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Although hereditary kidney cancer syndrome accounts for approximately five per-

cent of all kidney cancers, the mechanistic insight into tumor development in these

rare conditions has provided the foundation for the development of molecular tar-

geting agents currently used for sporadic kidney cancer. In the late 1980s, the com-

prehensive study for hereditary kidney cancer syndrome was launched in the

National Cancer Institute, USA and the first kidney cancer-associated gene, VHL,

was identified through kindred analysis of von Hippel-Lindau (VHL) syndrome in

1993. Subsequent molecular studies on VHL function have elucidated that the VHL

protein is a component of E3 ubiquitin ligase complex for hypoxia-inducible factor

(HIF), which provided the basis for the development of tyrosine kinase inhibitors

targeting the HIF-VEGF/PDGF pathway. Recent whole-exome sequencing analysis of

sporadic kidney cancer exhibited the recurrent mutations in chromatin remodeling

genes and the later study has revealed that several chromatin remodeling genes are

altered in kidney cancer kindred at the germline level. To date, more than 10 hered-

itary kidney cancer syndromes together with each responsible gene have been char-

acterized and most of the causative genes for these genetic disorders are associated

with either metabolism or epigenome regulation. In this review article, we describe

the molecular mechanisms of how an alteration of each kidney cancer-associated

gene leads to renal tumorigenesis as well as denote therapeutic targets elicited by

studies on hereditary kidney cancer.
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1 | VON HIPPEL-LINDAU (VHL) SYNDROME

von Hippel-Lindau (VHL) syndrome is a rare hereditary neoplastic syn-

drome, which predisposes patients to develop retinal angioma, heman-

gioblastoma of the central nervous system, pheochromocytoma,

pancreatic cystadenoma and neuroendocrine tumor, and clear cell renal

cell carcinoma (RCC) (Figure 1). The gene responsible for the disease,

located at chromosome 3p25.3, was identified as VHL tumor suppressor

by positional cloning method in 1993.1,2 Subsequent molecular studies

have shown that VHL is a component of the E3 ubiquitin ligase complex

which specifically recognizes HIF protein for degradation through the

ubiquitin proteasome pathway; therefore, VHL alteration leads to the

accumulation of HIF as well as increased transcription of its down-

stream genes, VEGF, PDGF and TGF-a, which promote tumor progres-

sion.3 In 2013, independent research groups of The Cancer Genome

Atlas (TCGA) project and in the University of Tokyo conducted whole-

exosome sequencing of sporadic clear cell RCC using next-generation

sequencing technology and elucidated that nearly 90% of sporadic clear

cell RCC harbors alterations in VHL itself or in TCEB1, a component of

the VHL complex.4,5 These findings have provided robust evidence for

using antiangiogenic agents or tyrosine kinase inhibitors (TKIs), including

bevacizumab, sorafenib, sunitinib, axitinib and pazopanib, which target

the VHL-HIF-VEGF/PDGF pathway as standardized therapeutics for

sporadic RCC. However, in addition to VEGF/PDGF, HIF transcription-

ally regulates a variety of genes, including cyclin D1, glut1 and CA-IX etc.

Thus, this partial inhibition of HIF downstream genes may limit the effi-

cacy of TKI for RCC treatment.6 In this notion, HIF2a antagonist has

been developed and its efficacy is under investigation.7

2 | BIRT-HOGG-DUB�E’ (BHD) SYNDROME

Birt-Hogg-Dub�e (BHD) syndrome is a rare genetic disorder that causes

development of lung cysts, fibrofolliculomas, and renal tumors with

various histological subtypes, including chromophobe RCC, hybrid

oncocytic/chromophobe tumor (HOCT), clear cell RCC, papillary RCC,

and oncocytoma8-12 (Figure 2). In 2002, the responsible gene, FLCN

was identified and the majority of germline FLCN mutations were

either nonsense mutations or frameshift mutations with a few excep-

tions of missense mutations, including H255Y and K508R.13-15 Folli-

culin (FLCN) binds to its two interacting partners, folliculin-interacting

protein 1 and 2 (FNIP1 and FNIP2), and senses energy through the

interaction between FNIPs and 50AMP-activated protein kinase

(AMPK), an important energy-sensing molecule.16-19 Disruption of

FLCN-FNIPs interaction drives upregulated mTORC1-dependent pro-

tein synthesis, upregulated PGC1a-dependent mitochondrial oxidative

metabolism and aberrant kidney cell proliferation.20-24 Crystallography

of FLCN protein exhibited that FLCN has a DENN domain in its C-ter-

minus, suggesting FLCN may act as a modifier for Rab small GTPase

family as well as a regulator for membranous trafficking.25,26 In addi-

tion, FLCN shows either GAP activity towards RagC/D GTPases or

GEF activity towards RagA/B GTPases, which consequently regulates

mTORC1 localization on lysosomes, implying that FLCN may regulate

multiple small GTPases.27,28 These findings highlight that FLCN plays

important roles in metabolism, and disruption of metabolism under

FLCN deficiency may drive aberrant kidney cell proliferation. Kidney-

specific Flcn knockout mouse develops hyperproliferative polycystic

kidney. However, this mouse model dies at 3 weeks of age as a result

of renal failure before developing kidney cancer.23 Therefore, it is sug-

gested that an additional mutation may be necessary for developing

kidney cancer in cooperation with FLCN deficiency.

3 | HEREDITARY LEIOMYOMATOSIS AND
RENAL CELL CANCER (HLRCC)

Hereditary leiomyomatosis and renal cell cancer (HLRCC) predis-

poses patients to develop leiomyomatosis of skin and uterus with

(A) (B)

F IGURE 1 von Hippel-Lindau (VHL)
syndrome-associated kidney cancer. A,
Computed tomography with contrast
material of VHL patient shows
hypervascular tumor in the right kidney
(orange arrow) and multiple cysts in both
kidneys. Partial nephrectomy was done to
the right kidney. B, Four out of 5 tumors
and 1 out of 4 cyst walls exhibited the
histology of clear cell renal cell carcinoma.
Upper panel shows low magnification and
lower panel shows high magnification of
H&E staining
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high frequency as well as type 2 papillary RCC in 10%-16% of the

affected patients, which presents a very aggressive behavior and

metastasizes even from a small-sized tumor, leading to very poor

prognosis.29 In 2002, FH was identified as a causative gene for

HLRCC.30 Alteration of FH drives the metabolic shift towards glycol-

ysis as well as the accumulation of fumarate, an oncometabolite

which inhibits a-ketoglutarate-dependent enzymes, including PHD

and DNA demethylases, leading to HIF accumulation or genome-

wide methylated status called CpG island methylator phenotype

(CIMP).31-34 In FH-deficient cells, KEAP1, E3 ubiquitin ligase for Nrf2

antioxidant transcription factor, is inactivated by its succinylated

residues, leading to Nrf2 accumulation and resistance of FH-deficient

cells to reactive oxygen species.35 In fact, an inhibitor for HMOX1, a

downstream target of Nrf2, suppressed cell proliferation of Fh-defi-

cient mouse embryonic fibroblasts (MEFs).36

4 | HEREDITARY PARAGANGLIOMA-
PHEOCHROMOCYTOMA SYNDROME

Germline mutations in SDHB, SDHC, and SDHD, genes responsible

for hereditary paraganglioma-pheochromocytoma syndrome, cause

the development of kidney cancer .37 Alteration of SDH leads to the

metabolic shift towards glycolysis as well as to the accumulation of

succinate, which drives tumor progression in the same way as does

the accumulation of fumarate in FH-deficient kidney cells.38,39

5 | HEREDITARY PAPILLARY RENAL CELL
CARCINOMA (HPRCC)

Hereditary papillary renal cell carcinoma (HPRCC) is a very rare type

of hereditary kidney cancer syndrome compared to VHL syndrome,

BHD syndrome and HLRCC, and predisposes patients to develop

bilateral type 1 papillary RCC. In 1997, activating mutation of MET

was identified as a responsible genetic alteration. c-MET, encoded

by the MET gene is a tyrosine kinase receptor for HGF and the con-

stitutive active form of c-MET drives kidney cell proliferation.40-42

Whole-exosome sequencing of sporadic kidney cancer showed alter-

ations in the c-MET/HGF pathway in 12% of clear cell RCC and in

10% of papillary RCC, indicating that targeting the c-MET/HGF

pathway is rational for the treatment of these histological types of

kidney cancer and, in fact, the efficacy of cabozantinib which targets

both c-MET and VEGFR has been reported.43,44

6 | COWDEN SYNDROME

Cowden syndrome predisposes patients to develop intestinal hamar-

tomatous polyps, benign skin tumors and macrocephaly. Patients are

also at risk of malignancies in breast, thyroid, uterus and prostate,

and 4%-16% of patients develop kidney cancer with various types of

histology, including papillary, chromophobe, and clear cell RCC.45

Alteration of PTEN, a causative gene for Cowden syndrome, drives

activation of the PI3K-AKT-mTOR pathway.

7 | TUBEROUS SCLEROSIS (TSC)

Tuberous sclerosis (TSC), a hamartoma syndrome with a triad of

facial angiofibromas, seizure and developmental delay, predisposes

patients to develop subepedymal giant cell astrocytoma (SEGA),

angiomyolipoma (AML) in kidney, lymphangioleiomyomatosis (LAM)

in lung and kidney cancer in 3% of affected patients. TSC1 and TSC2

have been identified as causative genes for TSC.46 TSC2 is a GTPase

activating protein for Rheb GTPase whereas TSC1 regulates stability

of TSC2 protein; either TSC1 or TSC2 mutation increases GTP-bound

Rheb GTPase, leading to constitutive activation of mTORC1

(B)(A)

F IGURE 2 Birt-Hogg-Dub�e (BHD)
syndrome-associated kidney cancer. A,
Computed tomography with contrast
material of BHD patient shows weakly
stained tumors in the right kidney (orange
arrows). Partial nephrectomy was done to
the right kidney. B, H&E stain shows the
most predominant forms of BHD-
associated kidney cancer, hybrid
oncocytic/chromophobe tumors (HOCT).
Low magnification (upper panel) and high
magnification (lower panel). Figures are
from Hasumi et al8
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complex.47 Targeted next-generation sequencing analysis of TSC-

associated kidney cancer demonstrated a relatively small number of

somatic mutations in addition to TSC1/2 mutations, suggesting that

mutations in TSC1/2 themselves may be strong driver mutations.46

8 | CHROMOSOME 3P TRANSLOCATION-
ASSOCIATED KIDNEY CANCER SYNDROME

While sporadic clear cell RCC frequently harbors a large chromoso-

mal deletion at chromosome 3p, hereditary kidney cancer with germ-

line chromosomal 3p translocation has been reported.48

Chromosomal rearrangement involving chromosome 3p leads to loss

of multiple kidney cancer-associated genes including VHL, BAP1,

PBRM1 and SETD2. Single inactivation of either Vhl, Bap1 or Pbrm1

does not cause development of kidney cancer, whereas double inac-

tivation of Vhl/Bap1 or Vhl/Pbrm1 does cause development of kid-

ney cancer, indicating that a large chromosomal deletion involving

this locus is a critical event triggering renal tumorigenesis.49,50

9 | BAP1 CANCER SUSCEPTIBILITY
SYNDROME

One of the biggest findings in whole-exome sequencing for sporadic

kidney cancer using next-generation sequencing technology are the

recurrent alterations in chromatin remodeling genes in clear cell and

papillary RCC. Among these alterations, BAP1 mutations were found

in 15% of sporadic RCC.4,5 BAP1 mutation is a critical driver for

renal tumorigenesis as double inactivation of murine Vhl and Bap1

develops malignant lesions in mouse kidney.50 Interestingly, a later

study on hereditary kidney cancer reported that a germline BAP1

mutation was found in kidney cancer kindred.51 BAP1 is a tumor

suppressor for multiple organs and germline BAP1 mutation drives

malignant mesothelioma and malignant melanoma in uvea and skin.

BAP1 deubiquitinates histone H2A at K119 and chromatin immuno-

precipitation and DNA sequencing (ChIP-seq) for BAP1 protein

showed that significant BAP1 peaks locate near the transcription

start sites of 5731 genes which may include the targets for BAP1-

deficient kidney cancer.52
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10 | OTHER HEREDITARY KIDNEY
CANCERS

Germline PBRM1 mutation has been reported in a kindred of kidney

cancer.53 PBRM1 remodels chromatin structure as well as regulates

other tumor suppressors through its bromodomain interaction with

acetylated lysine in histone H3 at K14 or in tumor suppressor pro-

teins.54 PBRM1 mutation is an important driver mutation for kidney

cancer development as its alteration was found in 40% of sporadic

RCC, and double inactivation of murine Vhl and Pbrm1 causes devel-

opment of kidney cancer in mouse.4,5,49 Additionally, germline

CDKN2B mutation was found in kidney cancer kindred.55 Thus, a sub-

set of genes found to be altered in sporadic kidney cancer by next-

generation sequencing analysis may be candidates for causative

genes of hereditary kidney cancer. In addition, kindred with multiple

germline mutations in cancer-associated genes have been reported:

neurofibromatosis type I with BHD syndrome, Li-Fraumeni syndrome

with BHD syndrome and Lynch syndrome with BHD syndrome. In

these kindred, symptoms that are not observed in each syndrome

were observed when the two syndromes occurred together, suggest-

ing that we have to treat these patients with precautions.56

11 | CONCLUSION

Although hereditary kidney cancer accounts for approximately five per-

cent of all kidney cancers, mechanistic insight into tumorigenesis of

these rare genetic disorders has provided the basis for the development

of novel therapeutics for sporadic kidney cancer. Recent genome-wide

analysis on sporadic kidney cancer using next-generation sequencing

technology has further identified novel kidney cancer-associated genes

and later studies showed that some of these genes are altered in kidney

cancer kindred at the germline level. Thus, to sort out driver mutations

of kidney cancer, it is important to integrate data of genome-wide anal-

ysis on sporadic kidney cancer with germline genomic data of patients

with hereditary kidney cancer. Notably, most of the kidney cancer-

associated genes have roles in either metabolism or chromatin remod-

eling, suggesting that disruption of metabolism, dysregulation of chro-

matin remodeling, or loss of crosstalk between metabolism and the

epigenome may drive renal tumorigenesis (Figure 3). In conclusion,

understanding the metabolic and epigenetic abnormalities underlying

deficiencies of kidney cancer-associated genes may lead to the devel-

opment of novel diagnostic biomarkers, diagnostic imaging modalities

and novel therapeutics for kidney cancer.
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