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Magnetic resonance imaging and
molecular features associated with tumor-
infiltrating lymphocytes in breast cancer
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Abstract

Background: We sought to investigate associations between dynamic contrast-enhanced (DCE) magnetic
resonance imaging (MRI) features and tumor-infiltrating lymphocytes (TILs) in breast cancer, as well as to study if
MRI features are complementary to molecular markers of TILs.

Methods: In this retrospective study, we extracted 17 computational DCE-MRI features to characterize tumor and
parenchyma in The Cancer Genome Atlas cohort (n = 126). The percentage of stromal TILs was evaluated on H&E-
stained histological whole-tumor sections. We first evaluated associations between individual imaging features and
TILs. Multiple-hypothesis testing was corrected by the Benjamini-Hochberg method using false discovery rate (FDR).
Second, we implemented LASSO (least absolute shrinkage and selection operator) and linear regression nested with
tenfold cross-validation to develop an imaging signature for TILs. Next, we built a composite prediction model for
TILs by combining imaging signature with molecular features. Finally, we tested the prognostic significance of the
TIL model in an independent cohort (I-SPY 1; n = 106).

Results: Four imaging features were significantly associated with TILs (P < 0.05 and FDR < 0.2), including tumor
volume, cluster shade of signal enhancement ratio (SER), mean SER of tumor-surrounding background parenchymal
enhancement (BPE), and proportion of BPE. Among molecular and clinicopathological factors, only cytolytic score
was correlated with TILs (ρ = 0.51; 95% CI, 0.36–0.63; P = 1.6E-9). An imaging signature that linearly combines five
features showed correlation with TILs (ρ = 0.40; 95% CI, 0.24–0.54; P = 4.2E-6). A composite model combining the
imaging signature and cytolytic score improved correlation with TILs (ρ = 0.62; 95% CI, 0.50–0.72; P = 9.7E-15). The
composite model successfully distinguished low vs high, intermediate vs high, and low vs intermediate TIL groups,
with AUCs of 0.94, 0.76, and 0.79, respectively. During validation (I-SPY 1), the predicted TILs from the imaging
signature separated patients into two groups with distinct recurrence-free survival (RFS), with log-rank P = 0.042
among triple-negative breast cancer (TNBC). The composite model further improved stratification of patients with
distinct RFS (log-rank P = 0.0008), where TNBC with no/minimal TILs had a worse prognosis.

Conclusions: Specific MRI features of tumor and parenchyma are associated with TILs in breast cancer, and
imaging may play an important role in the evaluation of TILs by providing key complementary information in
equivocal cases or situations that are prone to sampling bias.
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Background
Immunotherapy for treating patients with cancer has
generated much excitement in recent years [1]. Com-
pared with conventional therapies, immune checkpoint
blockade (ICB) such as anti-PD1 therapy has achieved
durable clinical response and long-term survival benefit
in a variety of cancer types [2, 3]. However, only a small
proportion of patients respond to current immunother-
apy, underscoring the need for predictive biomarkers to
identify appropriate patients [4]. One promising bio-
marker is tumor-infiltrating lymphocytes (TILs), because
it is now recognized that a preexisting antitumor im-
munity is required for the success of ICB-based im-
munotherapy [5]. In breast cancer, there is strong
evidence for the prognostic and predictive value of TILs
[6]. Several large clinical trials have demonstrated that
TILs are associated with pathological complete response
and prognosis after chemotherapy or targeted therapies,
particularly in triple-negative breast cancer (TNBC) and
human epidermal growth factor receptor 2 (HER2)-posi-
tive breast cancer [7–14].
The evaluation of TILs involves visualization and

measurement of lymphocytes on H&E-stained histo-
logical slides of tumor samples [15]. Current guidelines
issued by the International Immuno-Oncology Bio-
marker Working Group on Breast Cancer recommend
that evaluation of TILs be performed in the stromal ra-
ther than intraepithelial compartments, and preferably
on whole tumor sections over core biopsies [16]. Despite
numerous efforts to standardize the evaluation of TILs,
this process remains laborious and subjective with inter-
and intrarater variability [16]. Moreover, evaluation of
TILs in the preoperative neoadjuvant setting is problem-
atic because of heterogeneous tumor shrinkage patterns
and sampling bias in a biopsy. A more objective, consist-
ent method to evaluate TILs in breast cancer would be
extremely valuable.
Imaging allows noninvasive visualization of the entire

tumor and its surrounding tissue. Recent studies have
demonstrated associations between specific magnetic
resonance imaging (MRI) features and pathological or
molecular patterns, such as molecular subtypes [17–22]
and gene expression signatures or pathways [23–28].
These data support the underlying pathophysiology of
the disease being reflected on imaging at a macroscopic
level, and this link may be revealed by a more detailed
comprehensive image analysis.
The purpose of this study was to investigate the asso-

ciation between MRI features and TILs in breast cancer.
We explored whether computational imaging features
could be used to predict TILs. Further, we constructed a
composite prediction model by integrating imaging and
immune-related molecular features and validated its
clinical relevance in an independent cohort.

Methods
Study design
We carried out this institutional review board-approved,
Health Insurance Portability and Accountability Act
(HIPAA)-compliant retrospective study in three steps
(Fig. 1). First, we characterized both tumor and parenchymal
enhancement patterns at dynamic contrast-enhanced (DCE)
MRI and evaluated their association with TILs. Second, we
built a composite model to predict TILs by integrating im-
aging with molecular and clinicopathological data. Third, we
tested the prognostic significance of the TIL model in an in-
dependent cohort.

Patient cohorts
We analyzed two breast cancer cohorts from The Can-
cer Genome Atlas (TCGA) project [29] and the I-SPY 1
(Investigation of Serial Studies to Predict Your Thera-
peutic Response with Imaging And moLecular Analysis)
trial [30]. For this study, the inclusion criteria for TCGA
cohort were (1) pathologically proven invasive carcin-
omas, (2) pretreatment DCE-MRI data available, (3)
H&E-stained whole-tumor tissue sections available, and
(4) tumor gene expression data from RNA-sequencing
(RNA-seq) and mutational data from whole-exome se-
quencing available. We applied similar inclusion criteria
to select patients from the I-SPY 1 cohort, except that
outcomes were available, but H&E-stained slides and
mutational data were not required. After selection, 126
patients from TCGA and 105 patients from I-SPY 1
were eligible for the proposed study. The detailed selec-
tion procedures are shown in Additional file 1: Figure
S1. Clinical and imaging data are publicly available for
both cohorts from The Cancer Imaging Archive (TCIA)
(www.cancerimagingarchive.net).

Evaluation of tumor-infiltrating lymphocytes
TILs were evaluated for TCGA cohort, for which de-
tailed biospecimen collection and processing protocols
have been described elsewhere [29]. In brief, the tumor
sections were collected from surgical specimens and
reviewed by a board-certified pathologist to confirm the
presence of invasive carcinoma. The H&E-stained
whole-slide tumor sections were digitally scanned and
are available from the Cancer Digital Slide Archive
(http://cancer.digitalslidearchive.net/).
Two pathologists (XT and XL, with 30 and 5 years of

experience, respectively, in reading breast cancer tissue
slides) evaluated TILs in consensus based on the recom-
mendations from the International Immuno-Oncology
Biomarker Working Group on Breast Cancer [16]. Two
pathologists simultaneously reviewed the digital slides of
each patient from the Cancer Digital Slide Archive, and
the TILs were measured as the percentage of lympho-
cytes and macrophages in the area of total intratumoral
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stromal compartments. In addition, three discrete cat-
egories are defined, with ≤ 10%, > 10% to ≤40%, and >
40% to ≤ 90% TILs indicating tumors with no/min-
imal, intermediate, and high lymphocyte infiltration,
respectively [16]. To assess interrater variability, we
calculated the intraclass correlation coefficient (ICC)
between our TIL percentage and those reported in a
previous study focused on TNBC [31] for 15 over-
lapped cases in TCGA cohort.

Imaging protocols
The detailed imaging protocol for TCGA cohort has
been reported elsewhere [27]. In brief, the scans were
performed between September 1999 and June 2006 at
six participating centers with a 1.5-T or 3-T GE Health-
care (Milwaukee, MI, USA), Siemens (Erlangen,
Germany), or Philips (Amsterdam, The Netherlands)
whole-body MRI system with a standard double-breast
coil. The dynamic protocol of DCE-MRI was in accord-
ance with the American College of Radiology guidelines,
which included one precontrast and two to seven post-
contrast scans (with a gadolinium-based contrast agent),
in either the sagittal or axial view.

The detailed imaging protocol for the I-SPY cohort
was reported elsewhere [32, 33]. To match the MRI
from TCGA cohort, we focused on the scans acquired
before neoadjuvant chemotherapy (i.e., baseline scans).
MRI was performed through a 1.5-T GE Healthcare, Sie-
mens, or Philips system, with a dedicated breast radio-
frequency coil. The DCE-MRI protocols include one
precontrast scan and two postcontrast phases with one
~ 2.5 minutes and another one ~ 7.5 minutes.

Image processing and harmonization
Given the diverse imaging protocols within the multi-
center TCGA data and I-SPY 1 cohorts, we developed a
pipeline to normalize the imaging data before extracting
quantitative feature. First, we applied the N4 bias correc-
tion to correct for shading artifacts. Next, we standard-
ized the temporal resolution of DCE-MRI scans in
TCGA and I-SPY cohorts. In particular, for each patient,
we included DCE-MRI before contrast agent administra-
tion and two postcontrast scans, with one having a 2–
3-minute delay and the other having an ~ 7.5-minute
delay. Third, to explicitly account for heterogeneous im-
aging protocols, for each individual, the voxel values of

Fig. 1 Flowchart of the study design, which included three main steps (color-coded). DCE Dynamic contrast-enhanced, MRI Magnetic resonance
imaging, TCGA The Cancer Genome Atlas, TILs Tumor-infiltrating lymphocytes
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DCE-MRI were normalized by the parenchyma without
contrast (i.e., the average value of interquartile voxel
from parenchyma before administrating contrast). Fi-
nally, the MRI scans were resized to have an isotropic
voxel resolution of 1 mm to assure consistent and mean-
ingful computation of 3D textural features.

Tumor and background parenchyma segmentation
The detailed process used for segmentation was reported
elsewhere [28, 34]. Briefly, two radiologists with 14 and
11 years of experience, respectively, in breast imaging
manually delineated the 3D tumor slice-by-slice and
reached consensus regarding 3D tumor contours. The
ipsilateral parenchyma was segmented automatically
through Fuzzy C-means clustering. The 3D parenchymal
segmentation was inspected by two radiologists, and
they manually revised it when necessary.

MRI feature exaction
The rationale of feature extraction is to provide a com-
prehensive characterization of breast cancer at
DCE-MRI. We initially extracted 110 computational im-
aging features as defined in a previous study [28] and re-
moved those with linear ICCs above 0.85. For correlated
features, the one that showed highest robustness with
respect to tumor contour variations (manual segmenta-
tion vs automatic segmentation via Fuzzy C-means clus-
tering) was kept, similar to previous studies [34, 35]. As
a result, 17 nonredundant imaging features remained.

The selected features characterize the tumoral and par-
enchymal phenotypes at DCE-MRI, which include five
tumor morphological features, four tumor texture fea-
tures, two functional tumor volume features, four back-
ground parenchymal enhancement (BPE) features, and
two tumor-surrounding PE features. The mathematical
formulation and the interpretation and clinical relevance
[27, 28, 32, 36–38] of these features are elaborated in
Table 1. The computation of all imaging features was
implemented automatically with MATLAB software
(MathWorks, Natick, MA, USA).

Molecular features related to tumor-infiltrating
lymphocytes
Tumor mutation burden is an important genetic factor
in mediating antitumor immunity. Tumors with a higher
mutation load are associated with a higher neoantigen
level and thus are more immunogenic and likely to have
higher immune infiltration and more TILs [39]. The
cytolytic activity reflects local immune effector function
and can indicate the presence of TILs. Indeed, cytolytic
activity computed from the gene transcript levels of two
critical immune cytolytic effectors [40], perforin (PRF1)
and granzyme A (GZMA), has been shown to be closely
related to immune infiltration and CD8+ T-cell activa-
tion [41, 42]. For TCGA breast cancer cohort, gene ex-
pression data from RNA-seq and mutational data from
whole-exome sequencing are available in the Genomic
Data Commons (https://gdc.cancer.gov/). On the basis

Table 1 Definition and interpretation of 17 computational imaging features extracted from dynamic contrast-enhanced magnetic
resonance imaging scans

Type No. Definition Interpretation

Morphology (M) 5 M1: Volume Tumor shape, size, and
boundary smoothness
(i.e., descriptors according
to BI-RADS classification)

M2: Sphericity

M3: Surface-to-volume ratio

M4: Mean of margin sharpness

M5: SD of margin sharpness

Texture of kinetic maps (TEX) 4 TEX1: Correlation of SER Spatial tumor heterogeneity
of the SER map

TEX2: Cluster shade of SER

TEX3: Energy of SER

TEX4: Entropy of SER

Functional tumor volume (FTV) 2 FTV1: Absolute volume of the active tumor with SER > 1.0 Subvolume of tumor with
fast contrast uptake and washout

FTV2: Absolute volume of the active tumor with SER > 1.5

Ipsilateral background
parenchymal enhancement (BPE)

4 BPE1: Absolute volume of BPE with PE > 0.2 Enhanced subvolume of ipsilateral
breast parenchyma at the early
postcontrast phase, in accordance
with the BI-RADS classification

BPE2: Absolute volume of BPE with PE > 0.6

BPE3: Relative volume of BPE with PE > 0.2

BPE4: Relative volume of BPE with PE > 0.6

Tumor surrounding
background parenchymal
enhancement (TS-BPE)

2 TS-BPE1: Mean value of PE in tumor surrounding parenchyma (2 cm) Enhancement of parenchyma
surrounding the tumor
within 2-cm distanceTS-BPE2: Mean value of SER in tumor surrounding parenchyma (2 cm)

BI-RADS Breast Imaging Reporting and Data System, PE percent enhancement; PE ¼ Iearly postcontrast−Iprecontrast
Iprecontrast

, SER signal enhancement ratio; SER ¼ Iearly postcontrast−Iprecontrast
Ilate postcontrast−Iprecontrast
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of these data, we computed the nonsynonymous somatic
mutational burden and cytolytic activity score, defined
as the geometric mean of the expression of two genes:
GZMA and PRF1 [40]. Similarly for the I-SPY 1 cohort,
we computed the cytolytic activity score on the basis of
microarray gene expression data available from the Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/
; [GEO:GSE22226]) [43]. The ComBat algorithm [44]
was implemented to harmonize the gene expression data
from TCGA and I-SPY.

Association with tumor-infiltrating lymphocytes and
predictive modeling
We first evaluated the Pearson linear correlation be-
tween individual imaging features and percentage of
TILs in TCGA cohort. Next, we built a predictive model
for TILs by combining multiple imaging features into an
imaging signature. For this purpose, we used linear re-
gression with feature selection via LASSO (least absolute
shrinkage and selection operator) [45] to avoid overfit-
ting. In addition, tenfold cross-validation was applied
and repeated 100 times to minimize the selection bias.
The most frequently selected imaging features (> 90%)
were used to fit the final model. Further, we investigated
whether combining the imaging signature with
immune-related molecular features (cytolytic score and
somatic mutation burden) would improve prediction ac-
curacy for TILs by fitting a composite model via multi-
variate linear regression.

Performance evaluation
To evaluate the prediction models, we calculated the
Pearson linear correlation between pathologist-rated and
estimated percentage of TILs. In addition, patients were
divided into three recognized TIL categories (low, inter-
mediate, and high immune infiltration) [16], and pair-
wise classification among the three categories was
evaluated. We compared the performance of the com-
posite model with molecular features based on cytolytic
score and imaging signature. In particular, the ROC ana-
lysis and AUC were used to assess the binary prediction
accuracy of the models. The threshold used to separate
different prediction models was defined on the basis of
Youden’s J statistics [46], and the corresponding sensitiv-
ity, specificity, and accuracy were reported. Finally, we
tested prognostic significance of the imaging signature
as well as the composite TIL model by assessing their
association with recurrence-free survival (RFS) in the en-
tire I-SPY 1 cohort as well as in clinically relevant sub-
groups according to the receptor status. Because the
prognostic value of TILs seems to be strongest in TNBC
[11, 13], we expect that the composite model would also
be prognostic within the TNBC subgroup in the I-SPY 1
cohort.

Statistical analysis
In univariate analysis, to adjust for multiple statistical
testing, the Benjamini-Hochberg method was used to
control the false discovery rate (FDR). The
Mann-Whitney U statistic was used to assess the statis-
tical significance of binary classification of TIL categor-
ies by comparing the prediction models with a random
guess with an AUC of 0.5. The DeLong test was used to
determine the 95% CIs and compute P values for the
comparison of ROC curves. The Cox proportional haz-
ards model was used to build survival models.
Kaplan-Meier analysis was used to estimate survival
probability. The log-rank test and concordance index
were used to assess prognostic performance. All statis-
tical tests were two-sided. P value < 0.05 and FDR < 0.2
were considered to be statistically significant. Statistical
analysis was performed in R (R Foundation for Statistical
Computing, Vienna, Austria).

Results
Patient characteristics and tumor-infiltrating lymphocyte
evaluation
Among 1098 cases in TCGA breast cancer cohort, 126
patients were eligible for our study. A majority (n = 92,
73%) of patients had low immune infiltration (0–10%
TILs) in their tumor stroma, whereas 20% (n = 25) and
7% (n = 9) of patients had intermediate and high im-
mune infiltration, respectively. Clinicopathological char-
acteristics of patients in each of the three TIL categories
are shown in Table 2. There was high reproducibility be-
tween TILs measured by our pathologists and previously
reported values with ICC of 0.80 (P = 0.002). For the
I-SPY 1 cohort, 105 patients were eligible and included
in this study (patient characteristics summarized in Add-
itional file 2: Table S1).

Imaging features associated with tumor-infiltrating
lymphocytes
Each of the 17 imaging features independently charac-
terizes the cancer phenotypes, and their pairwise correl-
ation map is shown in Additional file 1: Figure S2.
Figure 2 shows the heat map of 17 imaging features for
126 patients in TCGA cohort ranked on the basis of
their TILs, monotonically increasing from left to right.
In the univariate analysis, 4 of 17 imaging features were
significantly associated with the percentage of TILs (P <
0.05 and FDR < 0.2), as shown in Fig. 3. Among these
four features, the tumor volume was positively corre-
lated with TILs, whereas cluster shade of signal enhance-
ment ratio (SER) map, mean SER of tumor surrounding
BPE, and proportion of BPE were negatively correlated
with TILs (Additional file 2: Table S2). Next, we built an
imaging signature for TILs by fitting a linear model,
which consisted of five imaging features: 4.4 ×M1 −
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Table 2 Clinical and pathological Characteristics for Eligible Patients in the TCGA Cohort

Parameter ≤ 10% stromal TILs > 10 to ≤ 40% stromal TILs > 40 to ≤ 90% stromal TILs P valuea

Tumor with no/minimal immune
cells (n = 92, 73%)

Tumor with intermediate/heterogeneous
infiltrate (n = 25, 20%)

Tumor with high immune
infiltrate (n = 9, 7%)

Age, years

Median (range) 52 (29–82) 56 (38–75) 61 (47–77)

Mean ± SD 52.8 ± 11.6 55.8 ± 11.1 61.2 ± 8.7

T

T1 37 (71) 10 (19) 5 (10) 0.821

T2 47 (65) 15 (23) 3 (5) 0.744

T3 8 (89) 0 1 (11) 0.307

N

N0 44 (69) 16 (25) 4 (6) 0.726

N1 32 (74) 8 (19) 3 (7) 1

N2 9 (82) 1 (9) 1 (9) 0.748

N3 6 (86) 0 1 (14) 0.290

Nxb 1 (100) 0 0

M

M0 79 (75) 20 (19) 6 (6) 0.919

Mxc 13 (62) 5 (24) 3 (14) 0.361

Stage

I 22 (73) 6 (20) 2 (7) 1

II 53 (70) 18 (24) 5 (7) 0.826

III 17 (85) 1 (5) 2 (10) 0.204

Histological type

Invasive ductal
carcinoma

80 (75) 19 (18) 7 (7) 0.921

Invasive lobular
carcinoma

10 (59) 5 (29) 2 (12) 0.371

Other 2 (67) 1 (33) 0

Estrogen receptor status

Positive 79 (75) 19 (18) 7 (7) 0.947

Negative 13 (62) 6 (29) 2 (10) 0.560

Progesterone receptor status

Positive 71 (76) 16 (17) 6 (6) 0.888

Negative 21 (64) 9 (27) 3 (9) 0.515

Human epidermal growth factor receptor 2 status

Positive 14 (61) 6 (26) 3 (13) 0.384

Negative 76 (76) 19 (19) 5 (5) 0.790

Equivocal 2 (67) 0 1 (33)

IHC subtype

HR+/HER2− 68 (78) 14 (16) 5 (6) 0.824

HER2+ 14 (61) 6 (26) 3 (13) 0.571

ER−/PR−/HER2− 10 (63) 5 (31) 1 (6) 0.592

PAM50 intrinsic subtype

Luminal A 53 (75) 13 (18) 5 (7) 0.966

Luminal B 22 (79) 4 (14) 2 (7) 0.875
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3.14 × TEX2 − 2.0 × TS − BPE2 − 2.62 × BPE1 − 0.72 ×
BPE3 + 13.02, where M1 = tumor volume, TEX2 = cluster
shade of SER map, TS-BPE2 =mean SER of tumor sur-
rounding BPE (2 cm), BPE1 = BPE volume (percentage
enhancement or PE > 20%), and BPE3 = BPE proportion
(PE, > 20%). The mean and SD values of the five selected
imaging features are shown in Additional file 2: Table
S3. This imaging signature had a moderate linear correl-
ation with TILs (ρ = 0.40; 95% CI, 0.24–0.54; P = 4.2E-6).
Moreover, the imaging signature is able to separate three
TILs categories in pairwise fashion (Fig. 4a), with

prediction accuracy of 0.73, 0.71, and 0.71, respectively
(Table 3). Figure 5 showed the details of three represen-
tative patients where there is good agreement between
the predicted TILs from proposed imaging signatures
and TIL readings by two pathologists.

Relationships between imaging, molecular signatures,
and tumor-infiltrating lymphocytes
We evaluated the associations between imaging and
immune-related molecular features, as well as the per-
centage of TILs, in TCGA cohort. In addition to the

Table 2 Clinical and pathological Characteristics for Eligible Patients in the TCGA Cohort (Continued)

Parameter ≤ 10% stromal TILs > 10 to ≤ 40% stromal TILs > 40 to ≤ 90% stromal TILs P valuea

Tumor with no/minimal immune
cells (n = 92, 73%)

Tumor with intermediate/heterogeneous
infiltrate (n = 25, 20%)

Tumor with high immune
infiltrate (n = 9, 7%)

HER2 4 (50) 3 (38) 1 (12) 0.219

Basal 10 (63) 5 (31) 1 (6) 0.536

Normal 3 (100) 0 0

Abbreviations: ER Estrogen receptor, HER2 Human epidermal growth factor receptor 2, HR Hormone receptor, PR Progesterone receptor, TIL
Tumor-infiltrating lymphocyte
aFisher’s exact test was used to compare TIL distribution within selected category with TIL distribution of whole population
bLymph node stage is not available
cMetastasis cannot be measured

Fig. 2 Heat map of computational imaging features from The Cancer Genome Atlas cohort. In the plot, all 17 features (presented in each row
and color-coded by the region and type) from 126 patients (presented in each column) were ranked by their TILs (monotonically increasing from
left to right). All imaging features were standardized to have a zero mean and unit standard deviation. Imaging features were defined in Table 1.
BPE Background parenchymal enhancement, ER Estrogen receptor, HER2 Human epidermal growth factor receptor 2, IDC Invasive ductal
carcinoma, PR Progesterone receptor, TIL Tumor-infiltrating lymphocyte
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imaging signature, cytolytic score was significantly associ-
ated with TILs (ρ = 0.51; 95% CI, 0.36–0.63; P = 1.6E-9)
(Fig. 4b), whereas none of the clinicopathological factors
or the somatic mutation burden were correlated with TILs
(Table 4). We found that five imaging features were sig-
nificantly associated with mutation burden, but none was
associated with cytolytic score (Fig. 3, Additional file 2:
Table S4). This suggests that imaging and cytolytic score
are independent and could be complementary to each
other for predicting TILs. For three cases in Fig. 5, the im-
aging signature can provide more accurate prediction of
TILs than the model of cytolytic score.

Composite model for tumor-infiltrating lymphocytes
On multivariate analysis, the imaging signature and
cytolytic score remained as independent predictors of
TILs (P = 0.004 and P < 0.0001, respectively) after
adjusting for stage, estrogen receptor/progesterone re-
ceptor/HER2 status, and mutation burden (Table 4).
We retained both significant variables and refitted a

composite model for predicting TILs: 5.86 × Imaging
Signature + 7.78 × Cytolytic Score + 13.0. The linear
correlation between the composite model and TILs
was improved (ρ = 0.62; 95% CI, 0.50–0.72; P =
9.7E-15). Detailed box plots of inferred TILs from the
composite model vs the original pathologists’ readings
are presented in Fig. 4c.
We tested the composite model for predicting three pre-

defined TILs categories. As shown in Fig. 6a, cytolytic score
alone could not differentiate between intermediate and high
TILs (AUC, 0.63; P = 0.14). By integrating imaging signa-
ture and cytolytic score, the composite model successfully
separated these two TILs groups (AUC, 0.76; P = 0.01), and
the improvement was statistically significant (DeLong test
P = 0.039). Similar results were observed for differentiating
low vs high TILs groups (AUC, 0.88 vs 0.94) (Fig. 6b). For
distinguishing low and intermediate groups, there was no
significant improvement using the composite model over
cytolytic score (AUC, 0.77 vs 0.79) (Additional file 1: Figure
S3). In addition, we performed a detailed evaluation of the

Fig. 3 Heat map of correlation between 17 imaging features and tumor-infiltrating lymphocytes (TILs) from pathologists’ reading,
nonsynonymous tumor mutation burden (TMB), and cytolytic activity (CYT). FDR False discovery rate

Fig. 4 Box plots of the predicted tumor-infiltrating lymphocyte (TIL) values stratified by the original pathologists’ reading in The Cancer Genome
Atlas cohort through (a) the imaging signature, (b) cytolytic activity score, and (c) the composite model
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proposed composite model, as in Table 3, where the com-
posite model’s accuracy is 0.85, 0.91, and 0.75, respectively.

Clinical validation of the composite model
The previously developed composite model was used to
infer TILs based on imaging and molecular data in an
independent cohort from the I-SPY 1 trial. We found
that hormone receptor-negative (HR−)/HER2− or TNBC
had significantly higher predicted TILs than HR+/HER2
− breast cancer (P = 0.049) (Additional file 1: Figure S4).
With the threshold values obtained from the training co-
hort, we divided the patients into three groups based on
the predicted TIL values. Then, we investigated the rela-
tionship between predicted TIL groups and outcomes.
In TNBC, patients without recurrence had significantly
higher predicted TILs than those who developed recur-
rence (P = 0.024) (Fig. 7a). Within the TNBC group, dis-
tinct RFS exists between the predicted no/minimal TIL
group and the predicted high/intermediate TILs group
(log-rank P = 0.0008) (Fig. 8a), where the group with
lower TILs had significantly worse prognosis. However,
predicted TIL groups were not associated with RFS in
HR+/HER2− or HER2+ breast cancer (Fig. 7b and c and
Fig. 8b and c, respectively).

Table 3 Model evaluation of three classification models for
predicting tumor-infiltrating lymphocyte groups in The Cancer
Genome Atlas

Specificity Sensitivity Accuracy

Low vs intermediate TIL groups

Imaging signature 0.93 0.36 0.73

Cytolytic activity 0.86 0.68 0.83

Imaging + cytolytic activity 0.82 0.68 0.85

Low vs high TIL groups

Imaging signature 0.70 0.89 0.71

Cytolytic activity 0.68 1 0.71

Imaging + cytolytic activity 0.91 0.88 0.91

Intermediate vs high TIL groups

Imaging signature 0.64 0.89 0.71

Cytolytic activity 0.84 0.44 0.74

Imaging + cytolytic activity 0.68 0.78 0.75

TIL Tumor-infiltrating lymphocyte

Fig. 5 Illustration of three patients with breast cancer, where the proposed magnetic resonance (MR) imaging signature accurately predicts their
tumor-infiltrating lymphocytes (TILs) from pathologists’ reading. CYT Cytolytic activity, ER Estrogen receptor, HER2 Human epidermal growth factor
receptor 2, DCE Dynamic contrast-enhanced, TCGA The Cancer Genome Atlas
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Additionally, to validate the imaging signature for
TILs, we applied it to 44 patients with TNBC who had
images publicly available in the I-SPY 1 cohort. Similarly,
with the threshold value obtained from the training co-
hort, we classified the patients into three TIL categories.
A trend similar to that for the composite mode was ob-
served, where no/minimal TILs had a significantly worse
prognosis than high/intermediate TILs regarding their
RFS (log-rank P = 0.042) (Fig. 8d).

Discussion
In this study, we aimed to dissect the complex
tumor-immune interactions in breast cancer [5, 6] by in-
tegrating imaging, genomic, and histological data. In

particular, our pilot study showed that the percentage of
stromal TILs evaluated on histological tissue sections
were significantly associated with specific enhancement
patterns of tumor and surrounding parenchyma at
DCE-MRI. Our findings are consistent with a recent
study that demonstrated a link between heterogeneous
enhancement of tumor-adjacent parenchyma on
DCE-MRI and dysregulated tumor necrosis factor sig-
naling pathway in breast cancer [47]. Both studies sup-
port the role of inflammatory or immune response in
breast cancer progression and its relationship to specific
parenchymal enhancement patterns at DCE-MRI. Con-
sistent with previous work, we found that TILs were also
associated with cytolytic activity but not with tumor

Table 4 Univariate and multivariate analyses of tumor-infiltrating lymphocytes using the imaging signature, clinicopathological
factors, and molecular features in The Cancer Genome Atlas Cohort
Predictors Univariate Multivariate

ρ 95% CI P value Coefficient SE P value

Imaging signature 0.40 0.24–0.54 < 0.0001a 4.78 1.60 0.003a

Tb – – 0.269 – – –

Nb – – 0.799 – – –

Mb – – 0.214 – – –

Stageb – – 0.650 −2.85 1.97 0.151

ERc – – 0.479 −3.42 6.85 0.618

PRc – – 0.561 2.71 4.05 0.504

HER2b – – 0.152 3.51 3.42 0.308

Triple-negativec – – 0.782 −0.51 7.43 0.945

PAM50 subtypeb – – 0.309 – – –

Mutation burden 0.13 −0.05-0.30 0.167 −0.20 1.24 0.870

Cytolytic activity 0.51 0.36–0.63 < 0.0001* 7.69 1.27 < 0.000a

Abbreviations: ER Estrogen receptor, HER2 Human epidermal growth factor receptor 2, PR Progesterone receptor
aP < 0.05
bFor multinomial variables, the Kruskal-Wallis test was used
cFor binary variables, the t test was used

Fig. 6 ROC curves constructed by using imaging signature, cytolytic activity, and the composite model for classification of (a) intermediate vs
high tumor-infiltrating lymphocyte (TIL) groups and (b) no/minimal vs high TIL groups
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mutational burdens in TCGA breast cancer cohort [48].
In addition to identifying associations, we further devel-
oped and evaluated prediction models for TILs that inte-
grated imaging and genomic data. Our results show that
a composite model combining an imaging signature and
cytolytic score achieved augmented linear correlation
with TILs compared with using either alone. The com-
posite model showed good or excellent discriminative
ability among low, intermediate, and high TIL groups,
with AUCs ranging from 0.76 to 0.94.
The reliable evaluation of TILs has significance and clin-

ical implications in breast cancer. Abundant evidence has
demonstrated that TILs have strong prognostic and pre-
dictive value in specific breast cancer subtypes [6]. For lo-
calized breast cancer, TILs have been shown to be
associated with pathological complete response and prog-
nosis after chemotherapy or targeted therapies for local-
ized breast cancer. This suggests that our imaging and
molecular signature for TILs could help select patients
who will be most likely respond to and benefit from neo-
adjuvant chemotherapy or targeted therapies in locally ad-
vanced breast cancer. On the other hand, they may also
be used in combination with established clinical and patho-
logical criteria to identify low-risk patients with a favorable
prognosis who might be spared adjuvant chemotherapy in
early-stage breast cancer. However, this will require further
validation in prospective clinical studies. Although there are
yet no U.S. Food and Drug Administration-approved im-
munotherapies for breast cancer, numerous trials are on-
going with the goal of assessing the clinical activity and
potential benefit of ICB [49]. Because the success of ICB
hinges on a preexisting antitumor immunity, which is man-
ifested as TILs, TILs could serve as useful predictive bio-
markers to select patients who are likely to benefit from
immunotherapy.
The current gold standard for evaluating TILs is based

on pathologists’ visual assessment of H&E-stained

whole-tumor tissue sections. This approach is limited
mainly by intra- and interrater variability [16]. Gene ex-
pression profiles can also reflect antitumor immune re-
sponse. Recently, a two-gene cytolytic score was
proposed to characterize local immune infiltration and
cytolytic activity in a large study across 18 tumor types
in TCGA [40]. Nonetheless, pathological or molecular
evaluation of TILs may be confounded by the spatial
intratumoral heterogeneity, especially in the neoadjuvant
setting with core biopsies [50]. On the other hand, im-
aging provides a global, unbiased picture of the entire
tumor and its surrounding tissue, potentially allowing
more reproducible evaluation for TILs. Our results dem-
onstrate that, compared with cytolytic score, the imaging
signature may be particularly useful in distinguishing tu-
mors with high vs intermediate TILs. Although imaging
analysis alone cannot replace pathological evaluation for
TILs, our study supports imaging playing an important
role in this process by providing key complementary in-
formation in equivocal cases or situations that are prone
to sampling bias (e.g., in core biopsy). In our study, given
the tumor contours manually delineated by radiologists,
the subsequent imaging analysis was fully automatic.
With the rapid advancement of machine learning in
radiology [51], we anticipate that much of the process
will be automated and that radiological interpretation
bias can be minimized. One unique advantage of MRI is
that it provides a global view of the whole tumor as well
as its surrounding parenchyma, which overcomes the
issue of sampling bias in core biopsy.
We validated the clinical relevance of our composite

prediction model for TILs in an independent cohort.
Consistent with previous findings [52], we showed that
TNBC had significantly higher predicted TILs than HR
+/HER2− breast cancer. So far, the strongest evidence
for the prognostic value of TILs has been in TNBC,
whereas its significance is more mixed in HER2+ and

Fig. 7 Predicted tumor-infiltrating lymphocyte (TIL) values for I-SPY patients based on the proposed composite model, stratified by recurrence
status in box plots for (a) hormone receptor-negative (HR−)/human epidermal growth factor receptor 2-negative (HER2−), (b) HR+/HER2−, and (c)
HER2+ patients
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seems uncertain in HR+/HER2− subtypes [6]. We con-
firmed that higher TILs predicted by the composite
model were indeed associated with better prognosis and
RFS in TNBC, but not among other subtypes. Given the
relatively small number of TNBC cases in the I-SPY 1
cohort, it would be important to further validate the
model in future studies with more patients.
Our study adds to the growing body of literature

where a more detailed comprehensive analysis of im-
aging phenotypes could reveal the underlying tumor

pathophysiology at the molecular or pathological level
[17–28, 53–55]. Different from previous radiogenomic
studies that focused on analyses of imaging and gen-
omic properties of the tumor, our study focused on
immune infiltration in the stroma and included im-
aging features of the tumor as well as its surrounding
parenchymal tissue. Another distinction is that previ-
ous work aimed to find correlation (i.e., similarity)
between imaging and molecular data, whereas our
study demonstrates that imaging can provide

Fig. 8 Kaplan-Meier curve of recurrence-free survival for I-SPY patients, stratified by predicted tumor-infiltrating lymphocyte (TIL) groups (no/
minimal vs high/intermediate). a Composite model for hormone receptor-negative (HR−)/human epidermal growth factor receptor 2-negative
(HER2−) breast cancer. b Composite model for HR+/HER2− breast cancer. c Composite model for HER2+ breast cancer. d Imaging signature for
HR−/HER2− breast cancer
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independent value and complement molecular profiles
for predicting TILs.
There are several limitations of this study. The images

and samples in TCGA cohort were retrospectively col-
lected, which may not be a representative patient popu-
lation for breast cancer. The association findings in this
study should be interpreted as hypothesis-generating,
and the composite prediction model for TILs requires
validation in large, ideally prospective cohorts. Owing to
the limited sample size, our analysis may have been in-
sufficiently powered to detect differences in TILs by re-
ceptor status. Future work is needed to confirm the
findings in a subtype-specific manner. In addition, there
are diverse imaging acquisition protocols in the
multi-institutional TCGA cohort, which may have con-
founded our analysis. Despite our efforts to harmonize
imaging data, uncertainty could remain. Finally, we fo-
cused on DCE-MRI for association with TILs. Additional
imaging modalities such as T2-weighted and
diffusion-weighted MRI may be incorporated in future
studies.

Conclusions
We showed that specific tumoral and parenchymal im-
aging features are associated with TILs and that integra-
tion of imaging and molecular features allows for better
prediction of TILs in breast cancer. These preliminary
findings should be validated in additional larger studies.
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