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Background: Quantitative cardiovascular magnetic resonance (CMR) T1 mapping has

shown promise for advanced tissue characterisation in routine clinical practise. However,

T1 mapping is prone to motion artefacts, which affects its robustness and clinical

interpretation. Current methods for motion correction on T1 mapping are model-driven

with no guarantee on generalisability, limiting its widespread use. In contrast, emerging

data-driven deep learning approaches have shown good performance in general image

registration tasks. We propose MOCOnet, a convolutional neural network solution, for

generalisable motion artefact correction in T1 maps.

Methods: The network architecture employs U-Net for producing distance vector fields

and utilises warping layers to apply deformation to the feature maps in a coarse-to-fine

manner. Using the UK Biobank imaging dataset scanned at 1.5T, MOCOnet was trained

on 1,536 mid-ventricular T1 maps (acquired using the ShMOLLI method) with motion

artefacts, generated by a customised deformation procedure, and tested on a different

set of 200 samples with a diverse range of motion. MOCOnet was compared to a

well-validated baseline multi-modal image registration method. Motion reduction was

visually assessed by 3 human experts, with motion scores ranging from 0% (strictly no

motion) to 100% (very severe motion).

Results: MOCOnet achieved fast image registration (<1 second per T1 map) and

successfully suppressed a wide range of motion artefacts. MOCOnet significantly

reduced motion scores from 37.1±21.5 to 13.3±10.5 (p < 0.001), whereas the baseline

method reduced it to 15.8±15.6 (p < 0.001). MOCOnet was significantly better than the

baseline method in suppressing motion artefacts and more consistently (p = 0.007).

Conclusion: MOCOnet demonstrated significantly better motion correction

performance compared to a traditional image registration approach. Salvaging

data affected by motion with robustness and in a time-efficient manner may enable

better image quality and reliable images for immediate clinical interpretation.
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1. INTRODUCTION

Quantitative T1 mapping is a novel approach in cardiovascular
magnetic resonance (CMR) for myocardial tissue
characterisation (1). Native and post-contrast T1 mapping
offer quantitative, pixel-wise measures to detect tissue changes
in myocardial composition (2) and have been used in the
assessment of myocardial inflammation (3), oedema (4, 5),
infiltration (6), diffuse fibrosis (7), and other pathologies
(8). Stress T1 mapping has the potential to assess coronary
artery disease without the need for gadolinium-based contrast
agents (9–11).

T1 mapping is obtained from pixel-wise exponential recovery
curve fitting of multiple T1-weighted images. With advances
made from the original Look-Locker spectroscopic method
(12), current mapping techniques employ intermittent image
acquisition using electrocardiographic gating during multiple
heartbeats (2). The shortened modified Look-Locker inversion
recovery (ShMOLLI) (13) allowed shorter breath-holds with 9
heartbeats with high precision and reproducibility. Although
acquiring multiple T1-weighted images at the same cardiac
phase largely reduces the influence of cardiac motion, undesired
respiratory motion still poses significant challenges (14).
Uncorrected and unrecognised respiratory motion artefacts may
cause errors in T1 estimation and incorrect diagnoses (13).

Retrospective motion correction (MOCO) on the multiple
T1-weighted images can significantly improve the robustness
and clinical utility of mapping techniques (15). Such correction
is accomplished by aligning the T1-weighted images before
reconstruction. The main challenge is the variation in image
contrast and signal nulling of the multiple T1-weighted images
acquired at different inversion times. Model-driven registration
methods for MOCO were developed to circumvent this
limitation with promising results (16–19). However, careful
inspection for uncorrected residual motion or distortions from
failures in motion correction is still needed (20). Although
visual assessment in CMR is still the clinical standard for image
interpretation (21), constant and long manual labour is prone to
error due to inconsistency and operator fatigue, as well as slow
clinical workflow if handling a large volume of images.

With the advent of deep learning, convolutional neural
networks (CNN) have enabled unprecedented progress in image
processing, shifting the paradigm from predefined, hand-crafted
rules to automated learning procedures aided by large data.
The rapid adaptation of deep learning approaches within CMR
provides fast, consistent, and accurate pipelines primarily for
image segmentation and analysis (22) significantly reducing
physician labour hours. The field of clinical image registration
with deep learning is also primed to replace iterative registration
methods, with potential to improve accuracy, time efficiency
and quality control (23), and applicability to cover the unmet
need of MOCO in T1 maps. We hypothesised that a data-
driven method for myocardial motion correction would suppress
motion artefacts with more robustness and generalisability to
serve large clinical datasets.

In this work, we present MOCOnet, a novel deep learning
approach for myocardial motion correction developed using

CMR T1 mapping from the UK Biobank (24). We adapted
an encoder-decoder architecture with warping layers to aid
the learning of such deformation in a coarse-to-fine manner.
Given a set of T1-weighted images, MOCOnet can predict the
deformation required to correct any present motion artefacts
in a time-efficient manner. MOCOnet was tested for its
motion correction performance against a well-validated multi-
modal image registration method, using multiple blinded expert
observers to validate the motion correction effectiveness.

2. MATERIALS AND METHODS

2.1. Cardiac T1 Mapping and Motion
Artefact
Cardiac ShMOLLI T1 mapping is calculated by fitting
exponential recovery curves to 7 inversion recovery-weighted
(IRW) images with multiple inversion times (Figure 1A) and
acquired within a short 9-heartbeat single breath-hold (13).
The reconstructed T1 map (Figure 1B) enables pixel-wise
quantification of T1 values. The associated map of coefficient
of explained variance (R2 map; Figure 1C) allows quality
monitoring of the curve fitting in reference to a mono-
exponential T1 relaxation recovery model. A closer proximity
to the reference displays a uniform white appearance of
relevant regions of interest in the R2 map, whereas motion
in the IRW images (Figure 1D, arrowed) decreases the T1
map interpretability (Figure 1E, arrowed), corresponding to
the dark bands at the motion-affected areas in the R2 map
(Figure 1F, arrowed). Besides motion artefacts, the R2 map is
also sensitive to off-resonance, fat inclusion, mistriggering, and
other artefacts (5, 25).

2.2. Non-rigid Registration Approach
Given that a T1 map with motion artefacts is composed of
7 unaligned IRW images, a motion-corrected T1 map can be
achieved by aligning the IRW images. The motion artefact can
be synthesised as a deformation of aligned IRW images with
a displacement vector field (DVF). The non-rigid registration
problem is then solved by estimating the inverse DVF of a given
set of unaligned IRW images.

2.3. Multi-Scale Registration Neural
Network
The proposed learning-based model corrects a T1 map by
estimating the inverse DVF in each of its 7 IRW images
to enable a non-rigid registration between them, before the
T1 map reconstruction. The multi-scale registration CNN
(Figure 2) adopts an encoder-decoder U-Net-like structure (26)
and employs warping layers (27) between the contracting and
expansive paths at each scale. The feature maps are down-
sampled with a series of 3 × 3 convolutional layers followed by
a batch normalisation layer, a leaky rectified linear unit and a
max-pooling layer, and similarly up-sampled with a transposed
convolutional layer. The warping layers speed up the training by
imposing a loss function on a multi-scale manner and increase
the registration accuracy by correcting motion starting from
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FIGURE 1 | Illustration of T1 maps with good quality (top row) and with motion artefact (bottom row). (A,D) Two examples out of seven of inversion-recovery weighted

(IRW) images required for T1 map reconstruction are shown, time-stamped with their corresponding inversion times (TI) and overlaid by identical manual myocardial

contours for identifying motion. (B,E) ShMOLLI T1 maps. (C,F) R2 quality control maps. A good quality T1 map is indicated by (A) myocardium in same position and

(C) “all white” in the left ventricular myocardium indicating high T1 fitting confidence. A T1 map with motion artefact is evident by misalignment in IRW images (yellow

arrow), suspicious features in T1 map (white arrow) and dark bands in R2 map in the left ventricular myocardium as evidence of poor T1 fitting (red arrow).

coarse levels and passing the residual motion to higher resolution
layers for fine motion correction.

The IRW images are first fed in a sequence of convolution
and downsampling operations to produce features at multiple
scales on a per-channel basis. The features, from low to high
resolutions, are then used as input of convolution modules to
produce DVFs. Each convolution module takes as input the
features from the previous step, the DVF at the previous scale,
and the warped features from the downsampling stage. Applying
warping at each of the 4 scales enables the use of residual
motion information to be corrected and refined in the next scale.
Hence, the neural network generates the DVFs in a coarse-to-
fine manner and adds more details with higher resolution in each
subsequent level, with a loss function defined at each scale to
further supervise the learning manner.

2.4. Imaging Data and Inclusion Criteria
The imaging data comprised of over 5,000 CMR native T1 maps
from the UK Biobank Imaging Component (24), acquired at the
mid-ventricular short-axis view using the ShMOLLI T1 mapping
sequence (13). For quality control, a trained human operator
(EL), with over 10 years of experience in CMR image analysis,
assessed the presence of any artefact in the left ventricular
myocardium in the 7 IRW images for each T1 map. A total
of 1,536 T1 maps were scored strictly as good quality with no
artefact. The remaining data were marked to have either mild
to severe motion or other imaging artefacts and were excluded
from the training dataset. This strict quality control ensured that

the neural network learnt to align the images accurately with no
distraction from residual motion artefacts in the training data,
i.e., with images that did not require any motion correction.

2.5. Training Procedure
The quality-controlled imaging data were used to generate a
training dataset with 10% of the data preserved for validation.
Artificial DVFs were generated as previously described (28) and
applied to the IRW images without motion artefacts to synthesise
random non-rigid motion without requiring segmentations (28).
Specifically, 7 DVFs were generated with random parameters
preserving anatomical topology. Mean displacement value at
each pixel was calculated and removed from all 7 DVFs to focus
on relative displacement between images. The generated DVFs
were applied to each of the IRW images, respectively to produce
deformed IRW images. The proposed model was trained to
predict 7 inverse DVFs from 7 deformed IRW images with the
synthetic, inverse DVFs as ground truth (Figure 3A).

2.6. Testing Procedure
Once trained, MOCOnet reads a given set of 7 IRW images
with or without motion artefacts and estimates the deformation
required to correct any present motion (Figure 3B), without
ground truth. The T1 map is then reconstructed offline using
motion-corrected images with an open source library for CMR
parametric mapping (29).
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FIGURE 2 | Structure of the proposed motion correction convolutional neural network (MOCOnet). A stack of seven inversion recovery-weighted (IRW) images is input

into the encoder-decoder structure on a per-channel basis. The warping layers estimate the optical flow from all the channels in a coarse-to-fine manner at each scale.

The last warping layer generates the inverse distance vector field (DVF), i.e., the deformation required to correct the motion artefacts, in a groupwise manner.

2.7. Implementation Specification
All images were zero-padded to the same size of 384 × 384
pixels and image intensities were pre-processed with quantile
normalisation to ensure generalisability (30). The multi-scale
loss was calculated as the average mean square errors of the
predicted DVFs at each scale and resolution. The neural network
was optimised using the Adam method (31) with an initial
learning rate of 0.001 and a learning rate scheduler to reduce
the learning rate during the training, and mini-batch size of 4.
Training was stopped once the validation loss did not decrease
for 50 epochs. The network was trained for approximately
48 h until the training curve converged with low bias and
variance using a NVIDIA TITAN XP GPU and implemented
in TensorFlow (32). After the training, correcting motion for
each set of 7 IRW images took less than 1 s on GPU or a
modern CPU.

2.8. Validation
2.8.1. Baseline Deformable Image Registration

Method
The proposed method’s performance was compared against a
well-validated multi-modal image registration algorithm (33)
as the baseline method. The registration method alleviated
the problem of artificial motion discontinuities by combining

a bilateral filter with an additional deformation field-based
filter and a diffusion regularisation algorithm, serving as an
excellent registration approach without requiring a prior
image segmentation task as conventional methods. The
baseline method, implemented in C, used the first IRW
image as a reference image for all subsequent pairwise
registrations and took approximately 30 s per T1 map on a
modern CPU.

2.8.2. Test on Respiratory Motion With Human

Observer Scores
A multi-observer experiment was designed to evaluate the
effectiveness and robustness of motion correction, and potential
noise introduced to cases originally with no motion. From the
UK Biobank, a test set of 200 real acquired T1 maps with various
degree of motion artefacts was selected based on the existing
quality scores by an experienced human observer. Specifically,
50 samples presented severe motion artefacts affecting all
myocardial segments, 100 presented moderate motion affecting
individual segments, and 50 presented mild to no motion.

The extent of motion on the test set was assessed in a 5-point
categorical scale: ‘no motion’, ‘mild motion’, ‘moderate motion’,
‘severe motion’, and ‘very severe motion’, with a numerical
scale between 0 to 100% behind the interface, to ensure both
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FIGURE 3 | Development workflow of the proposed motion correction convolutional neural network (MOCOnet) for myocardial ShMOLLI T1 mapping. (A) MOCOnet

was trained on 1,536 sets of seven inversion recovery-weighted (IRW) images with no motion artefacts which were synthetically deformed with displacement vector

fields (DVFs), to predict the inverse DVF required to correct the motion. (B) MOCOnet was tested on 200 T1 maps with a varied degree of motion artefacts. Each stack

denotes a set of seven images; each junction denotes the DVFs application to the IRW images; the box with DVF loss represents the weight adjustment during training.

intuitiveness for human operators and practicality for statistical
analyses. The baseline and proposed methods were applied to
all samples unselectively, giving in total 400 motion-corrected
samples. One hundred and twenty only samples (20%) were
randomly chosen from the mixed 600 samples and duplicated
to evaluate intra-observer variability. Three trained human
observers (IP, MB and MS) were instructed to score the resultant
720 samples for the extent of motion. All observers were blinded
to the original artefact scores and which motion correction
method was applied. To reduce the variance of the human scores
Xi, the weighted average score X of the three observers (i = 3)
was calculated as X =

∑

WiXi/
∑

Wi. The weights Wi were
calculated by the inverse of intra-observer variance σi (34, 35)
based on the duplicated 20% cases, i.e., Wi = 1/σ 2

i for the i-th
observer. The expected standard error of the weighted average

scores was SE(X) =
√

∑

Wi
−1

.

2.8.3. Statistical Analysis
Quality scores were reported as mean ± standard deviation.
Non-parametric Wilcoxon signed-rank test was used to assess
the statistical difference between the data with and without
motion correction by the baseline and proposed methods.
Given the modest number of repeated comparisons within each
group the statistical significance threshold was kept at standard

p< 0.05 (36). Statistical analysis was performed using the Python
programming language.

3. RESULTS

The results of human observer validation on the 200 cases
from the UK Biobank are reported in Table 1. Intra-observer
variabilities of the three observers on the 20% duplicated cases
were 10.6, 17.3 and 21.9, respectively. Standard error of the
final weighted-average scores that were used to compare the
motion correction methods was 8.3 at a scale from 0 to 100%.
Overall, both methods significantly reduced the motion artefacts,
from an average motion score of 37.1 ± 21.5 to 15.8 ± 15.6
(baseline method) and 13.3 ± 10.5 (MOCOnet; both p < 0.001).
MOCOnet was significantly more effective at reducing motion
artefacts than the baseline method for the subgroups with
severe motion (N = 50, p = 0.006) and moderate motion
(N = 100, p = 0.04). For the subgroup with mild to no
motion (N = 50), both methods significantly further reduced the
motion artefacts (both p < 0.001), and neither added noise, nor
was significantly different from each other (p = 0.2). Overall,
MOCOnet suppressed motion artefacts to a higher extent and
in a more consistent way compared to the baseline method, as
evidenced by its lower maximum score and variability (N = 200,
p = 0.007). The boxplot of motion scores (Figure 4) further
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TABLE 1 | Human observer assessment of motion extent (%) on 200 T1 maps before motion correction, and after the baseline and proposed method (MOCOnet) for

motion correction.

All data (N = 200) Group 1 (N = 50) Severe motion Group 2 (N = 100) Moderate motion Group 3 (N = 50) Mild to no motion

Before MOCO 37.1 ± 21.5 55.8 ± 18.7 (99.3) 35.5 ± 18.9 (80.5) 21.7 ± 13.8 (62.1)

Baseline method 15.8 ± 15.6 25.8 ± 19.8 (93.4) 14.7 ± 13.9 (65.7) 8.1 ± 6.5 (34.2)

MOCOnet 13.3 ± 10.5 18.6 ± 14.3 (86.9) 12.7 ± 9.2 (46.4) 9.4 ± 6.4 (19.8)

The quality scores are inverse variance-weighted scores of three human observers and reported in mean ± SD (maximum value). The best results are highlighted in bold.

FIGURE 4 | Motion correction (MOCO) performance of the baseline and the proposed deep learning-based motion correction (MOCOnet) methods. Box and whisker

plot of motion scores in non-parametric terms of three data groups, before (blue) and after motion correction by the baseline (orange) and proposed MOCOnet (green)

methods. Reported values are inverse variance-weighted scores of three human observers. MOCOnet achieved the best results and significantly reduced the motion

artefacts. *p = 0.04; **p < 0.01; ***p < 0.001; ns = not significant.

illustrates the above dependencies in non-parametric terms. This
demonstrates thatMOCOnet achieved a tighter span of perceived
motion estimates, with better perceived robustness to outliers.

MOCOnet successfully learnt from synthetic random motion
to predict the required DVFs to correct the motion of IRW
images ensuring a motion-corrected T1 map in real acquired
data. Figure 5 exemplifies the robustness of the method. One
training sample was falsely considered to have no motion
artefacts, as evidenced by the overlaid contours of both
myocardium and stomach but this did not overfit the learning or
affect the final results. The data-driven process aided the learning
of the general rule, as MOCOnet managed to correct the error in
this training sample, instead of replicating it.

4. DISCUSSION

In this work, MOCOnet, a novel end-to-end motion correction
neural network for CMR T1 maps, was developed using a
large-scale dataset and validated with expert human analysts.

MOCOnet was able to automatically predict the deformation
required to correct real motion artefact cases. The proposed
method has a fast-processing speed of <1 s per T1 map and does
not require modification of image acquisition sequences, external
hardware, or user intervention, enabling direct implementation
to clinical practise.

Although the principle of estimating the required DVFs
on a given set of images to correct their mutual alignment
was tested on myocardial ShMOLLI T1 maps, the problem
formulation and solution are not limited to this mapping method
or region of interest. The deformation estimation is alleviated by
considering the images ‘as is’ with a data-driven procedure (37)
without heavily relying on the differences in contrast, the specific
inversion recovery times or a prior user input. This principle
can be directly applied to other T1 mapping methods that
require multiple T1-weighted images to be aligned in a groupwise
manner to ensure an accurate exponential recovery curve fitting
(38), to other organs that are evaluated with parametric mapping,
such as the brain (39) and liver (40), and to other imaging
modalities with varied image contrast (41).
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FIGURE 5 | Robustness of the proposed motion correction convolutional neural network (MOCOnet) for myocardial ShMOLLI T1 mapping from a noisy training

sample. (A) Training sample falsely considered free of motion (1 in 1,536) as manually depicted with unaligned myocardium (orange) and stomach (blue) with yellow

arrows throughout the inversion recovery-weighted images. (B) Applied deformation to the training sample used for training. (C) Sample corrected by MOCOnet after

training demonstrating the successful learning of the general rule without replicating the data.

The potential clinical impact of the method is promising. A
large portion of the UKBiobank T1mapping data analysed in this
study presented mild to severe motion, hampering the diagnostic
utility of T1 mapping. Although recent progress on automated
motion artefact detection methods (42) may alleviate the quality
monitoring process, rescanning to ensure a free-of-motion T1
map would increase scan times and reduce patient throughput.
The presented data-driven MOCOnet approach provides an
attractive solution to retrospectively suppress the motion using
most of the acquired data to enhance T1 map quality, which is
expected to salvage data corrupted by motion, reduce the need
for rescanning and improve diagnosis. MOCOnet also holds
promise for stress T1 mapping applications (9–11, 38) which
may be subject to greater motion artefact. With the rapidly
evolving field of deep learning, further research can be done
to assess potential benefits of incorporating a more diverse
variety of learning-based registration methods (23, 43) into a
quality-control driven pipeline (44–46) to verify the registration
accuracy on-the-fly including the R2 maps. With further work,
MOCOnet together with T1 protocol quality assurance (47, 48)
and automated myocardial segmentation (45) could ultimately
lead to a comprehensive framework for robust T1 mapping for
clinical use.

Despite a good performance in motion correction, as
evidenced with the large improvement in the motion

score, it is revealed by human observer experiments
that MOCOnet could still fail in correcting images with
severe motion. The challenge is not only due to difficulty
in motion correction, but also through-plane motion,
resulting in fitting of T1 values using signals at different
tissue location. Breath holding remains crucial in acquiring
good quality T1 maps. Future work will include validation
on a multi-vendor, multi-centre population, expansion to
other regions of interest, and direct implementation onto
the scanner for robust inline motion artefact correction to
generate good quality and reliable images for immediate
clinical interpretation.

5. CONCLUSION

MOCOnet is an effective and robust convolutional neural
network for correction of artefacts from myocardial
motion. The technique can be readily deployed for
post-processing of T1 mapping to restore T1 values
in images affected by motion artefacts. This non-rigid
registration solution can be further extended to other
mapping methods, for generating good quality and reliable
images for immediate clinical interpretation. MOCOnet
can eventually enhance parametric mapping methods
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paving the way towards more reliable quantitative CMR
medical imaging.
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