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Objective:While many studies correlated cognitive function with changes in brain morphology in multiple scle-
rosis (MS), few of them used a multi-parametric approach in a single dataset so far. We thus here assessed the
predictive value of different conventional and quantitative MRI-parameters both for overall and domain-
specific cognitive performance in MS patients from a single center.
Methods: 69 patients (17 clinically isolated syndrome, 47 relapsing–remitting MS, 5 secondary-progressive MS)
underwent the “Brief Repeatable Battery of Neuropsychological Tests” assessing overall cognition, cognitive effi-
ciency andmemory function as well as MRI at 3 Tesla to obtain T2-lesion load (T2-LL), normalized brain volume
(global brain volume loss), normalized cortical volume (NCV), normalized thalamic volume (NTV), normalized
hippocampal volume (NHV), normalized caudate nuclei volume (NCNV), basal ganglia R2* values (iron deposi-
tion) and magnetization transfer ratios (MTRs) for cortex and normal appearing brain tissue (NABT).
Results: Regression models including clinical, demographic variables and MRI-parameters explained 22–27% of
variance of overall cognition, 17–26% of cognitive efficiency and 22–23% of memory. NCV, T2-LL and MTR of

NABT were the strongest predictors of overall cognitive function. Cognitive efficiency was best predicted by
NCV, T2-LL and iron deposition in the basal ganglia. NTV was the strongest predictor for memory function and
NHV was particularly related to memory function.
Conclusions: The predictive value of distinct MRI-parameters differs for specific domains of cognitive function,
with a greater impact of cortical volume, focal and diffuse white matter abnormalities on overall cognitive func-
tion, an additional role of basal ganglia iron deposition on cognitive efficiency, and thalamic and hippocampal
volume on memory function. This suggests the usefulness of using multiparametric MRI to assess (micro)struc-
tural correlates of different cognitive constructs.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cognitive function may be impaired in 43–70% of all multiple
sclerosis (MS) patients (Chiaravalloti and DeLuca, 2008; Filippi
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et al., 2010). Magnetic resonance imaging (MRI) is a valuable tool
to investigate the pathophysiology of MS in vivo and to monitor dis-
ease evolution (Filippi and Rocca, 2010), and therefore also is ex-
pected to aid in enhancing the cerebral correlates of cognitive
(dys)function in MS.

However, prior studies focused primarily on brain atrophy or T2 le-
sion load to predict cognitive function in MS (Langdon, 2011; Pinter
et al., 2014; Sumowski et al., 2010). T2 lesion load appears to be an im-
portant predictor of cognitive function in MS (Lazeron et al., 2005;
Sperling et al., 2001), but also volume decrease of the whole brain and
selected regions (i.e. thalamus, hippocampus) provide robust correlates
of MS-associated cognitive dysfunction (Filippi and Rocca, 2010;
Grassiot et al., 2009; Tiemann et al., 2009).
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Table 1
Descriptive statistics and scores of neuropsychological and clinical testing for MS patients;
means and standard deviations (in parentheses).

All CIS RRMS SPMS p

N 69 17 47 5
Sex female (%) 43 (62%) 12 (70%) 29 (61%) 2 (40%) .04
Age (years) 35.6 (10.2) 33.1 (9.1) 35.8 (10.5) 41.8 (9.3) .24
Education (years) 13.1 (2.5) 13.1 (2.4) 13.0 (2.6) 13.2 (2.3) .98
Disease duration (years) 7.1 (8.3) 0.4 (0.8) 9.0 (8.7) 11.3 (6.0) .00
EDSS 2.0 (1.5) 1.1 (0.9) 2.0 (1.2) 5.4 (0.9) .00
Cognition
SRT 55.7 (10.4) 60.7 (9.3) 54.0 (10.6) 53.8 (8.2) .07
SPART 22.7 (4.9) 23.8 (3.5) 22.6 (5.4) 20.8 (4.1) .42
PASAT 48.4 (10.0) 50.5 (9.2) 48.1 (10.0) 52.0 (4.5) .52
SDMT 48.11 (12.7) 53.1 (10.3) 47.2 (13.0) 44.4 (5.9) .17
WLG 25.8 (7.0) 29.0 (8.2) 24.8 (6.4) 24.0 (6.6) .09

CIS = clinically isolated syndrome; RRMS= relapsing–remitting MS; SPMS= secondary
progressive MS; EDSS = Expanded Disability Status Scale; SRT = Selective Reminding
Test; SPART = 10−36-Spatial Recall Test; PASAT = Paced Auditory Serial Addition Test
(3-s version); SDMT= Symbol Digit Modalities Test; WLG = Word List Generation.
Disease duration: p = 0.001; EDSS: p = 0.002.
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Beyond that, advanced MRI-techniques may explain additional var-
iance of overall cognitive function and specific cognitive domains, as
they allow assessingmicrostructural cerebral changes in a more refined
manner.More specifically such quantitativeMRI-measures, as R2*map-
ping (iron deposition) and magnetization transfer ratios (MTRs) have
further contributed to our understanding of pathophysiologic changes
in MS (Khalil et al., 2009; Rovaris et al., 2001).

In particular, magnetization transfer ratio (MTR) of normal
appearing brain tissue (MTR-NABT) and MTR of the cortex have
been frequently related to cognitive function (Comi et al., 2000;
Cox et al., 2004; Deloire et al., 2011; Filippi et al., 2000), especially
in early stages of the disease (Amato et al., 2008; Khalil et al.,
2011a).

As a growing body of literature indicates that cognitive impair-
ment in MS is related to damage of subcortical gray matter
(Benedict et al., 2004; Houtchens et al., 2007) and increased iron de-
position has previously been linked to impaired cognitive perfor-
mance in MS (Brass et al., 2006; Ge et al., 2007), we here also
examined the influence of basal ganglia R2* values assessed with a
novel quantitative approach on cognition and specific domains of
cognitive function.

Another largely neglected aspect refers to the fact that MRI-
correlates could be domain-specific for different cognitive functions.
In MS, cognitive impairment is typically characterized by domain-
specific deficits rather than global cognitive decline (Amato et al.,
2010). The hippocampus has been commonly related to memory
function (Hulst et al., 2012; Roosendaal and Hulst, 2010), whereas
thalamic volumes have been frequently related to overall cognitive
function in MS (Benedict et al., 2004; Houtchens et al., 2007;
Minagar et al., 2013), specifically to slowed cognitive processing
(Batista et al., 2012; Van DerWerf et al., 2001). There is also evidence
that atrophy of the caudate nuclei might be related to cognitive func-
tion in MS (Batista et al., 2012; Benedict et al., 2004; Modica et al.,
2015).

However, frequently a composite cognitive score or performance of
a specific subtest has been used in prediction models, not comparing
the predictive value of different MRI-parameters for specific domains
(e.g. cognitive efficiency and memory) of cognitive function. Further-
more, while many studies correlated cognitive function with changes
in brain morphology in multiple sclerosis (MS), few of them used a
multi-parametric approach.

Thus, we assessed the predictive value of conventional and quantita-
tiveMRI-parameters for overall cognition and specific domains of cogni-
tion in a large sample of MS patients from a single center (Graz), using
an extended set of MRI-metrics.

Although, various additional parameters might be important for
the prediction of cognitive function in MS, we here focused on the
compartments most frequently mentioned in relation to cognition
and MS. The choice of the presented parameters is selective and
not exhaustive.

2. Materials and methods

2.1. Patients

We included 69 patients with a diagnosis of a clinically isolated syn-
drome (CIS) suggestive of MS, or diagnosis of relapsing–remitting or
secondary progressive MS in our study (see Table 1 for characteristics;
Polman et al., 2011). Study participants were enrolled from ourMS out-
patient department. All patients underwent clinical and neuropsycho-
logical testing, and a comprehensive 3 T MRI examination of the brain.
Subjects had no current relapse, had not received corticosteroids
6 weeks prior to inclusion, and had no history of serious psychiatric ill-
ness (e.g. depression) or other neurologic disorders. The study was ap-
proved by the ethics committee of the Medical University of Graz. All
participants gave written informed consent.
2.2. Clinical and neuropsychological assessment

Disability was measured using the Expanded Disability Status Scale
(EDSS; Kurtzke, 1983). Cognition was assessed by the Brief Repeatable
Battery of Neuropsychological Tests (BRB-N; Rao, 1990), comprising
the following subtests: 1) Selective Reminding Test (SRT), to assess
verbal learning and memory, 2) 10/36-Spatial Recall Test (SPART), to
measure visuospatial learning; 3) the Symbol Digit Modalities Test
(SDMT), to measure information processing speed, sustained attention,
and concentration; 4) the Paced Auditory Serial Addition Test (3-s ver-
sion; PASAT), to examine sustained attention and concentration; and 5)
Word List Generation (WLG), to assess semantic verbal fluency (WLG).
We used a composite Z-score (calculated on raw data) of all subtests as
ameasure of overall cognitive function. In subsequent analyseswe used
constructs of cognitive efficiency (composite Z-score of SDMT and
PASAT, comprising attention, processing speed, concentration), memo-
ry (composite Z-score of SRT and SPART, comprising verbal and spatial
learning and memory) and semantic verbal fluency (Z-score WLG) to
assess the relationships betweenMRI-parameters and specific cognitive
domains (Langdon, 2011; Sumowski et al., 2013).

2.3. MRI

MRI was performed on a 3 Tesla TimTrio scanner (Siemens
Healthcare, Erlangen, Germany) using a 12-element receiver head
coil and GRAPPA as parallel imaging technique with an acceleration
factor of 2. High-resolution structural 3D images were acquired by
a T1-weighted MPRAGE sequence with 1 mm isotropic resolution
(TR = 1900 ms, TE = 2.19 ms, 176 slices), to assess normalized
brain volume (NBV in cm³), normalized regional volumes (thalamus,
hippocampus, caudate nucleus) and normalized cortical volume
(NCV in cm³). A fluid-attenuated inversion recovery (FLAIR) se-
quence with 1 × 1 × 3 mm³ resolution served for the assessment of
T2-LL (TR = 9000 ms; TE = 69 ms, 44 slices). FLAIR MRI is a highly
sensitive sequence for lesion detection and literature suggests that
observer performance of lesion detection is superior on FLAIR images
than on T2 images (Woo et al., 2006).

R2* relaxation data were acquired with a spoiled 3D gradient
echo sequence (FLASH) with 12 equally spaced echoes (TR =
68 ms; TE = 4.92 ms, interecho spacing = 4.92 ms, flip angle =
20°, resolution = 0.9 × 0.9 × 4 mm³, 32 slices). Magnetization trans-
fer data were acquired with a spoiled 3D gradient-echo sequence
(TR = 40 ms; TE = 7.38 ms; flip angle = 15°; resolution =
1 × 1 × 3 mm³; 44 slices) which was performed with and without a
Gaussian shaped saturation pre-pulse. The total imaging time was
approximately 23 min.



Table 2
Prediction of overall cognition (Z-scores of BRB-N) and the subdomains cognitive efficien-
cy (SDMT+PASAT) andmemory (SRT+ SPART). Adjusted R² in percent (if controlled for
age, sex, disease duration) of individual models including individual MRI − parameters
(N = 69). Explanation of incremental variance due to MRI-parameter (delta of adjusted
R²) in parentheses.

R² MR-metrics Cognition 18.8%
explained by age,
sex, DD

Cogn. eff. 11.8%
explained by age,
sex, DD

Memory 16.9%
explained by age,
sex, DD

T2-LL 26.7 (7.9)% 23.1 (11.3)% 23.1 (6.2)%
NBV (cm³) 22.4 (3.6)% 17.7 (5.9)% ns
NCV (cm³) 27.0 (8.2)% 26.3 (14.5)% ns
NTV 23.5 (4.7)% 17.1 (5.8)% 23.4 (6.5)%
NHV ns ns 22.1 (5.2)%
NCNV ns ns ns
MTR cortex 22.5 (3.7)% 19.9 (8.1)% ns
MTR-NABT 26.7 (7.9)% 18.9 (7.1)% 22.4 (5.5)%
R2*-BG ns 22.4 (10.6)% ns

DD=disease duration; T2-LL=T2-lesion load; NBV=normalized brain; NCV=normal-
ized cortical volume;NTV=normalized thalamic volume; NHV=normalized hippocam-
pal volume; NCNV = normalized caudate nuclei volume; R2*-BG = basal ganglia R2*
values (iron deposition); MTR cortex = magnetization transfer ratio for the cortex;
MTR-NABT = magnetization transfer ratio for normal appearing brain tissue; ns = not
significant.
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2.4. Image analysis

All image analyses were performed by trained and experienced ana-
lysts, blinded to clinical information T2-lesion load was assessed by a
semi-automated region growing algorithm (DispImage; Plummer,
1992). High-resolution T1 scans served to determine NBV, normalized
thalamic volume (NTV), normalized hippocampal volume (NHV), nor-
malized caudate nuclei volume (NCNV) and normalized cortical volume
(NCV), using SIENAX (Structural Image Evaluation using Normalization
of Atrophy; Version v 2.6, part of fMRIB3s Software Library; FSL). T1-
weighted anatomical images from the MPRAGE sequence served for
structural segmentation and volume measurement of the thalamus,
hippocampus and caudate nucleus, using FIRST (FMRIB3s Integrated
Registration and Segmentation Tool; part of FSL). Gradient echo and
magnetization transfer ratio (MTR) images were registered to the
MPRAGE images using affine registrations as implemented in FLIRT
(FSL). R2* maps were obtained by mono-exponentially fitting of the
multi-echo gradient data and overlaidwith the 3D segmentations to ob-
tain mean R2* rates for the individual structures. Additionally, bilateral
R2* rates of the globus pallidus, putamen, and caudate nuclei were uti-
lized to calculatemean R2* values of the basal ganglia (BG).MTR images
were calculated by normalizing theMR imageswith saturation pulses to
the non-saturated images. After affine registration of the MPRAGE to the
MTR images, cortical areas fromSIENAXanalysiswereutilized to calculate
mean MTR values of the entire cortex. Also, MTR of normal appearing
brain tissue (NABT; brain volume minus lesion volume and volume of
the ventricles) was calculated.

2.5. Statistical analysis

Clinical and neuropsychological data were analyzed with the Statis-
tical Package of Social Science (IBM SPSS Statistics 20). The level of sig-
nificance was set at 0.05. Exploratory analyses (Pearson correlation,
point-biserial correlation) examined the relationship between demo-
graphic and clinical variables (e.g. sex, age, disease duration) and cogni-
tion (overall cognitive function, cognitive efficiency, memory).We then
controlled for any demographic and clinical variable significantly corre-
lated with cognition in further analyses. Assumptions for regression
analyses (e.g. linearity, homoscedasticity, auto-correlation (Durbin–
Watson-test), multicollinearity (Variance Inflation Factor)) were
checked. Hierarchical regression models served to assess the predictive
value of individual MRI-parameters for overall cognitive function and
specific cognitive domains. Therefore, we included sex, age and disease
duration in our first step and individual MRI metrics in a second step.
Standardized beta-values (βj), adjusted R² (explanation of variance)
and delta (Δ) adjusted R² (displaying incremental explanation of vari-
ance) in percent are presented for each model in the Results section. A
multivariate model including the three strongest predictors for overall
cognitive function and specific subdomains served to assess a potential
additional value of multiple MRI-parameters for prediction of cognitive
function. For the multivariate models we centered predictor variables.

3. Results

Table 1 gives information on the descriptive variables, the cognitive
and clinical profile of the study cohort.

3.1. Prediction of overall cognitive function: comparison of individual MRI-
parameters

A regression model including clinical, demographic variables, and
NCV explained 27.0% of the variance of overall cognitive function.
There was a positive effect of NCV on overall cognition (βj = 0.39;
p b 0.05). A regression model including clinical, demographic variables,
and T2-LL explained 26.7% of the variance of overall cognitive function.
There was a positive effect of sex (βj = 0.24; p b 0.05; male = 1;
female = 2; women performed better than men) and a negative effect
of T2-LL (βj=−0.32; p b 0.001). A regression model including clinical,
demographic variables and MTR of NABT explained 26.7% of the vari-
ance of overall cognitive function. There was a positive effect of sex
(βj = 0.25; p b 0.05; male = 1; female = 2; women performed better
than men) and MTR of NABT (βj = 0.33; p b 0.05). A regression model
including clinical, demographic variables and NTV explained 23.5% of
overall cognition (βj = 0.28; p b 0.05). Similar explanation of variance
for overall cognition was found for NBV (22.4%; βj = 0.26; p b 0.05)
and MTR values of the cortex (22.5%; βj = 0.24; p b 0.05), when con-
trolled for clinical and demographic variables. Iron deposition in the
basal ganglia (R2* BG), NCNV and NHV did not significantly explain in-
cremental variance of overall cognition. Results of prediction models of
overall cognitive function are presented in Table 2.
3.2. Prediction of specific cognitive functions: comparison of individual
MRI-parameters

3.2.1. Cognitive efficiency
Cognitive efficiency was operationalized by the composite Z-

score of SDMT and PASAT, comprising attention, processing speed
and concentration.

A regression model including clinical, demographic variables, and
NCV explained 26.3% of the variance of cognitive efficiency (βj =
0.50; p b 0.001). A regression model including clinical, demographic
variables, and T2-LL explained 23.1% of the variance of cognitive effi-
ciency. There was a negative effect of age (βj = −0.28; p b 0.05) and
T2-LL on cognitive efficiency (βj = −0.38; p b 0.001). Iron deposition
in the basal ganglia (R2* BG) explained 22.4% of variance of cognitive ef-
ficiency (βj = −0.41; p b 0.05). MTR values of the cortex explained
19.9% of variance of cognitive efficiency (βj=0.33; p b 0.05). A regres-
sion model including clinical, demographic variables, and MTR of NABT
explained 18.9% (βj = 0.31; p b 0.05) of the variance of cognitive effi-
ciency. Similar explanation of variance for cognitive efficiency was
found for NTV (17.1%; βj = 0.30; p b 0.05) and NBV (17.7%; βj =
0.32; p b 0.05), when controlled for clinical and demographic variables.
NCNV and NHV did not significantly explain incremental variance of
cognitive efficiency.
3.2.2. Memory
Memory was operationalized by the composite Z-score of SRT and

SPART, comprising verbal and spatial learning and memory.
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A regression model including clinical, demographic variables, and
NTV explained 23.4% of the variance of memory (βj = 0.32; p b 0.05).
A regression model including clinical, demographic variables and T2-
LL explained 23.1% of the variance of memory. Sex had a positive effect
(βj = 0.22; p b 0.05) and T2-LL had a negative effect (βj = −0.29;
p b 0.05) on memory. Similar explanation of variance for memory was
found for NHV (22.4%; βj = 0.25; p b 0.05) and MTR of NABT (22.4%;
βj = 0.28; p b 0.05). NBV, NCV, NCNV, R2* values of the basal ganglia
and MTR values of the cortex did not significantly explain variance of
memory.

None of the MRI-parameters did significantly explain incremental
variance over and above clinical and demographic variables for seman-
tic verbal fluency. Results of individual prediction models of cognitive
efficiency and memory are presented in Table 2.

3.3. Multivariate models

A multivariate model including the strongest predictors for overall
cognition (T2-LL, NCV and MTR-NABT) and memory function (NTV,
T2-LL and MTR-NABT) did not explain incremental variance, compared
to the model with the strongest predictor. The only retained predictor
for overall cognition was NCV (27%) and the only retained predictor
for memory function was NTV (23.4%). A multivariate model including
the strongest predictors for cognitive efficiency (NCV, T2-LL, and R2*-
BG) explained 29.5% of variance, R2*-BG explaining 22.4% of variance,
T2-LL explaining incremental 3.5% and NCV explaining incremental
3.6% (see Table 3).

Based on the small number of SPMS patients and on the consider-
ations that this reflects a different stage of disease, we also ran all anal-
yses after exclusion of the 5 SPMSpatients.Major results did not change.
Minor deviations of the explanation of variance (delta of adjusted R²) by
1–2%were found (data not shown). We did not find an effect of disease
phenotype on the findings.

4. Discussion and conclusions

Regression models including clinical, demographic variables and in-
dividualMRI-parameters explained 22–27% of variance of overall cogni-
tion, 17–26% of cognitive efficiency and 22–23% of memory. Cortical
volume was the strongest predictor of overall cognitive function and
cognitive efficiency. The specific role of cortical volume changes in rela-
tion to cognitive function in MS has also been repeatedly highlighted in
prior studies (Amato et al., 2004, 2007, 2008; Benedict et al., 2006;
Calabrese et al., 2010; Khalil et al., 2011b). In contrast to other studies
(Amato et al., 2004; Benedict et al., 2006), cortical volume did not signif-
icantly predict memory function in our sample.

In line with previous work T2-lesion load was identified as an impor-
tant predictor for overall cognition, cognitive efficiency andmemory func-
tion (Penny et al., 2010; Pinter et al., 2014). In general, greater lesion
burden has been associated with more severe cognitive dysfunction
(Chiaravalloti and DeLuca, 2008; Filippi and Rocca, 2010; Summers
et al., 2008; Tiemann et al., 2009).

MTR of the NABT, i.e. diffuse microstructural white matter changes,
was the third-strongest predictor of overall cognitive function and
Table 3
Multivariate model for cognitive efficiency. Adjusted R² in percent (if con-
trolled for age, sex, disease duration). Explanation of incremental variance
due to MRI-parameter (delta of adjusted R²) in parentheses.

R² MR-metrics Cognitive efficiency 11.8%
explained by age, sex, DD

R2*-BG 22.4 (3.5)%
T2-LL 25.9 (3.5)%
NCV 29.5 (3.6)%

DD=disease duration; R2*-BG=basal ganglia R2* values (iron deposition);
T2-LL = T2-lesion load; NCV = normalized cortical volume.
explained additional variance of cognitive efficiency and memory func-
tion. MTR allows detecting abnormalities outside MS-lesions, related to
diffuse astrocytic hyperplasia, patchy edema, perivascular cellular infil-
tration, and abnormally thin myelin and axonal damage (Filippi et al.,
2000). MTR of the NABT has been related to overall cognitive dysfunc-
tion (Filippi et al., 2000) and impairment of attention and information
processing speed (Deloire et al., 2005). Furthermore, a longitudinal
study found baseline MTR of NABT to be associated with subsequent
changes of memory and processing speed over 7 years (Deloire et al.,
2011). Also, cortical MTR has been related to impairment of overall cog-
nitive function (Amato et al., 2008).

Besides normalized cortical volume and T2-lesion load, iron deposi-
tion of the basal ganglia best predicted cognitive efficiency. In contrast,
iron deposition of the basal ganglia did not significantly explain overall
cognition or memory function in our sample, suggesting a domain-
specific influence of iron in the basal ganglia on cognitive efficiency. In-
creased iron deposition has been previously related to cognitive dys-
function in the elderly and MS (Brass et al., 2006; Daugherty and Raz,
2013; Ge et al., 2007; Khalil et al., 2009). Previous own work found a
correlation between iron deposition in the basal ganglia and processing
speed (Khalil et al., 2011a), but processing speed did not predict iron
deposition in the brain. Here, we investigated whether iron deposition
of the basal ganglia was predictive for cognitive function. Hence, the in-
verse significant prediction suggests that iron deposition negatively af-
fects cognitive efficiency (comprising attention, processing speed,
concentration) in MS patients, even when controlled for age.

In general, memory scores were more strongly explained by demo-
graphic and clinical variables while lower predictive scores were
found for MR-metrics. Predictors of memory function were normalized
thalamic volume, lesion load, MTR of NABT and normalized hippocam-
pal volume. Hippocampal volumemay provide high domain-specificity,
as it was only significantly predicting memory in our cohort. This is in
linewith existing studies highlighting that the hippocampus is a key re-
gion for memory function and damage to this critical and specialized
brain region may result in particular alterations of memory (Battaglia
et al., 2011; Hulst et al., 2012; Roosendaal and Hulst, 2010; Sumowski
et al., 2013).

The thalamus relays sensory information to the higher cortical cen-
ters that influence cognition (Minagar et al., 2013). Thalamic volumes
have been previously linked to overall cognitive function, processing
speed (cognitive efficiency) and memory function (Batista et al., 2012;
Benedict et al., 2013; Houtchens et al., 2007; Minagar et al., 2013). Con-
sistent with these findings, also in our study overall cognition and
subdomains could be predicted by normalized thalamic volume.

Overall, explanation of variance was comparable for individual
models. Prediction of overall cognition and memory did not improve
when multiple MR-metrics were included in the model. Only minor in-
creases (17.7% vs 14.5%) of explanation of variance were observed in-
cluding multiple MR-parameters for prediction of cognitive efficiency.
Markers of MS-related brain pathology can be detected in the earliest
phases of MS, and are associated with each other, e.g. iron deposition
and atrophy of deep gray nuclei are closely related to the magnitude
of inflammation (Minagar et al., 2013). Therefore for prediction of over-
all cognition in large samples, investigation of brain volume or lesion
load may be sufficient, whereas for individual exploration of MRI-
parameters related to domain-specific deficits, a clear selection of MRI-
parameters (e.g. iron deposition for cognitive efficiency) seems to be
essential. This suggests the usefulness of usingmultiparametricMRI to as-
sess (micro)structural correlates of different cognitive constructs.

There are several limitations that have to be considered regarding
our study. First of all, the choice of includedMRI-parameters is selective
and not exhaustive. As this study represents a first attempt to assess the
usefulness of multiparametric MRI to assess structural correlates of cog-
nitive function in MS, we included the (in our opinion)most crucial pa-
rameters in this context. Various additional parameters might be
important for prediction of cognitive function in MS. Secondly, we did
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not perform lesion filling prior to atrophy quantification as increasingly
used to improve brain tissue volume measurement (Battaglini et al.,
2012; Valverde et al., 2014). Furthermore, the maximum variability
explained by this multiple MRI-approach was 29.5%, indicating that
various other parameters have to be considered regarding cognitive
function in MS. In this study, we controlled for any demographic and
clinical variable significantly correlated with cognition. We included
sex, age and disease duration in our models. Clinical phenotype did
not have an effect on our findings. However, additional scores, e.g.
EDSS or education might be included in the future, but the inclusion of
further predictors requires a larger sample size to ensure sufficient
statistical power. Furthermore, it should be mentioned that based on a
commonly used stringent definition of cognitive impairment (Rocca
et al., 2010; the patient scores = 0 in at least 3 tests), only seven of
our patients would be classified as cognitively impaired. As also evident
from the title, we therefore focused on prediction of cognitive function
inMS. In addition, in our sample SPMS patients performed unexpected-
ly well in the PASAT subtest. As this might have had an effect on our
findings, and based on the small number of SPMS patients, we also ran
all analyses after exclusion of the 5 SPMS patients. However, major re-
sults did not change.

Further studies in larger cohorts and longitudinal setting are thus
needed to better clarify the relevance of distinct MRI-parameters for
specific domains of cognitive function.
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