, MAIT cells in certain tissues exhibit altered 
cytokine production. For example, MAIT cells are skewed toward 
a Th17-like phenotype in female genital tract and express lower 
levels of the transcription factors PLZF and Eomes compared 
with peripheral blood MAIT cells (26), suggesting that they may 
comprise a distinct MAIT cell subset.

Mucosal-associated invariant T cells in humans can be CD4+, 
CD8+, or DN (Table 1) (16). Coreceptor expression appears to 
have little practical significance, particularly for CD8+ and DN 
MAIT cells (43, 235). However, limited studies have character-
ized the phenotype and function of the minor CD4+ population. 
Moreover, surrogate methods for MAIT cell identification were 
recently shown to poorly define CD4+ MAIT cells (43, 235), and 
thus findings from previous studies that used such approaches, 
require validation. Initial studies using the MR1/5-OP-RU 
tetramer indicate some disparity between CD4+ and CD8+/DN 
subsets, including differential expression of certain transcription 
factors (PLZF, Eomes), chemokine receptors (CCR4, CXCR6), 
adhesion molecules (CD56), and NK  cell receptors (NKG2A, 
NKG2D) (43, 235). Nevertheless, the role of the CD4 coreceptor 
and whether CD4+ MAIT cells comprise a distinct subset with 
specific functionality is currently unknown. Unlike MAIT cells, 
human CD4+, CD8+, and DN iNKT cells show clear phenotypic, 
functional, and transcriptional differences (15, 61, 62, 84, 202, 
224, 236–240). However, given the considerable heterogeneity 
within each of these populations (15), it is unlikely that they 
represent genuine iNKT cell subsets.

The evidence for MAIT cell subsets in mice is more convincing. 
Two subsets of MAIT cells, a major RORγt+IL-17+ population, and 
a smaller T-bet+IFN-γ+ subset have been identified in the thymus, 
spleen, and lung (Figure  3) (19, 102). These subsets can show 
plasticity in vivo. Following intranasal infection with Salmonella. 
enterica serovar Typhimurium, RORγt+ MAIT cells in the lung 
upregulate T-bet expression to become RORγt+T-bet+ cells that 
can secrete either IL-17 or IFN-γ, though the majority produce 
IL-17 (32). In contrast to mice, human thymic and peripheral 
blood MAIT  cells coexpress RORγt and T-bet, although T-bet 
expression can similarly increase upon activation (85, 91, 102, 
167). Furthermore, the majority of human MAIT  cells express 
IFN-γ and a smaller fraction produce IL-17, while some secrete 
both cytokines (Figure  3), highlighting important differences 
between mouse and human MAIT cells (14).

Similar to MAIT cells, iNKT cells in mice differentiate into dis-
tinct subsets within the thymus. These mirror conventional CD4+ 
T helper cell subsets in their expression of master transcription 
factors and cytokines, namely PLZFloT-bet+RORγt− NKT1 cells 
that secrete IFN-γ, PLZFhiT-bet−RORγt− NKT2 cells that secrete 
IL-4 and other Th2 cytokines, and PLZFintT-bet−RORγt+ NKT17 
cells that secrete IL-17A and IL-22 (Figure 3) (86, 241). NKT1, 
NKT2, and NKT17 cells show highly divergent transcriptional 

programs and differ in their expression of chemokine receptors, 
NK cell receptors, cytotoxic molecules, and cell cycle-related genes 
(146, 147, 242). T-bet+IFN-γ+ and RORγt+IL-17+ MAIT cells in 
mice could represent “MAIT1” and “MAIT17” subsets (19, 102), 
akin to NKT1 and NKT17 cells, respectively. By contrast, no 
“MAIT2” subset comparable to NKT2 cells has been identified, 
and MAIT cells in mice and humans show little to no production 
of Th2 cytokines (14, 19).

In addition to the major iNKT cell subsets that develop in the 
thymus, a number of minor, highly specialized subsets have been 
identified in mouse peripheral tissues and/or lymphoid organs, 
but not in the thymus. These include NKTFH cells (93, 234), iNKTreg 
cells (95), and IL-10-secreting NKT10 cells (87, 221). However, it 
is important to note that IL-10 can also be produced by activated 
NKT1, NKT2, and NKT17 cells following stimulation with 
αGalCer (243). Human iNKT cells with a similar phenotype and/
or function to NKTFH cells (93), iNKTreg cells (95, 96), and NKT10 
cells (87) have been reported (Figure 3). By contrast, comparable 
MAIT  cell subsets have not been defined in mice or humans, 
although a high proportion of MAIT cells secrete IL-10 in human 
adipose tissue (Figure 3) (20). As NKT10 cells are enriched in 
mouse adipose tissue (87, 221), IL-10-secreting MAIT cells could 
represent a dedicated “MAIT10” subset. Whether MAIT cells can 
have regulatory or follicular helper-type functions is currently 
unknown.

In brief, two distinct MAIT cell subsets, analogous to NKT1 
and NKT17 cells, are present in mice. Whereas the MAIT  cell 
population is biased toward RORγt/IL-17 expression in C57BL/6 
mice, iNKT cells favor the expression of T-bet/IFN-γ. This could 
suggest functional segregation between innate-like T cell popula-
tions in mice, although depending on the tissue and mouse strain, 
NKT17 cells might still be more abundant than MAIT cells. In 
comparison with mouse MAIT cells, human MAIT cells appear 
more homogeneous and exhibit a mixed Th1/Th17 phenotype, 
although there is evidence for some phenotypic and functional 
diversity. Moreover, human MAIT  cells preferentially secrete 
IFN-γ as opposed to IL-17. Multiple iNKT cell subsets are present 
in both mice and humans, although they are better defined in 
mice. Compared with MAIT cells, iNKT cells appear more func-
tionally diverse, although it is possible that additional MAIT cell 
subsets remain to be identified.

AveNUeS FOR FUTURe MAiT CeLL 
ReSeARCH

With the recent generation of MR1 tetramers (12, 13), it is now 
possible to detect MAIT cells in wild-type mice (19), as well as 
in human settings where MAIT cell frequency is low, for example 
in the thymus (102). Consequently, MAIT  cells are now being 
studied in an increasingly wide variety of settings, including 
in numerous human diseases and animal disease models. 
Undoubtedly, this will lead to a greatly improved understanding 
of the role of MAIT cells in both health and disease.

Compared with iNKT  cells, our knowledge of MAIT  cell 
phenotype, development, regulation, and function remains 
limited and there are many important questions that need to be 
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FigURe 3 | Functional capacity of mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cells. Where subsets of MAIT or iNKT cells have 
been defined, characteristic cytokines, transcription factors, and/or surface markers, are illustrated. MAIT cells and iNKT cells exhibit overlapping functions, although 
a wider range of functions have been described for iNKT cells. In mice, distinct type 1 and type 17 MAIT and iNKT cell subsets have been identified. By contrast, 
human MAIT cells exhibit a mixed type 1/type 17 phenotype. Human iNKT cells secrete IFN-γ and IL-17 (only in vitro under pro-inflammatory conditions), but whether 
these cytokines are produced by distinct subsets, remains to be established. Unlike MAIT cells, iNKT cells also show type 2 functions, such as IL-4 secretion. In 
mice, IL-10-producing iNKT cells comprise a distinct subset with altered transcription factor expression. Human MAIT cells and iNKT cells can produce IL-10, and 
human IL-10-producing MAIT cells are enriched in adipose tissue, similar to mouse NKT10 cells. However, whether these IL-10-producing populations comprise 
distinct subsets, is currently unknown. Finally, multiple specialized subsets of iNKT cells have been identified in mice, including NKTFH cells and iNKTreg cells. Human 
iNKT cells with similar phenotypes and/or functions have also been identified (NKTreg only in vitro), but analogous populations have yet to be described for MAIT cells.
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addressed. The search for novel MAIT cell ligands, both for their 
selection in the thymus, and their activation in the periphery, is a 
particularly active area of investigation. It is currently unknown 
whether MAIT cells can recognize endogenous antigens, analo-
gous to iNKT cells, and if so, how these might influence MAIT cell 
development and function in vivo.

There are many gaps in our understanding of MAIT cell devel-
opment, including the signals required for positive and poten-
tially negative selection in the thymus; the transcriptional and 
epigenetic regulation of MAIT cell differentiation; and the timing 
and location of MAIT cell maturation. As MAIT cells appear to 
be mature in fetal tissues (155), but naïve in cord and neonatal 
blood (16, 47), they may comprise predominantly tissue-resident 
populations, similar to iNKT  cells (28, 29, 221). This could be 

addressed in parabiosis studies. Moreover, it will be important to 
determine the signals governing peripheral MAIT cell matura-
tion and the maintenance of homeostasis. In addition to IL-18 
and IL-23 (77, 102), it is worth investigating the role of IL-7 and 
IL-15, given MAIT cell responsiveness to these cytokines (30, 91, 
167–169) and their function in iNKT cell homeostasis (73, 75, 
76, 166, 244). Whether MR1 is required for peripheral MAIT cell 
survival and maintenance in vivo is currently unknown, although 
CD1d does not appear to be essential for the homeostasis of 
iNKT cells (75, 142, 166, 170).

While MAIT  cells can be activated through the TCR or 
with cytokines, or by a combination of both (11), which of 
these activation mechanisms predominates in  vivo remains to 
be determined. iNKT  cell activation appears to be dominantly 
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driven by cytokines, even in settings where microbial ligands are 
present (78), although their sensitivity to cytokines alone may 
require prior TCR priming (79). It is hypothesized that cytokines 
might also be key for MAIT cell activation, especially given the 
indiscriminate expression of their ligands in both commensal and 
pathogenic bacteria (7, 17), and their relative hyporesponsiveness 
to TCR stimulation (30, 85, 169). Despite expression of various 
NK cell receptors, costimulatory molecules, and immune check-
point molecules (14, 209), how stimulation of these receptors 
modulates MAIT cell activation, is essentially unknown.

Similar to iNKT  cells (86), transcriptionally and function-
ally distinct MAIT  cell subsets have been identified in mice 
(19), although these require further characterization. Human 
MAIT cells exhibit a relatively uniform phenotype, and coexpress 
key transcription factors, suggesting a single MAIT  cell subset  
(14, 91). However, recent studies indicate previously unap-
preciated phenotypic and functional heterogeneity in blood 
MAIT cells (14, 50, 209), as well as skewed or unique functions 
in certain tissues (20, 26, 155). Thus, the existence of specialized 
MAIT cell subsets remains an open question. In addition, it is 
unclear to what extent MAIT cells can show functional plasticity 
driven by environmental factors. It is likely that the presence of 
subsets and the ability of MAIT cells to display functional plastic-
ity both contribute to MAIT cell diversity.

Recently, a number of studies have increased our knowledge 
of MAIT  cell interactions with other immune cell populations 
(225–227), although our understanding of MAIT cell crosstalk 
remains much more limited than for iNKT cells (9). Furthermore, 
the role of MAIT  cell interactions in  vivo and their influence 
on the overall innate and adaptive immune response is largely 
unknown. As the interactions identified for MAIT cells resemble 
those of iNKT cells, it may be possible to use known iNKT cell 
interactions as a framework for the further investigation of 
MAIT cell crosstalk.

Though outside the scope of this review, we have little under-
standing of the role of MAIT cells in disease, despite their altered 
frequency and function in numerous infectious, inflammatory, 
and malignant diseases (1, 4, 245). Given that MR1 tetramers 
are now widely available, it is possible to address the role of 
MAIT cells in vivo in models of disease. Recently, MR1 ligands 
have been discovered among drugs and drug-like molecules 
(59). This indicates the potential for the future development of 
therapeutics to modulate MAIT  cell function (59), akin to the 
development of αGalCer as a stand-alone therapy or vaccine 
adjuvant (246).

CONCLUSiON

Invariant natural killer T cells have been more extensively studied 
than MAIT cells due to their higher frequency in mice, the earlier 

development of tetramers for their specific identification, and the 
earlier generation of relevant transgenic mouse models. However, 
the MAIT cell field is growing rapidly, due to the recent develop-
ment of the MR1 tetramer and hence the possibility to examine 
MAIT  cells in wild-type mice. Comparison of MAIT  cells to 
iNKT cells has in many cases identified shared biology. However, 
there are also instances in which comparison of MAIT  cells 
to iNKT  cells has revealed distinct biology. Therefore, while 
iNKT cell research provides a useful framework for the study of 
MAIT cells, it is important that both populations are studied indi-
vidually, and findings from the iNKT cell field are not presumed 
to also apply to MAIT cells. Given their abundance in humans, 
their capacity for rapid cytokine production in response to TCR 
and/or cytokine stimulation, and their interactions with other 
immune cell populations, MAIT cells are likely key players in the 
immune system, both in health and disease. In support of this, 
they show altered phenotype and function in numerous human 
diseases, and exhibit protective or deleterious roles in mouse 
models of infection or inflammation. Consequently, MAIT cells 
represent an attractive target for therapeutic manipulation, 
especially considering their high frequency in humans and their 
recognition of a monomorphic MHC-like molecule. To realize 
this goal, further research is necessary to develop a greater under-
standing of MAIT  cell development, function, and regulation, 
and their specific roles in disease. We should continue to leverage 
our accumulated knowledge of iNKT cell biology as a platform to 
more completely understand the unique, and shared, biology of 
MAIT cells. In doing so, such investigations will likewise enhance 
our understanding of iNKT cell biology.
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