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Abstract

A genomic selection study of growth and wood quality traits is reported based on control-
pollinated Norway spruce families established in 2 Northern Swedish trials at 2 locations using 
exome capture as a genotyping platform. Nonadditive effects including dominance and first-order 
epistatic interactions (including additive-by-additive, dominance-by-dominance, and additive-by-
dominance) and marker-by-environment interaction (M×E) effects were dissected in genomic and 
phenotypic selection models. Genomic selection models partitioned additive and nonadditive 
genetic variances more precisely than pedigree-based models. In addition, predictive ability in 
GS was substantially increased by including dominance and slightly increased by including M×E 
effects when these effects are significant. For velocity, response to genomic selection per year 
increased up to 78.9/80.8%, 86.9/82.9%, and 91.3/88.2% compared with response to phenotypic 
selection per year when genomic selection was based on 1) main marker effects (M), 2) M + M×E 
effects (A), and 3) A + dominance effects (AD) for sites 1 and 2, respectively. This indicates that 
including M×E and dominance effects not only improves genetic parameter estimates but also 
when they are significant may improve the genetic gain. For tree height, Pilodyn, and modulus of 
elasticity (MOE), response to genomic selection per year improved up to 68.9%, 91.3%, and 92.6% 
compared with response to phenotypic selection per year, respectively.

Subject Area: Quantitative genetics and Mendelian inheritance
Keywords: dominance, epistasis, exome capture, Picea abies (L.) Karst

Genomic selection (GS) is a breeding method that uses a dense set of 
genetic markers to accurately predict the genetic merit of individuals 
(Meuwissen et al. 2001) and it has been incorporated into animal 
breeding for many years (Van Eenennaam et  al. 2014). Simulated 

studies have also shown that including dominance could increase 
the predictive ability (PA) (Nishio and Satoh 2014) and result in 
a higher genetic gain in crossbred population when the dominance 
variance and heterosis are large and over-dominance is present 
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(Zeng et al. 2013). In livestock, accounting for dominance in GS has 
improved genomic evaluations of dairy cows for fertility and milk 
production traits (Aliloo et al. 2016). In tree species, GS studies have 
been implemented in several breeding programs, but these studies 
mostly focused on additive effects in several commercially important 
conifer species, such as loblolly pine (Pinus taeda L.), maritime pine 
(Pinus pinaster Ait.), Norway spruce (Picea abies (L.) Karst.), white 
spruce (Picea glauca (Moench) Voss) and hardwood eucalypt species 
(Resende et al. 2012a, 2012b; Tan et al. 2017; Chen et al. 2018). The 
nonadditive contributions have also been estimated in several studies 
(Muñoz et al. 2014; Bouvet et al. 2016; de Almeida Filho et al. 2016; 
Gamal El-Dien et al. 2016; Tan et al. 2018).

Several recent studies show dominance and epistasis may be con-
founded with the additive effects in both pedigree-based relationship 
matrix models (Gamal El-Dien et al. 2018) and genomic-based rela-
tionship matrix models (Tan et al. 2018). In the conventional pedigree-
based genetic analysis, estimates of different genetic components such as 
additive, dominance, and epistatic variances need full-sib family struc-
ture or full-sib family structure plus clonally replicated tests (Mullin and 
Park 1992). For most tree species, only a few reliable estimates for the 
nonadditive variation have been reported based on pedigree-based rela-
tionship (Isik et al. 2003, 2005; Baltunis et al. 2007; Weng et al. 2008; 
Wu et al. 2008), especially for wood quality traits (Wu 2018).

Significant genotype-by-environment (G×E) interaction is com-
monly observed among the different deployment zones for growth 
traits in Norway spruce (Kroon et al. 2011; Chen et al. 2014, 2017). 
Literature also supports the importance of predicting nonadditive 
effects including dominance and epistasis in tree breeding (Wu 
et al. 2016) and in clonal forestry programs (Wu 2018). In a pre-
vious study (Chen et  al. 2018), we used 2 full-sib family trials to 
study GS efficiency based on additive effects and different sampling 
strategies. Here, we extend our study to examine nonadditive gen-
etic effects using the genomic matrix and to explore marker-by-
environment interaction (M×E) effects on GS. The aims of the study 
were to 1) estimate and compare the nonadditive genetic variances 
estimated from the average numerator relationship A-matrix (i.e. the 
expected theoretical relationships) and the realized genomic rela-
tionship G-matrix (i.e. the observed relationships); 2) evaluate the 
PA of different M×E models; 3) assess the PA of the models including 
nonadditive effects; 4)  evaluate change in the ranking of breeding 
values when models include the nonadditive and M×E effects; and 
5) assess genetic gain per year when M×E and dominance effects are 
included in the GS and phenotypic selection (PS) models.

Materials and Methods

Sampling of Plant Material and Genotyping
In all, 1,370 individuals were selected from two 28-year-old control-
pollinated (full-sib) progeny trials. The progeny trials consist of the 
same 128 families generated through a partial diallel mating design 
involving 55 parents originating from Northern Sweden. Progenies 
were raised in the nursery for 1 year at Sävar, and the trials were 
established in 1988 by Skogforsk in Vindeln (64.30°N, 19.67°E, alti-
tude: 325 m) and in Hädanberg (63.58°N, 18.19°E, altitude: 240 m).

A completely randomized design without designed pre-blocking 
was used in the Vindeln trial (site 1), which was divided into 44 
post-blocks based on the terrain. Each rectangular block has 60 trees 
(6 ×10) with expected 60 families at a spacing of 1.5 m × 2.0 m. The 
same design was also used in the Hädanberg trial (site 2) with 44 
post-blocks. But for the purpose of demonstration, there was an 

extra block with 47 plots, each plot with 16 trees (4×4) planted in 
site 2. Based on the spatial analysis, in the final model, the 47 plots 
were combined into 2 big post-blocks.

Phenotyping
The tree height was measured in 2003 at the age of 17 years. Solid-
wood quality traits including Pilodyn penetration (Pilodyn) and 
acoustic velocity (velocity) were measured in October 2016. Pilodyn 
penetration, a surrogate for the trait of wood density, was meas-
ured using a Pilodyn 6J Forest (PROCEQ, Zurich, Switzerland) 
with a 2.0 mm diameter pin, without removing the bark. Velocity, 
closely related to microfibril angle (MFA) in Norway spruce (Chen 
et  al. 2015), was determined using a Hitman ST300 (Fiber-gen, 
Christchurch, New Zealand). By combining the Pilodyn and velocity 
data, indirect modulus of elasticity (MOE) was estimated using the 
equation developed in the study by Chen et al. (2015).

Genotyping
Buds and the first-year fresh needles from 1370 control-pollinated pro-
geny trees and their 46 unrelated parents were sampled and genotyped 
using the Qiagen Plant DNA extraction protocol (Qiagen, Hilden, 
Germany) and DNA quantification was undertaken using the Qubit® 
ds DNA Broad Range Assay Kit (Oregon, USA). The 46 parents were 
sampled in a grafted archive at Skogforsk, Sävar (63.89°N, 20.54°E) 
and in a grafted seed orchard at Hjssjö (63.93°N, 20.15°E). Probe 
design and evaluation are described by Vidalis et al. (2018). Sequence 
capture was performed using the 40 018 probes previously designed 
and evaluated for the material (Vidalis et al. 2018) and samples were 
sequenced to an average depth of 15x on an Illumina HiSeq 2500 
platform. The details of SNPs calling, filtering, quality control, and 
imputation for these data can be found in Chen et al. (2018). Finally, 
116,765 SNPs were kept for downstream analysis.

Variance Component and Heritability Models
The variance components and breeding values (BVs) for the geno-
types of each trait in the 2 trials were estimated by using the best 
linear unbiased prediction (BLUP) method in 3 univariate models 
that included either additive (A), both additive and dominance (AD) 
or additive, dominance, and epistasis genetic effects (ADE) as men-
tioned below. In practice, pedigree-based models (ABLUP) had only 
2 models because it is not possible to estimate the epistatic effect in 
full-sib progeny trials without replicates for each genotype.

Pedigree-Based and Genomic-Based Models
Five models were used to partition the genetic variance into additive, 
dominance, and epistatic variances.
For the pedigree-based model with additive effect only (ABLUP-A):

y = Xβ +Wb+ Za+ ε (1)

For the full pedigree-based model with both additive and dominance 
effects (ABLUP-AD):

y = Xβ +Wb+ Za+ Z1d+ ε (2)

For the genomic-based model with additive effect only (GBLUP-A):

y = Xβ + f i+Wb+ Z2a1 + ε (3)
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For the genomic-based model with both additive and dominance ef-
fects (GBLUP-AD):

y = Xβ + f i+Wb+ Z2a1 + Z3d1 + ε (4)

For the full genomic-based model with additive, dominance, and epi-
static effects (GBLUP-ADE):

y = Xβ + f i+Wb+ Z2a1 + Z3d1 + Z4eaa + Z5ead + Z6edd + ε
 (5)
where y is the vector of phenotypic observations of a single trait; β 
is the vector of fixed effects, including a grand mean and site effects, 
i is the inbreeding depression parameter per unit of inbreeding, b is 
the vector of random post-block within site effects, a and a1 are the 
vectors of random additive effects in ABLUP and GBLUP models, 
respectively, d and d1are the vectors of random dominance effects in 
equations [2], [4], and [5], respectively, eaa, ead, and edd are the vec-
tors of the random additive-by-additive epistatic effects, additive-by-
dominance epistatic effects, and dominance-by-dominance epistatic 
effects in equation (5), ε is the random residual effect. X, W, Z, Z1, 
Z2, Z3, Z4, Z1, and Z6 are the incidence matrices for β, b, a, d, a1, d1,  
eaa, ead, and edd, respectively. f is a vector of genomic inbreeding co-
efficients based on the proportion of homozygous SNPs. Although 
Xiang et al. (2016) and Vitezica et al. (2013) proved that including 
genomic inbreeding as a covariate is necessary to obtain correct es-
timates of dominance and epistatic variances, the inbreeding depres-
sion term (fi) in equation (3–5) were excluded in the final model 
because it is not significant for all the traits. The random post-block 
effects (b) were assumed to follow

b ∼ N

Ç
0,

ñ
σ2
b10

0 σ2
b2

ô
⊗ I

å
,

where I is the identity matrix, σ2
b1 and σ2

b1 are the variance compo-
nents of random post-block in site 1 and site 2, respectively, and ⊗ is 
the Kronecker product operator. The random additive effects (a) in 
equations (1) and (2) were assumed to follow a ∼ N (0,VCOVa ⊗ A),  
where A is the pedigree-based additive genetic relationship matrix 
and VCOVa is the general case of additive variance and covariance 
structure in Table 1. The random dominance effects (d) in equa-
tion [2] were assumed to follow d ∼ N (0,VCOVd ⊗D), where D 
is the pedigree-based dominance relationship matrix and VCOVd 

is the general case of dominance variance and covariance struc-
ture. The a1 in equations (3–5) is the vector of random additive ef-
fects in genomic-based models, following a1 ∼ N(0,VCOVa ⊗Ga), 
where Ga is the genomic-based additive genetic relationship matrix, 
VCOVa is the general case of additive variance and covariance 
structure in Table 1. The d1 in equations (4) and (5) is the vector 
of random dominance effects following d1 ∼ N(0, VCOVd ⊗Gd),  
where Gd is the genomic-based dominance genetic relationship 
matrix, VCOVd is the general case of dominance variance and co-
variance structure in Table 1. The eaa, ead, and edd are the vectors 
of the random additive-by-additive epistatic effects, additive-by-
dominance epistatic effects, and dominance-by-dominance epi-
static effects following eaa ∼ N(0,Gaaσ

2
aa), ead ∼ N(0,Gadσ

2
ad),  

and edd ∼ N(0,Gddσ
2
dd), respectively. Gaa, Gad, and Gdd  are the 

genomic-based additive-by-additive, additive-by-dominance, and 
dominance-by-dominance epistatic relationship matrices, respect-
ively. The residual e was assumed to follow 

ε ∼ N

Ç
0,

ñ
In1σ2

e1 0
0 In2σ2

e2

ôå
,

where σ2
e1 and σ2

e2 are the residual variances for site 1 and site 2, 
respectively, In1 and In2 are identity matrices, and n1 and n2 are the 
number of individuals at each site. In theory, all variance–covariance 
structures in Table 1 could be used for additive, dominance, and epi-
static effects in equations (1)–(5).

The pedigree-based additive (A) and dominance (D) rela-
tionship matrices were constructed based on information from 
pedigrees. The diagonal elements (i) of the A were calculated as 
Aii = 1+ fi = 1+ Agh/2, where g  and h are the ith individual’s 
parents, while the off-diagonal element is the relationship between 
individuals ith and jth calculated as Aij = Aji = (Ajg + Ajh)/2 
(Mrode and Thompson 2005). In the D matrix, the diagnonal 
elements were all one (Dii = 1), while the off-diagonal elem-
ents between the individual ith and jth can be calculated as 
Dij = (AgkAhl + AglAhk)/4, where g and h are the parents of the 
ith individual and k and l are the parents of the jth individual. 
A relationship matrix was produced using ASReml 4.1 (Gilmour 
et al. 2015) or ASReml-R package (Butler et al. 2009). A D rela-
tionship matrix was produced using kin function in the synbreed 
package in R (Wimmer et al. 2012).

The genomic-based additive (Ga) and dominance (Gd) relation-
ship matrices were constructed based on genome-wide exome cap-
ture data as described by VanRaden (2008) for Ga and by Vitezica 
et al. (2013) for Gd:

Ga =
ZZ′

∑m
j=1 2piqi

Gd =
WW ′

∑m
i=1 (2piqi)

2

where m is the total number of SNPs; the elements of Z are equal 
to −2pi, qi − pi, and 2qi  for aa, Aa, and AA genotypes, respectively, 
with pi and qibeing the allele frequency of A and a alleles at marker 
i in the population. For the dominance matrix Gd, aa, Aa, and AA 
genotypes in W  were coded as −2p2i , 2piqi, and −2q2i , respectively. 
Based on the paper of Vitezica et al. (2013), the method guarantees 

Table 1. Six variance and covariance structures examined for the 
additive, dominance, and epistatic effects in 2 pedigree-based 
models and 3 genomic-based models.

Structure No. of  
parameters

Description 

IDEN 1 Identity
DIAG n Diagonal 
CS 2 Compound symmetry
CS+DIAG 1 + n Compound symmetry with  

heterogeneous variance 
US n(n + 1)/2 Unstructured 
FAMK 1 + (k + 1)n Factor analytic with the main  

marker/genetic term and k factors

n is the number of sites. k is the number of factors.
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the absence of confounding between Ga and Gd and could be directly 
compared to the pedigree-based A and D.

The relationship matrices due to the first-order epistatic inter-
actions were computed using the Hadamard product (cell by cell 
multiplication, denoted #) and trace (tr) (Vitezica et  al. 2013). In 
the pedigree-based model, the additive-by-additive terms are cal-
culated as Paa = [(A#A) / (tr(A#A)/n)], additive-by-dominance 
terms as Pad = [(A#D) / (tr(A#D)/n)], and dominance-by-
dominance terms as Pdd = [(D#D) / (tr(D#D)/n)]. In genomic-
based relationship matrix models: additive-by-additive terms 
are Gaa = [(Ga#Ga) / (tr(Ga#Ga)/n)], additive-by-dominance 
terms are Gad = [(Ga#Gd) / (tr(Ga#Gd)/n)], and dominance-by-
dominance terms are Gdd = [(Gd#Gd) / (tr(Ga#Gd)/n)].

Different Variance–Covariance Structures
To partition, predict, and validate G×E interactions in additive (a), 
dominance (d), epistatic effects (eaa, ead, and edd), 6 types of the dif-
ferent variance and covariance structures (Table 1) including: 1) iden-
tity (IDEN), 2)  diagonal (DIAG), 3)  compound symmetry (CS), 
4)  compound symmetry with heterogeneous variance (CS+DIAG), 
5) unstructured (US), and 6) factor analytic with the main marker/
genetic term and k factors (FAMK), could be fitted for any of the 
additive, dominance, and epistasis effects in equation (1)–(5). The 
CS+DIAG, US, and FAMK structures are the same in any two-sites 
multi-environment trial (MET) model (Oakey et  al. 2016), except 
that the models may have a slightly convergent difference. When 
MET models with more than 2 sites were used, the models with 
FAMK structure may be better than those with CS+DIAG and US 
(Oakey et al. 2016). We therefore presented only the FAMK model 
in the latter. The additive variance–covariance structures of IDEN, 
DIAG, CS, and FAMK are, , respectively, 

ñ
σ2
a 0
0 σ2

a

ô
,

ñ
σ2
a1 0
0 σ2

a2

ô
,

ñ
σ2
a σa12

σa21 σ2
a

ô
, and

ñ
σ2
a1 σa12

σa12 σ2
a2

ô

The dominance variance structures of IDEN, DIAG, CS, and FAMK 
are , respectively,

ñ
σ2
d 0
0 σ2

d

ô
,

ñ
σ2
d1 0
0 σ2

d2

ô
,

ñ
σ2
d σd12

σd21 σ2
d

ô
, and

ñ
σ2
d1 σd12

σd12 σ2
d2

ô

In this study, the result of epistasis effects is shown only with the 
variance and covariance structure IDEN because of the small 
amount of the total genetic variance. σ2

a and σ2
d are the additive and 

dominance variances if homogenous variance structures were used. 
σ2
a1, σ

2
a2, and σa12 are the additive variances for site 1, site 2 and the 

additive covariance between sites 1 and 2, respectively. σ2
d1, σ

2
d2, and 

σd12 are dominance variances for site 1, site 2 and dominance covari-
ance between sites 1 and 2.

Heritability
Under the above models, the narrow-sense heritability can 
be estimated as h2 = σ2

a/σ
2
p, the dominance to total variance 

ratio as d2 = σ2
d/σ

2
p, the epistatic to the total variance ratio as 

i2 = σ2
i /σ

2
p and the broad-sense heritability as H2 = σ2

g/σ
2
p, where 

σ2
g = σ2

a + σ2
d + σ2

aa + σ2
ad + σ2

dd and σ2
i = σ2

aa + σ2
ad + σ2

dd. Broad-
sense heritability for the ABLUP-AD model was estimated as 
H2 = (σ2

a + σ2
d)/σ

2
p as epistatic effects could not be estimated.

To partition and Predict Gxe Interaction and Dominance in 
Cross-Validation
To compare the predictive ability of models with and without a G×E 
interaction term in additive effects, a single-site model without speci-
fying the G×E interaction (i.e. ABLUP-AD and GBLUP-AD with DIAG 
structure for additive + IDEN for dominance) and a MET model (i.e. 
ABLUP-AD and GBLUP-AD with CS/FAMK for additive + IDEN for 
dominance) were used. Based on the model comparison, CS were used 
for additive effects of Pilodyn, velocity, and MOE and FAMK were 
used for additive effects of tree height. In the MET models, additive 
effect a/a1 in all equations [1–5] could be described as a = m+me,  
where m is the additive main marker/genetic effect (M), and me is 
the additive main marker-by-environment effect. Therefore, with CS 
and FAMK structures, the main marker effect (M), M + marker-by-
environment interaction effect (A), and A + dominance effect (AD) 
from the GBLUP-AD and ABLUP-AD models could be estimated. In 
the CS model, m is the main term for markers and me is an interaction 
term for the markers and trials. All trials have the same marker vari-
ance and all pairs of trials have the same marker covariance, so that 
the var(a) = var(m) + var(me). A FAMK model is equivalent to a 
factor analytic model with (K+1) factors, where the first set of load-
ings are constrained to equal. Var(a) = var(m) + ΛΛT +Ψ, where Λ 
is a matrix of loadings and Ψ is a diagonal matrix with diagonal elem-
ents referred to as specific variances. In two-trial analyses, K=0, then 
var(a) = var(m) + Ψ, which is equivalent to the CS+DIAG model 
(Table 1 and Oakey et al. (2016))

Model Comparison
To compare the relative quality of the goodness-of-fit of the different 
models, the Akaike Information Criterion (AIC) and the fitted line 
plot (graph of predicted ŷ vs. adjusted y values) were used for the 
linear mixed-effects models (LMM) for all traits, while the standard 
error of the predictions (SEPs) of the trait BVs was used to assess the 
precision of the BVs.

Cross-validation
A 10-fold cross-validation scenario with 10 replications was used to 
assess accuracy and prediction ability (PA).

Expected Performance of Genomic Selection
The expected performance of GS compared to standard phenotypic 
selection (PS) was evaluated only for the GBLUP-AD model by cal-
culating the response to genomic selection (RGS) as a percentage of 
the population average as follows:

RGS ( % ) =
EGVGs − EGVo

EGVo
× 100

where EGVGs  is the average of expected genetic values estimated 
from the ABLUP-AD model (equation [2]) for the selected portion of 
the population based on 1) main marker effects (M), 2) M + marker-
by-environment interaction effects (A), and 3) A + dominance effects 
(AD) for site 1/site 2 estimated from GBLUP-AD model (equation 
[4]), respectively, and EGVo  is the population average (Resende et al. 
2017). Response to phenotypic selection (RPS) as a percentage of the 
population average is as follows:

RPS (%) =
EGVAs − EGVo

EGVo
× 100
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where EGVAs  is the average of expected genetic values estimated 
from the ABLUP-AD model (equation [2]) for the selected portion 
of the population based on AD effects from the ABLUP-AD model. 
For different traits, ABLUP-AD and GBLUP-AD models with the 
best-fitting variance–covariance structures for additive and domin-
ance variances were used (Table 2), except for Pilodyn data with CS 
for additive effects in order to permit comparison with ABLUP-AD 
results. The main advantage of using GS is that it permits a shorter 
breeding cycle. Thus, here we used RGS (%)/year and RPS (%)/year 
to compare the expected performances of GS and PS. In the Swedish 
Norway spruce breeding program, the traditional breeding cycle is 
at least 25 years long. If GS could be used as at a very early selection 
stage, the breeding cycle could be reduced to ca. 12.5 years (Chen 
et al. 2018).

Results

Genetic Variance Components and Heritability 
Estimates
The 6 variance and covariance structures examined for the addi-
tive, dominance, and epistatic effects are presented in Table 1. The 
log-likelihood, Akaike Information Criterion (AIC), and Bayesian 
Information Criterion (BIC) for the 5 models (ABLUP-A, ABLUP-AD, 
GBLUP-A, GBLUP-AD, and GBLUP-ADE) under various vari-
ance structures are shown in the Supplementary Material, Table 
S1. The models with the best fitted variance–covariance structures 
under ABLUP and GBLUP for additive variance only, additive plus 
dominance variance or additive plus dominance and epistasis (e.g. 
ABLUP-A, ABLUP-AD, GBLUP-A, GBLUP-AD, and GBLUP-ADE) 
are listed in Table 2. These were used to estimate the variance com-
ponents (Table 3–5, Figure 1–2, except for Pilodyn with CS for 

additive effects and IDEN for dominance effects from GBLUP-A, 
GBLUP-AD, and GBLUP-ADE models). These models were included 
because we wanted to use the same variance–covariance structure to 
compare with the results from ABLUP-A and ABLUP-AD models for 
Pilodyn data (Table 2).

M×E effects for the additive or nonadditive effects were con-
sidered significant if the AIC values in MET analyses (e.g. under CS 
and FAMK variance structures) were smaller than the corresponding 
AIC values in single site (ST) analyses (e.g. under IDEN or DIAG 
variance structure only) for the same trait or if the Log-likelihood 
Ratio test (LRT) was significant. All models with CS for additive gen-
etic effects were found performing best, except for the model with 
FAMK for tree height additive genetic effects (Table 2). Based on this 
criterion, all 4 traits showed significant additive M×E effects, except 
for the Pilodyn trait under GBLUP models. However, additive-by-
environment variance in site 1 from ABLUP-AD with FAMK was not 
significant (Table 3, 606.7) when assessed on the AIC. For the dom-
inance effect, however, only the tree height with IDEN and velocity 
with DIAG structure had significant effects: therefore, there was no 
significant M×E for a dominance effect of any trait. For epistasis, 
there was no significant effect on any trait.

Estimates of variance components, their standard errors (SE), 
and the variance proportion of each site for tree height and velocity 
from the 5 genetic models fitted (ABLUP-A, ABLUP-AD, GBLUP-A, 
GBLUP-AD, and GBLUP-ADE) are shown in Table 3 and the re-
sults of Pilodyn and MOE are shown in Table S2. Block variance 
components (σ2

b) for each site were almost consistent across the 5 
models for all traits (Table 3 and Table S2). For example, σ2

b for 
tree height accounted for 10.4%−12.9% and 14.9%−15.6% for 
sites 1 and 2, respectively. For tree height, the main difference be-
tween the ABLUP-A and GBLUP-A models was the substantial 

Table 2. Summary of 5 models (2 ABLUP and 3 GBLUP models) with various variance and covariance structures fitted to the full data set 
for tree height, Pilodyn, velocity, and MOE

Trait Model Variance structure Log-likelihood AIC No.

 Additive Dominance Epistasis

Height ABLUP-A FAMK   −6873.47 13760.95 7
ABLUP-AD FAMK DIAG  −6868.92 13755.85 9
GBLUP-A FAMK   −6874.05 13762.10 7

GBLUP-AD FAMK IDEN  −6870.21 13756.42 8
 GBLUP-ADE FAMK IDEN IDEN-G3* −6870.21 13762.42 11
Pilodyn ABLUP-A CS   −1727.77 3467.55 6
 ABLUP-AD CS IDEN  −1727.77 3469.55 7
 GBLUP-A IDEN   −1737.44 3484.88 5
 GBLUP-AD IDEN DIAG  −1735.87 3485.74 7
 GBLUP-ADE IDEN IDEN IDEN-G3* −1736.77 3493.54 10
Velocity ABLUP-A CS   1192.66 −2373.33 6
 ABLUP-AD CS IDEN  1194.59 −2375.19 7
 GBLUP-A CS   1183.37 −2354.73 6
 GBLUP-AD CS IDEN  1184.63 −2355.26 7
 GBLUP-ADE CS IDEN IDEN-G3* 1184.66 −2349.32 10
MOE ABLUP-A CS   −2347.46 4706.92 6
 ABLUP-AD CS IDEN  −2347.46 4708.92 7
 GBLUP-A CS   −2357.84 4727.67 6
 GBLUP-AD CS IDEN  −2357.84 4729.67 7
 GBLUP-ADE CS IDEN IDEN-G3* −2357.84 4735.67 10

Variance and covariance structures: IDEN, identity; DIAG, diagonal; CS, compound symmetry; FAMK, factor analytic with the main marker/genetic term and 
k factors. * G3 represents GBLUP-ADE model including 3 first order epistatic effects (the random additive-by-additive epistatic effects, additive-by-dominance 
epistatic effects, and dominance-by-dominance epistatic effects). No. is the number of variance parameters. Bold means the best model in GBLUP or ABLUP.
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increase of the additive variance (σ2
a) (Table 3), in contrast to re-

sults for wood quality traits. For example, tree height additive vari-
ances σ2

as estimated from GBLUP-A were 130.6% and 106.7% of 
the ABLUP-A σ2

as at site 1 and site 2, respectively. However, Pilodyn 
and velocity additive variances σ2

as estimated from GBLUP-A aver-
aged 77.8% and 83.6% of the ABLUP-A σ2

as for both sites. The tree 
heights σ2

as estimated from GBLUP-AD were also larger than those 
from ABLUP-AD for both sites. In contrast, wood quality traits σ2

a

s estimated from GBLUP-AD were also smaller than those from 
ABLUP-AD for both sites. For tree height and velocity, the main dif-
ferences between ABLUP-A and ABLUP-AD and between GBLUP-A 
and GBLUP-AD were the substantial decrease in σ2

a(Table 3). Pilodyn 
and MOE had the same σ2

as for the ABLUP-A and ABLUP-AD and 
also for GBLUP-A and GBLUP-AD because dominance variances (σ2

d

s) were zero for both traits (Table S3). For example, tree height σ2
as 

estimated from ABLUP-AD were 87.8% and 68.3% of the σ2
as esti-

mated from ABLUP-A at site 1 and site 2, respectively.
In the ABLUP-AD model, tree height and velocity dominances 

showed significant effects based on the AIC (Tables 2 and 3). For 
example, tree height dominance effects accounted for 8.5% and 
23.1% of the phenotypic variation for site 1 and site 2, respectively. 
In the GBLUP-AD model, tree height dominance effects accounted 
for 18.1% and 9.8% of the phenotypic variation for site 1 and site 
2, respectively. However, based on the AIC, the dominance variance 
of 572.2 at site 1 was not significant. In the GBLUP-ADE models, 
first-order epistatic effects were all zero for all the 4 traits, except for 
velocity with nonsignificant additive × additive effects (4.2%) and 
dominance × dominance effects (0.7%) (Table 3).

Estimates of tree height and velocity narrow-sense heritability 
from ABLUP-A or GBLUP-A models were larger than those from 
ABLUP-AD or GBLUP-AD. For example, tree height narrow-sense 
heritability of 0.12 from ABLUP-A was larger than 0.10 from 

ABLUP-AD at site 1.  Broad-sense heritability estimates were sub-
stantially larger than narrow-sense heritability estimates from both 
ABLUP-AD and GBLUP-AD at both sites for tree height and vel-
ocity. For example, tree height broad-sense heritability estimates 
were 253.8% and 166.7% of the narrow-sense heritability estimates 
from the GBLUP-AD model at site 1 and site 2, respectively. For 
tree height, Pilodyn and MOE, GBLUP-ADE produced exactly the 
same results as GBLUP-AD (Table 3 and Supplementary Material, 
Table S2) because of the lack of epistasis. In this study, only vel-
ocity showed nonsignificant and nonzero epistatic effects. Moreover, 
broad-sense heritability estimates from the GBLUP-ADE models 
were slightly higher than those from GBLUP-AD (0.43 vs. 0.41 for 
site 1 and 0.42 vs. 0.40 for site 2).

Comparison of Models
We used 2 methods for model comparison, namely AIC 
(Supplementary Material, Table S1 and Table 2) and the fitted line 
plots (represented by the graph of predicted values ŷ vs. observed 
values y) (Figure 1). The fitted line plot comparisons based on R2 re-
flected the goodness-of-fit. For tree height and velocity, R2 increased 
from GBLUP-A to GBLUP-AD (Tree height: 0.38 vs. 0.56 in site 1 
and 0.56 vs 0.79 in site 2; velocity: 0.80 vs. 0.88 in site 1 and 0.78 vs. 
0.87 in site 2) and from ABLUP-A to ABLUP-AD for both sites (Tree 
height: 0.44 vs. 0.74 in site 1 and 0.58 vs 0.69 in site 2; velocity: 0.73 
vs. 0.82 in site 1 and 0.73 vs. 0.82 in site 2). For Pilodyn and MOE, 
R2 was the same from GBLUP-A to GBLUP-AD and from ABLUP-A 
to ABLUP-AD, which was consistent with the zero estimates of dom-
inance variances for both traits (Supplementary Material, Table S2). 
The difference of R2 for tree heights between site 1 and site 2 was 
much larger than that of wood quality traits for all models.

A comparison of BVs’ precision using the standard errors for 
the predictions (SEPs) between different models (GBLUP-AD vs. 
GBLUP-A, GBLUP-AD vs. ABLUP-AD, GBLUP-AD vs. ABLUP-A, 
GBLUP-A vs. ABLUP-AD, GBLUP-A vs. ABLUP-A, and ABLUP-AD 
vs. ABLUP-A) is shown in Supplementary Material, Figure S1 for 
all traits. For tree height, the SEPs of 21-year-old Norway spruce 
breeding values between ABLUP-AD and ABLUP-A showed similar 
values. GBLUP-AD for tree height had much lower SEPs than that 
of GBLUP-A, but not for wood quality traits. GBLUP-AD for all 
traits had much lower SEPs values than that from ABLUP-AD for 
most SEPs values. ABLUP-AD for all traits had almost the same SEPs 
as ABLUP-A, even for tree height. For all traits, GBLUP-AD and 
GBLUP-A had more and lower SEPs than those from ABLUP-AD 
and ABLUP-A, except the GBLUP-A for tree height had more and 
larger SEPs than those from ABLUP-A and ABLUP-AD.

Cross-Validation of the Models
A random selection of 10% of the population was used as a valid-
ation set. To test the ranking difference of estimated breeding values 
between 5 models, Spearman’s rank correlations were used (Table 
4). Spearman’s rank correlations between breeding values estimated 
by pedigree-based models (ABLUP-A and ABLUP-AD) and between 
breeding values estimated by genomic-based models (GBLUP-A 
and GBLUP-AD) in cross-validation were higher than between 
pedigree-based and genomic-based models (Table 4). For example, 
Spearman’s rank correlations between breeding values estimated 
by pedigree-based and genomic-based models for tree height were 
0.884. Spearman’s rank correlations between breeding values esti-
mated by within pedigree-based models or genomic-based models 
were almost the same. For example, Spearman’s rank correlation 

Table 4. Coefficients of Spearman’s rank correlations between 
breeding values estimated by ABLUP-A, ABLUP-AD, GBLUP-A, and 
GBLUP-AD in cross-validation for tree height, Pilodyn, velocity, 
and MOE

Trait ABLUP-A ABLUP-AD GBLUP-A GBLUP-AD

Height     
 ABLUP-A  0.997 0.877 0.876
 ABLUP_AD 0.998  0.873 0.873
 GBLUP-A 0.884 0.878  0.995
 GBLUP-AD 0.879 0.875 1  
Pilodyn     
 ABLUP_A  1 0.818 0.819
 ABLUP-AD 1  0.818 0.819
 GBLUP-A 0.819 0.819  1
 GBLUP-AD 0.820 0.820 1  
Velocity     
 ABLUP_A  0.998 0.868 0.869
 ABLUP-AD 0.998  0.868 0.868
 GBLUP-A 0.869 0.869 1 0.999
 GBLUP-AD 0.869 0.869 0.999 1
MOE     
 ABLUP_A  1 0.837 0.837
 ABLUP-AD 1  0.837 0.837
 GBLUP-A 0.837 0.837  1
 GBLUP-AD 0.837 0.837 1  

ABLUP-A, ABLUP-AD, GBLUP-A, and GBLUP-AD with the best variance 
structure are based on AIC in Table 2.
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ŷ)

Site1:R2= 0.75
Site2:R2= 0.81

Site1:R2= 0.75
Site2:R2= 0.81

Site1:R2= 0.64
Site2:R2= 0.75

Site1:R2= 0.64
Site2:R2= 0.75

MOE: ABLUP−A MOE: ABLUP−AD MOE: GBLUP−A MOE: GBLUP−AD

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
10

20

30

40

Phenotypic value (y)

P
re

di
ct

ed
 v

al
ue

 (
ŷ)
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Figure 1. Model comparisons using the fitted line plots (represented by the graph of predicted values ŷ  vs observed values y) for tree height, Pilodyn, velocity, 
and MOE.
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Figure 2. Response to genomic selection (RGS), including three different selection scenarios based on 1) only main marker effects (M), 2) main marker effects 
plus genotype-by-environment interaction effects (A), and 3) A + dominance (AD) from GBLUP-AD for A) tree height, B) Pilodyn, C) velocity, and D) MOE, 
expressed as a percentage gain of the average population mean per year, compared with response to phenotypic selection (RPS) also including dominance 
effects (ABLUP-AD) calculated for different proportions of individuals selected by GS.
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between breeding values estimated by ABLUP-A and ABLUP-AD for 
tree height were 1.00.

The cross-validation focused on comparing the predictive ability 
(PA) between GBLUP-AD and ABLUP-AD models and between 
MET and single-trial (ST) models for all traits; results are shown 
in Table 5. We examined only the models with either CS or FAMK 
for additive effects and either CS or IDEN for dominance effects 
in the MET analysis. For a single trial (ST) analysis, the models 
with DIAG for additive and IDEN or DIAG for dominance effects 
based on Table 2 were used. Using the same site data as a training 
set and a validation set showed higher PA. Tree height PA from the 
ST analysis at site 2 was higher than that at site 1 for additive ef-
fects (A) from GBLUP-AD models (comparisons: 1 and 3, 0.25 vs. 
0.24, Table 5) and ABLUP-AD models (comparisons: 1 and 3, 0.26 
vs. 0.21, Table 5). The models with additive and dominance effects 
(AD) showed results similar to those of the models with an additive 
effect only (A) for tree height. If 1 site was used to build the model 
and predict the breeding values (A) and genotype values (AD) for 
the second site, then predicting for site 2 using the models from site 
1 had a higher PA than the opposite for both GBLUP-AD (compari-
sons: 2 and 4, 0.09 vs. 0.07, Table 5) and ABLUP-AD (compari-
sons: 2 and 4, 0.13 vs. 0.09, Table 5). Ly et al. (2013) suggested that 
G×E, which cannot be estimated for a single trial, reduced the ability 
to make predictions. Our results proved that the site 2 tree height 
might have a higher environmental component than that observed in 
site 1, making the prediction of the BVs (additive) or genetic values 
(GVs: additive and dominance) less accurate. PA of Pilodyn did not 
change, or only slightly changed, using site 1 model for site 2 and 
vice versa. This happened because there is almost no G×E in Pilodyn 
measurements.

Generally, PA was higher in the MET analysis than that in ST 
analysis for all traits, except for tree height (Table 5). For Pilodyn, 
velocity, and MOE, PAs in MET analyses based on A and AD effects 
were higher than those from single site (ST) analyses (comparisons 1 
and 5, comparisons 2 and 6, Table 5). For example, PAs for Pilodyn 
based on A from GBLUP-AD showed an increase of 15.4% (com-
parisons 1 and 5, 0.26 vs. 0.30, Table 5) and 39.1% (comparisons 3 
and 6, 0.23 vs. 0.32, Table 5) in sites 1 and 2, respectively.

Finally, we studied the additive M×E effects on the genomic-
based estimated breeding values (GEBVs). There was a reduction in 
tree height PA if M×E was not included in calculating the GEBVs 
for site 2 (comparison 6: 0.25 vs. 0.22, Table 5), and for site 1 (com-
parison 5: 0.23 vs. 0.22, Table 5). Including tree height dominance 
in models in site 2, PA increased 8% from 0.25 to 0.27 and 20.8% 
from 0.24 to 0.29 for GBLUP-AD and ABLUP-AD models, respect-
ively (Table 5). Including tree height dominance in models in site 1, 
PA increased 13.0% from 0.23 to 0.26 and 5.3% from 0.19 to 0.20 
for GBLUP-AD and ABLUP-AD models, respectively. For Pilodyn, 
velocity, and MOE, PA including dominance in MET analysis was 
not increased, even for velocity with a significant dominance vari-
ance based on AIC.

Predictive ability (PA) for all traits from GBLUP-ADE is not 
shown in Table 5 because their variance components were zero, ex-
cept for velocity. PA for velocity from the GBLUP-ADE model was 
the same as the result from GBLUP-AD.

Expected Response to Genomic Selection (GS)
We compared the generation time of GS (ca. 12.5 years) with the 
generation time of the phenotypic selection (ca. 25 years), as in the 
traditional breeding program in Northern Sweden (Chen et al. 2018). 

A conservative response of genomic selection per year (RGS%/year) 
was calculated to compare with the response of phenotypic selec-
tion per year (RPS%/year) for variable proportions of individuals 
selected by GS. We compared RGS per year with RPS per year for all 
traits for variable proportions of individuals selected by GS (Figure 
2). The results showed that RGS per year provided much larger 
values than RPS per year for 3 genomic selection scenarios, including 
selection based on 1) main marker effects (M), 2) M plus M×E ef-
fects (A), and 3) A plus dominance effects (AD) from GBLUP-AD 
model for both sites (Figure 2). However, RGS per year for different 
scenarios in both sites showed slight differences only for tree height, 
not for wood quality traits. RGS per year for tree height based on 
A and AD was substantially higher than that based on M in site 2 
(Figure 2). However, in site 1, RGS per year for tree height based on 
A and AD was slightly better than that based on M and showed only 
at a low selection proportion. In the traditional Swedish breeding 
program, 50 individuals were selected for each breeding popula-
tion. In Supplementary Material, Figure S2, the top 50 individuals 
selected without considering relationships for selection based on M, 
A, and AD for all traits were scaled to the total expected genetic 
value (EGV) ranking of all individuals in sites 1 and 2. RGS per year 
based on M, A, and AD for GBLUP-AD, and RPS per year based on 
an AD for ABLUP-AD, are shown in Supplementary Material, Table 
S3. For tree height, RGS per year based on AD in site 2 was 0.54 
(%)/year, which was substantially higher than 0.45 and 0.46 (%)/
year based on A and M, respectively. RGS per year based on AD in 
site 1 was 0.43 (%)/year, which was slightly higher than 0.41 and 
0.41 (%)/year based on A  and M, respectively. For wood quality 
traits, RGS per year based on M, A, and AD were almost the same 
(Figure 2), but they slightly increased when such effects were sig-
nificant (Supplementary Material, Table S3). If the top 50 velocity 
individuals based on genomic-based expected genetic values were 
selected, RGS per year from GBLUP-AD were 78.9%, 86.9%, and 
91.3% in site 1, and 80.8%, 82.9%, and 88.2% in site 2, higher than 
RPS (%)/year based on M, A, and AD effects, respectively. RGS per 
year from GBLUP-AD for tree height, Pilodyn, and MOE were up to 
68.9%, 91.3%, and 92.6%, respectively.

Discussion

Genetic Variance Components and Heritability 
Estimates
In the traditional Norway spruce breeding program, estimates of 
broad-sense heritability (H2) have previously been made in tests of 
clones selected from commercial nurseries and with an unknown 
family structure. For example, tree height H2 estimates vary from 
0.12 to 0.40 for Norway spruce (Bentzer et al. 1989; Karlsson and 
Högberg 1998), but it is not possible to compare with narrow-
sense heritability (h2), which requires a family structure. Using 
a traditional pedigree-based model, epistasis estimation, on the 
other hand, requires full-sib family structure plus the replication 
of genotypes in clonal trials. Existing high-throughput single nu-
cleotide polymorphism (SNP) genotyping technology, such as SNP 
arrays, re-sequencing, or genotyping-by-sequencing (GBS), allows 
genotyping larger numbers of SNPs, and therefore is used to study 
dominance and epistasis in populations without pedigree delineation 
of full-sib family structure in both animals (Sun et al. 2013; Aliloo 
et al. 2016) and plants (Gamal El-Dien et al. 2018).

In our study, tree height H2 estimated from ABLUP-AD (0.20–
0.40) was higher than h2 estimated from pedigree-based ABLUP-A 
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and ABLUP-AD (0.10–0.19) (Table 3). In a previous study, it was 
however observed that the average h2 of 0.29 (0.02–1.09) based on 
170 field tests with seedlings was higher than the average H2 of 0.18 
(0.04–0.50) based on 123 field tests with clonal material (Kroon et al. 
2011), indicating that a valid comparison of relative genetic control 
must use the datasets that come from the same trial with comparable 
pedigree (Wu 2018). The ratio of tree height h2/H2 varies from 0.35–
0.50 (σ2

D/σ
2
A = 2.10–0.94) and from 0.39–0.60 (σ2

D/σ
2
A = 1.60–0.67

) in ABLUP-AD and GBLUP-AD models, respectively. These figures 
are lower than 0.60–0.84 (σ2

D/σ
2
A = 0.67–0.19) from 3 Norway 

spruce progeny trials in the previous study (Kroon et al. 2011). The 
usual range of the ratio h2/H2 has been reported to vary from 0.18 
to 0.84 (σ2

D/σ
2
A = 4.56–0.19) for tree traits (Wu 2018). It is also 

considered that significant dominance could be utilized in advanced 
Norway spruce breeding and deployment programs.

Our results show that the inclusion of dominance effects reduces 
estimates of h2 from GBLUP-AD and ABLUP-AD when dominance 
is not zero. For example, tree height h2 estimates decrease by 13%–
26%, less than the substantial decrease (50%–70%) reported in hy-
brid Eucalyptus by Tan et al. (2018). The situation is expected from a 
theoretical standpoint as a substantial proportion of the nonadditive 
variance can be inseparable from additive variance (Falconer and 
Mackay 1996), that has been encountered in the several empirical 
studies (Gamal El-Dien et al. 2016, 2018; Tan et al. 2018).

Comparison and Cross-Validation of Models
AIC values for the GBLUP models were not significantly higher than 
those based on pedigree relationship matrices, which is consistent 
with the results of Gamal El-Dien et al. (2016) in white spruce, but is 
in contrast with the results from hybrid Eucalyptus (Tan et al. 2018). 
In the latter, the significant improvement from GBLUP models based 
on AIC may result from a considerable number of uncorrected pedi-
grees including a labelling mistake. In our study, the SEPs of breeding 
values in GBLUP-A models for tree height were higher than that in 
pedigree-based ABLUP-A model (In Supplementary Material, Figure 
S1), which is inconsistent with the results of Gamal El-Dien et al. 
(2018). This seems reasonable in our study because the additive vari-
ance increases from ABLUP models to GBLUP models (Table 3). For 
wood quality traits, the SEPs of breeding values in GBLUP-A models 
are smaller than those in the pedigree-based ABLUP-A model. For all 
traits, most SEPs of breeding values in GBLUP-AD model are smaller 
than in GBLUP-A, ABLUP-AD, and ABLUP-A models, which indi-
cates that GBLUP-AD could produce more accurate breeding values, 
even though the Spearman’s rank correlations between breeding 
values estimated by GBLUP-AD and GBLUP-A are similar.

M×E for Genomic Selection in Multi-Environment 
Trials (METs)
Gamal EL-Dien et  al. (2018) showed that interior spruce (Picea 
glauca x engelmannii) had substantially significant additive M×E 
and nonsignificant small dominance M×E terms for both height and 
wood density. In our study, significant but small M×E effects for all 
traits were found only in additive genetic effects, not for domin-
ance. Gamal EL-Dien et al. (2018) did not use more comprehensive 
models to dissect M×E, but used compound symmetry variance–co-
variance structures (CS). To more accurately dissect M×E in multi-
environment trials (METs), here we used 6 variance–covariance 
matrices (Table 1) to model additive and dominance effects in GS 
models for 4 traits. A similar approach was described by Burgueño 
et al. (2012), Oakey et al. (2016) and Ventorim Eerrao et al. (2017). 

Finally, we found that all 4 traits have significant additive M×E 
terms using CS for additive effects. For tree height, we also observed 
a better goodness-of-fit using FAMK in Supplementary Material, 
Table S1. Here we should note that site 1 has a nonsignificant addi-
tive M×E term for tree height that resulted in a negligible increase 
with the M×E term included in the GBLUP-AD model. Generally, 
MET analysis shows slightly higher PA than does ST analysis, ex-
cept for tree height which has the same value. This may result from 
the nonsignificant additive covariance (σ2

a12) between 2 sites. In this 
study, only tree height and velocity had slight increases for PA, which 
also supports the previous study of Ly et al. (2013) that including the 
G×E term could improve the PA.

Significant Dominance Effects Improve Predictive 
Ability
Recent studies have shown that maximum PA can be reached when 
the model is based on additive and nonadditive effects (Da et  al. 
2014; Muñoz et al. 2014; Aliloo et al. 2016; Tan et al. 2018). Ly et al. 
(2013) considered that only the additive component may produce a 
systematic underestimation of PA because only additive effects are 
predicted. Here, the GBLUP-AD model for tree height shows homo-
genous dominance variances in both sites (Table 3, identity matrix 
for dominance effect). However, the ABLUP-AD model shows a sig-
nificant dominance variance in site 2 (23.1%) and nonsignificant 
dominance variance in site 1 (8.5%), indicating that the GBLUP-AD 
model has higher efficiency in separating the additive and dominance 
genetic variances because it could account for the Mendelian sam-
pling within families for dominance.

It was found that including dominance could improve PA when 
a considerable dominance variance in animal (Aliloo et al. 2016; 
Esfandyari et  al. 2016) and plant studies were observed (Wolfe 
et al. 2016; Tan et al. 2018;). In this study, the improvement of tree 
height and velocity PAs also agree with the previous observations. 
However, including significant dominance in this study may not 
improve the Spearman’s rank correlations between breeding values 
(Table 4).

A dominance effect has been used in several practical breeding 
programs, such as loblolly pine (McKeand et al. 2003), Sitka spruce 
(Picea sitchensis) (Thompson 2013), and eucalypts (Rezende et al. 
2014). For instance, since 2000, the annual production of full-sib 
seedlings in loblolly pine increased to 63.2 million in 2013, with a 
total of over 325 million full-sib family seedlings planted over the 
last 14  years (Steve Mckeand 2014, personal communication). In 
Norway spruce, a dominance estimate was not widely included in 
the breeding program, but we are commonly using full-sib family 
material. Thus, it is important to estimate dominance effects in the 
Norway spruce breeding program as more and more individuals will 
be genotyped for selection and propagation.

Epistasis Effect
The full model (GBLUP-ADE), which was extended to include 
3 first-order interactions, shows almost the same results as 
GBLUP-AD for all 4 traits based on AIC (Table 2). This indicates 
the absence of 3 kinds of epistatic interactions even though addi-
tive × additive and dominance × dominance epistatic effects ex-
plained variations of 4.2% (4.0%) and 0.7% (0.2%) for velocity 
in site 1 (site2), respectively. However, in several other forest tree 
species, such as white spruce (Gamal El-Dien et  al. 2016), lob-
lolly pine (de Almeida Filho et  al. 2016), eucalypt (Bouvet et  al. 
2016; Resende et  al. 2017; Tan et  al. 2018), and interior spruce 
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(P. glauca x engelmannii) (Gamal El-Dien et al. 2018), significant 
epistatic effects have been reported for height or wood density. For 
instance, Gamal El-Dien et  al. (2016) showed a significant addi-
tive × additive component and nonsignificant dominance for tree 
height, while Gamal El-Dien et al. (2018) showed a considerable 
dominance component (19.46% of total phenotypic variation) and 
no epistatic effect. For wood density in spruce, Gamal El-Dien et al. 
(2016, 2018) showed a significant additive × additive interaction 
that was absorbed from additive and residual variances. Tan et al. 
(2018) showed no epistasis for wood density. The above results 
agree with the suggestion by Tan et al. (2018) that the contribu-
tions of nonadditive effects, especially epistasis effects, are traits, 
populations, and species-specific, or even site-specific as in this 
study. However, including significant nonadditive effects could im-
prove estimates of genetic parameters.

Expected Response to Genomic Selection
The main advantages of GS are to shorten the length of the breeding 
cycle and reduce phenotypic evaluation costs in plant and animal 
breeding (Grattapaglia and Resende 2011; de los Campos et  al. 
2013). In Northern Sweden, the length of the breeding cycle of 
Norway spruce in GS could be ideally shortened from 25 years to 
12.5 years (Chen et al. 2018) if we could complete flowering induc-
tion and controlled pollinations within 12.5 years. In our previous 
paper (Chen et  al. 2018), we calculated the RGS per year for GS 
based on GBLUP-A using the same data set. Here we compared RPS 
with RGS per year for GS based on a GBLUP-AD model and calcu-
lated the response to selection per year for PS and GS. We used EGVs 
from an ABLUP-AD model as a benchmark for all traits. RGS per 
year is considerably higher than RPS per year for all traits (Figure 
2). RGS per year for wood quality traits has greater gain than those 
for tree height when we select the top 50 individuals based on a 
M, A  or AD effect, in contrast to the result reported by Resende 
et al. (2017) for Eucalyptus. Thus, GS based on genomic-based ex-
pected genetic values is ideal for solid-wood quality improvement in 
Norway spruce.

Conclusions

This is the first paper to study M×E using a different covariance 
structure for the additive and nonadditive effects and dominance 
in GS for forestry trees species. We found that M×E and domin-
ance effects could improve PA when they are appreciably large. 
In a GBLUP-AD model, M×E contributed 4.7% and 11.1% of 
tree height phenotypic variation for sites 1 and 2, respectively. 
Dominance contributed 18.1% and 9.8% of tree height pheno-
typic variation for sites 1 and 2, respectively. The higher PA of 
the GBLUP-AD model for tree height compared to ABLUP-A and 
GBLUP-A models suggests that dominance should be included in 
GS models for genetic evaluations in forestry to improve the pre-
dictive accuracy or estimates of genetic parameters. Advanced M×E 
models could improve PA and should be included in the model 
fitting. GBLUP-AD could be a more useful model in breeding and 
propagation when tree breeders want to use the dominance using 
full-sib family seedlings.

Supplementary Material

Supplementary data are available from the Journal of Heredity 
online.
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