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ABSTRACT
Urban trees serve a critical conservation function by supporting arthropod and
vertebrate communities but are often subject to arthropod pest infestations.
Native trees are thought to support richer arthropod communities than exotic trees
but may also be more susceptible to herbivorous pests. Exotic trees may be less
susceptible to herbivores but provide less conservation value as a consequence.
We tested the hypotheses that native species in Acer and Quercus would have more
herbivorous pests than exotic congeners and different communities of arthropod
natural enemies. The density of scale insects, common urban tree pests, was greatest
on a native Acer and a native Quercus than exotic congeners in both years of
our research (2012 and 2016) and sometimes reached damaging levels. However,
differences in predator and parasitoid abundance, diversity, and communities were
not consistent between native and exotic species in either genus and were generally
similar. For example, in 2012 neither predator nor parasitoid abundance
differed among native and exotic Acer congeners but in 2016 a native species,
A. saccharum, had the least of both groups. A native, Q. phellos, had significantly
more predators and parasitoids in 2012 than its native and exotic congeners
but no differences in 2016. Parasitoid communities were significantly different
among Acer species and Quercus species due in each case to greater abundance of a
single family on one native tree species. These native and exotic tree species could
help conserve arthropod natural enemies and achieve pest management goals.
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INTRODUCTION
Urban trees serve a critical conservation function by supporting herbivorous arthropod
communities that, in turn, support vertebrate and invertebrate communities at higher
trophic levels (Burghardt, Tallamy & Gregory Shriver, 2009; Morse, 1971; Tallamy, 2004).
However, herbivorous arthropods can also be serious pests of urban trees that reduce
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tree health and the ecosystem services trees provide (Raupp, Shrewsbury & Herms, 2010).
Thus, a potential conflict exists between the conservation value and aesthetic value of
urban trees. To balance any such tradeoff and manage urban trees for the benefit
of wildlife and people, it is important to understand factors that influence the arthropod
communities they support.

Cities contain many native tree species that share an evolutionary history with local
herbivores and many exotic tree species that do not (Aronson et al., 2015; Raupp,
Cumming & Raupp, 2006; Riley, Herms & Gardiner, 2018). The evolutionary history
between plants and arthropods in a habitat is an important factor influencing herbivore
diversity and herbivory (Ehrlich & Raven, 1964; Farrell, Mitter & Futuyma, 1992).
The “enemy release hypothesis” predicts that, because native herbivores are not adapted to
exotic plant defenses, exotic plants should have fewer herbivores and be subject to
less herbivory than are native plants (Keane & Crawley, 2002). This outcome would fulfill
pest management objectives, as pest damage to trees would be minimal, but would
make exotic plants less useful for supporting biodiversity. Alternatively, the “biotic
resistance hypothesis” predicts that exotic plants can be consumed by native herbivores
against which they are not defended (Hokkanen & Pimentel, 1989; Parker & Hay, 2005).
This outcome may fulfill conservation goals, as trees would support arthropod
communities, but only if trees do not require insecticide applications and are not severely
damaged or killed. Both hypotheses have received mixed support, with research finding
that herbivore abundance or herbivory on exotic plants can be more than, less than,
or equal to that of native plants (Keane & Crawley, 2002; Zuefle, Brown & Tallamy, 2008).

The composition and effects of herbivore communities supported by exotic tree species
in cities are difficult to predict. Cities are relatively recent human constructions and
have many unnatural characteristics to which few animal species have evolved
(Grimm et al., 2008; Shochat et al., 2006). For example, the urban heat island effect can
alter natural enemy communities, insect and plant phenology, and affect host tree
susceptibility to herbivory (Dale & Frank, 2017, 2018; Meineke, Dunn & Frank, 2014;
Raupp, Shrewsbury & Herms, 2010). In addition, many native and exotic urban tree species
have chronic or outbreak pest populations that are greater than for the same species
in natural areas (Conway & Vander Vecht, 2015; Long, D’Amico & Frank, 2018;
Raupp, Shrewsbury & Herms, 2010). For these reasons, ecological theories developed
in natural ecosystems may not predict herbivore responses in cities (Dale & Frank, 2018).

Scale insects (Hemiptera: Coccoidea) are among the most common and abundant
herbivores on urban trees (Dale & Frank, 2014b; Meineke et al., 2013; Raupp,
Shrewsbury & Herms, 2010; Tooker & Hanks, 2000; Wu, Jamieson & Kielbaso, 1991).
Scales are sedentary for most of their lifecycle. They insert flexible stylets into host plants
to feed on phloem, xylem, or other tissue. Feeding by scales and other hemipterans
reduces plant growth by removing carbohydrates and reducing photosynthesis
(Cockfield & Potter, 1990; Cockfield, Potter & Houtz, 1987; Dixon, 1971; Zvereva, Lanta &
Kozlov, 2010). Scale insects often reach high populations on urban trees due to factors
such as high temperature (Dale & Frank, 2014a, 2014b; Meineke et al., 2013),
drought (Dale & Frank, 2017), plant stress (Meineke & Frank, 2018; Speight et al., 1998),
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and diminished natural enemy communities (Hanks & Denno, 1993; Luck & Dahlstein,
1975; McClure, 1977; Meineke, Dunn & Frank, 2014; Tooker & Hanks, 2000). Our goal
was to determine if exotic and native tree species common in urban plantings
support similar arthropods, with a specific focus on scale insects and natural enemy
communities of arthropod predators and parasitoids (Fig. 1). To achieve this, we examined
scale insect and natural enemy abundance on native and exotic tree species in the
genera Quercus and Acer. These genera contain some of the most common trees in urban
landscapes (Raupp, Cumming & Raupp, 2006), and native trees in both genera are hosts to
many scale species (Frank et al., 2013; Johnson & Lyon, 1976). Our first objective was
to compare scale insect abundance on native and exotic species within each genus.
Our second objective was to determine if natural enemies of scales and other herbivores
were more abundant, diverse, or had different community structure on native or exotic
species within each genus.

METHODS
All study trees were located on the grounds of North Carolina State University, an urban
campus in Raleigh, NC, USA (35.786�N, 78.672�W). In 2012, we located 10 or 15 trees

Figure 1 Examples of study organisms. Examples of armored scale insects (A) obscure scales
(Melanaspis obscura) on white oak (Q. alba) and (B) gloomy scales (M. tenebricosa) on red maple
(A. rubrum) and parasitoid wasps (C) Encarsia spp. (Hymenoptera: Aphelinidae), (D) Pachyneuron spp.
(Hymenoptera: Pteromalidae), and (E) Encyrtus spp. (Hymenoptera: Encyrtidae) that parasitize scale
insects. Photos and identifications: Andrew Ernst. Full-size DOI: 10.7717/peerj.6531/fig-1
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(Table 1) of each of the following species: Acer palmatum (Japanese maple), A. platanoides
(Norway maple), A. rubrum (red maple), A. saccharum (sugar maple), Quercus acutissima
(sawtooth oak), Q. alba (white oak), and Q. phellos (willow oak). Acer palmatum is
native to Japan, South Korea, and eastern China. The other exotic maple, A. platanoides, is
native to eastern Europe and western Russia from Sweden south to Greece. It is also an
invasive species that has become established in parts of the eastern and northwestern
US and Canada (United States Department of Agriculture (USDA), 2018). Acer rubrum is
native throughout the eastern half of North America from Quebec, Canada south to Florida,
US (United States Department of Agriculture (USDA), 2018). Acer saccharum is native
throughout much of eastern North America south to North Carolina and Tennessee, US and
cool regions further south (United States Department of Agriculture (USDA), 2018).
Quercus acutissima is native to eastern Asia including China, Korea, and Japan but has
become established in some regions of eastern and southern US (United States Department
of Agriculture (USDA), 2018). Quercus alba is native throughout eastern North America
from Quebec, Canada south to Florida and Texas, US (United States Department of
Agriculture (USDA), 2018).Quercus phellos is native throughout the southern and eastern US
north to New Jersey (United States Department of Agriculture (USDA), 2018). North
Carolina State University campus is comprised of many land cover types including
impervious surfaces, like roads and buildings, lawn and ornamental landscapes, sports fields,

Table 1 2012 and 2016 scale insect abundance.

2012

Species Origin n Scale insects BH

Acer palmatum exotic 15 0.92 (0.27) ab

Acer platanoides exotic 10 0.22 (0.18) c

Acer rubrum native 10 28.48 (22.33) a

Acer saccharum native 10 0.22 (0.08) bc

Quercus
acutissima

exotic 15 0.33 (0.11) a

Quercus alba native 15 106.01 (46.00) b

Quercus phellos native 15 3.55 (1.10) c

2016

Species Origin n Scale insects BH

Acer buergerianum exotic 10 0.10 (0.07) a

Acer palmatum exotic 10 0.15 (0.08) a

Acer rubrum native 10 65.75 (31.77) b

Acer saccharum native 10 0.90 (0.31) c

Quercus acutissima exotic 10 0.30 (0.17) a

Quercus alba native 10 11.65 (5.24) b

Quercus phellos native 10 8.75 (3.89) b

Note:
Mean scale insect abundance per 30 cm of branch in 2012 (top) and 2016 (bottom), reported as mean (± standard error)
with n indicating the number of trees. 2016 counts include live scale insects only. Within each year-genus pair, tree
species that share a letter are not different (a = 0.05) based on a Kruskal–Wallis test with a Benjamini–Hochberg (BH)
post hoc comparison. Tree species are ordered alphabetically within each year-genus pair.
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and small forest patches. Study trees were in growing in lawn areas surrounded by turf or in
mulched landscape beds surrounded by ornamental shrubs.

In October 2012, we pruned five 30 cm branches from each tree and used a dissecting
microscope to identify and count scale insects on the branches. Many scale insects,
especially those in the family Diaspididae, leave behind waxy covers that can persist
on trees after the soft-bodied scale insect has died. In 2012, we counted all scales insects,
live or dead, on the branches and identified armored scales (Hemiptera: Diaspididae),
soft scales (Hemiptera: Coccidae), and pit scales (Hemiptera: Astrolecaniidae) to family.
In May 2012, we used 7.6 � 12.7 cm yellow sticky cards (Great Lakes IPM, Inc.,
Vestaburg, MI, USA) to capture scale insect natural enemies in the canopy of each tree.
Sticky cards were placed in the interior of the canopy, above the first lateral branches, to
avoid attracting insects from other areas and incidental capture of insects flying in
the vicinity of the trees. Arthropods were sampled for 7–13 days in each tree. We identified
common predators to family or order and counted parasitoid wasps without identifying
them. One sticky card was lost during sampling.

In 2016, we used ArcMap 10.2.2 (Esri, Redlands, CA, USA) to randomly select 10 study
trees of each species from a geo-referenced inventory of trees maintained by the North
Carolina State University Facilities Division. We included the same tree species as in 2012
except we replaced the exotic species A. platanoides, which was no longer present in
sufficient numbers on campus, with another exotic, A. buergerianum (trident maple)
which is native to eastern Asia. Trees of each species were at least 100 m apart, with the
exception of three white oaks (Q. alba) which, out of necessity, were at least 50 m apart.
From late February through early May 2016, we collected two terminal branches that were
at least three m high from each tree to count scale insect abundance. We used a dissecting
microscope to identify and count scale insects on the terminal 30 cm of each branch.
We used metal probes to determine which scale insects were alive and included only live
scale insects in 2016 data analysis. We counted all live scales and identified live
armored scales (Hemiptera: Diaspididae), soft scales (Hemiptera: Coccidae), and pit
scales (Hemiptera: Astrolecaniidae) to family. We used 7.6 � 12.7 cm yellow sticky cards
(Great Lakes IPM, Inc., Vestaburg, MI, USA) to survey natural enemy abundance.
We placed a single card in the canopy of each tree for two weeks in June 2016, and we
repeated this in July and August 2016. Four sticky cards were lost. We used a dissecting
microscope to identify parasitoid wasps to family and to identify common scale
insect predators (Goulet & Huber, 1993). Here, we report on the six predator taxa that
were collected and identified in both 2012 and 2016. Insect taxa were identified to family
(Hemiptera: Anthocoridae, Coleoptera: Carabidae, Coleoptera: Coccinellidae,
Diptera: Dolichopodidae) and spiders to order (Araneae).

Analyses
We conducted all statistical analyses in R version 3.3.2 (R Core Team, 2016) and
conducted separate tests for maples and oaks. Because we used different data collection
methods in 2012 and 2016, we do not compare results across years. We pooled scale
insect counts from all sampled branches on each tree and calculated mean scale insect
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abundance per 30 cm of branch for use in analyses. To compare scale insect abundance
between tree species, we performed four separate Kruskal–Wallis tests, one for each
year-genus pair, using R package agricolae (DeMendiburu, 2016). We used the Benjamini–
Hochberg method for post hoc multiple comparisons when overall tests indicated
significant differences (a < 0.05) between tree species (Benjamini & Hochberg, 1995). For
each year, we compared total predator and, separately, total parasitoid wasp abundance
between tree species using Kruskal–Wallis tests with Benjamini–Hochberg post hoc
comparisons as above. For consistency and to account for differences in sampling duration
(2012) and lost sticky cards (2016), we converted all predator and parasitoid counts to
abundance per 7-day sampling period prior to analysis.

We used R package mvabund (Wang et al., 2014) to test whether the abundance of the
six predator taxa varied across tree species. mvabund fits generalized linear models
to multivariate abundance data to test the effects of a predictor variable on both
community-level response and the responses of individual taxa (Warton et al., 2015).
Distance-based analyses sometimes confound location and dispersion effects, but
mvabund avoids this problem by allowing the user to specify a mean-variance relationship,
for example by using poisson or negative binomial regressions (Warton, Wright & Wang,
2012). We fit negative binomial regressions to each predator taxon using raw counts
and offset terms to account for differences in sample durations (oaks in 2012) or numbers
(oaks and maples in 2016). To test whether the community of these six predator taxa
differed across tree species, we used the anova.manyglm function with a Wald test statistic,
1,000 bootstrap iterations, and the default step-down p-value adjustment method in
mvabund. When this test indicated an overall significant effect of tree species, we used
the summary.manyglm function to test pairwise contrasts of tree species following the
methods in Ji et al. (2013) and Bruce (2013). To account for multiple comparisons,
we adjusted p-values in R’s base package using the Benjamini–Hochberg correction.
To obtain univariate statistics for the pairwise comparisons, we used the default step-down
p-value adjustment method in the anova.manyglm function, changing the baseline tree
species as necessary.

We used the R package vegan (Oksanen et al., 2010) to calculate the Shannon diversity
index of the parasitoid wasp communities at the family level. In R’s base package, we used
ANOVA to compare the diversity indices between tree species. We used mvabund
to analyze 2016 parasitoid wasp communities following the same procedures we used for
predators. Prior to analysis, we removed parasitoid wasp families that were represented by
only a single individual (two families each for maples and oaks).

RESULTS
Scale insects
In 2012, we collected 9,757 scale insects, with a mean (± SD) of 21.68 (± 83.74) scale
insects per 30 cm of branch per tree. Scale insect abundance varied by tree species for
maples (w2 = 15.11, p < 0.002), with the native A. rubrum having the highest abundance
and the exotic A. platanoides having the lowest abundance (Table 1). A total of 94.98% of
the scales we collected on maples were armored scales (Hemiptera: Diaspididae),
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and the remaining 5.01% were soft scales (Hemiptera: Coccidae). Differences were also
apparent between oak species (w2 = 23.69, p < 0.001), with highest abundance on the native
Q. alba and lowest abundance on the exotic Q. acutissima (Table 1). A total of 92.17% of
the scales we collected on oaks were armored scales (Diaspididae) 5.39% were pit
scales (Hemiptera: Asterolecaniidae), and 1.89% were soft scales (Coccidae).

In 2016, we collected 1,752 live scale insects, with a mean (± SD) of 12.51 (± 43.25) live
scale insects per 30 cm of branch per tree. Scale insect abundance was less than in 2012
since we only counted live scales in 2016. Scale abundance varied by tree species for
maples (w2 = 17.11, p < 0.001) and oaks (w2 = 11.79, p < 0.003); both native species of
each genus had significantly more scale insects than their exotic congener(s) (Table 1).
On maples, 98.87% of the scales we collected were armored scales (Hemiptera:
Diaspididae), and the remaining 1.13% were soft scales (Hemiptera: Coccidae). On oaks,
40.58% of the scales we collected were soft scales (Coccidae), 22.46% were pit scales
(Hemiptera: Asterolecaniidae), and 21.50% were armored scales (Diaspididae).

Predators
In 2012, we collected 207 predators in the five predator taxa reported here. Abundance
per sample did not differ among maple species (w2 = 2.08, df = 3, p = 0.555) or oak species
(w2 = 2.27, df = 2, p = 0.321) (Table 2). In 2016, we collected 1,074 predators in the
five taxa which is more than in 2012 since we sampled three times instead of once.
The total number of predators per sample differed among maple species (w2 = 13.22, df = 3,
p = 0.004), with lower total predator abundance within the exotic A. palmatum than
in the other maple species (Table 2). There was no difference in total predator abundance
among oak species (w2 = 4.02, df = 2, p = 0.134) (Table 2).

In 2012, the composition of predator communities was not different among tree species
for maples (Wald statistic = 3.64, p = 0.134) or oaks (Wald statistic = 3.92, p = 0.074).
In 2016, the predator community differed among maple species (Wald statistic = 5.15,
p < 0.049); the exotic A. palmatum had a different community than all other Acer species
(Fig. 2). This difference was driven by the significantly lower Dolichopodidae abundance
within A. palmatum (Fig. 2; Table S1). The predator community also differed between
oak species in 2016 (Wald statistic = 5.125, p = 0.029) (Fig. 2). The exoticQ. acutissima had
a different overall predator community than the two native species, which was not driven
by significant differences in any individual taxa (Fig. 2; Table S2).

Parasitoid wasps
In 2012, we collected 4,676 parasitoid wasps from 89 samples, with a mean (± SD) of
52.5 (± 47.2) parasitoid wasps per 7-day sample. The number of parasitoid wasps per 7-day
sample was not different among maple species (w2 = 4.64, df = 3, p = 0.200) but
differed among the oak species (w2 = 17.26, df = 2, p < 0.001), with highest abundance
within a native,Q. phellos, and lowest abundance within the exotic,Q. acutissima (Table 2).
In 2016, we collected 12,520 parasitoid wasps in 25 families from 206 samples.
There was a mean (± SD) of 30.35 (± 13.12) parasitoid wasps per 7-day period.
The number of parasitoid wasps per sample differed among maple species, with lower total
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abundance within a native, A. saccharum, than the other maple species (w2 = 9.96, df = 3,
p = 0.019), and did not differ among oak species (w2 = 1.68, df = 2, p = 0.431) (Table 2).

The Shannon diversity index did not differ among maple species (F3,36 = 2.168,
p = 0.109) or oak species (F2,27 = 2.502, p = 0.101). Parasitoid community compositions
differed among maple species (Wald statistic = 15.33, p = 0.001; Fig. 3), with pairwise tests
showing differences between each pair of maple species (p < 0.05), driven primarily
by high Signiphoridae abundance within A. rubrum and high Aphelinidae abundance
within A. palmatum (Table S3). Parasitoid community composition also differed among oak
species (Wald statistic = 9.40, p = 0.007; Fig. 3), with Q. phellos having a different
composition than the other two species (Table S4). The abundance of parasitoid wasps in the
family Dryinidae was higher on Q. phellos than on the other oak species (p < 0.05).

DISCUSSION
Trees are critical for sustaining invertebrate and vertebrate diversity in urban habitats
(Smith et al., 2006a, 2006b; Stagoll et al., 2012). Native trees, in particular, are often thought
to be critical for supporting local herbivores and the predators and parasitoids that
consume them (Goddard, Dougill & Benton, 2010; Isaacs et al., 2009; McKinney, 2002;
Tallamy, 2004; Zuefle, Brown & Tallamy, 2007). Thus, increasing the proportion of native

Table 2 2012 and 2016 predator and parasitoid abundance.

2012

Species Origin n Predators BH Parasitoids BH

Acer palmatum exotic 14 1.93 (1.03) – 22.36 (4.57) –

Acer platanoides exotic 10 2.00 (0.77) – 33.50 (5.93) –

Acer rubrum native 10 0.90 (0.31) – 22.90 (3.61) –

Acer saccharum native 10 0.90 (0.59) – 30.50 (15.49) –

Quercus
acutissima

exotic 15 1.26 (0.29) – 24.49 (1.77) a

Quercus alba native 15 1.64 (0.37) – 42.58 (4.37) b

Quercus phellos native 15 3.25 (1.16) – 67.03 (7.27) c

2016

Species Origin n Predators BH Parasitoids BH

Acer buergerianum exotic 10 2.30 (0.60) a 30.23 (3.29) a

Acer palmatum exotic 10 0.72 (0.14) b 34.87 (4.91) a

Acer rubrum native 10 3.15 (0.61) a 34.73 (4.13) a

Acer saccharum native 10 2.83 (1.32) a 20.48 (2.13) b

Quercus acutissima exotic 10 4.86 (1.14) – 30.25 (5.29) –

Quercus alba native 10 2.28 (0.31) – 28.28 (4.36) –

Quercus phellos native 10 1.98 (0.34) – 33.63 (3.40) –

Note:
Mean predator and parasitoid wasp abundance per 7-day sample from sticky cards in 2012 (top) and 2016 (bottom),
reported as mean (± standard error) with n indicating the number of trees. Predator tests were performed separately
from parasitoid tests for each year-genus pair. Within each year-genus pair, tree species that share a letter are not
different (a = 0.05) based on a Kruskal–Wallis test with a Benjamini–Hochberg (BH) post hoc comparison. Letters are
provided only when the overall Kruskal–Wallis test indicated a significant difference between species. Tree species are
ordered alphabetically within each year-genus pair.
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tree species is often recommended as a measure to conserve urban animal diversity and
reduce homogenization between cities (Alvey, 2006; Clark et al., 1997;Herrmann, Pearse &
Baty, 2012; McKinney, 2006). In support of this recommendation and the enemy

Figure 2 2016 predator communities. Abundance of predators in five taxa in 2016 for (A) maples and
(B) oaks. Colored boxes mark the interquartile range (IQR), and whiskers extend to the largest value
within 1.5 � IQR. Values beyond 1.5 � IQR are marked as points. Exotic species are outlined in black.
Predator taxa that differed significantly between tree species in univariate tests are marked with �

(Tables S1 and S2). Global tests indicated significant differences in the predator communities of maples
and oaks (p < 0.05), where A. palmatum was different than other maple species and Q. acutissima was
different than other oak species (Tables S1 and S2). Full-size DOI: 10.7717/peerj.6531/fig-2
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release hypothesis, native species we sampled in the genera Acer and Quercus had higher
scale insect density than exotic congeners. The scale insect community on maples and oaks
in Raleigh includes many species native to the Southeastern US including Melanaspis
tenebricosa,M. obscura, Parthenolecanium quercifex, andMesolecanium nigrofasciatum, in
addition to exotic species such as Lopholeucaspis japonica and P. corni. Native A. rubrum,
Q. phellos, and Q. alba had scale insect densities two to three orders of magnitude
higher than any exotics or the native A. saccharum. In terms of supporting native
herbivores, and herbivores in general, native tree species in cities are beneficial. However,
from the perspective of aesthetics or the ecosystem services (such as carbon fixation)
carried out by trees, the densities of scale insects observed on A. rubrum, Q. phellos, and
other urban trees are potentially detrimental. At such densities, scale insects can
reduce photosynthesis (Cockfield, Potter & Houtz, 1987), growth (Meineke et al., 2016;
Meineke & Frank, 2018; Speight, 1991; Vranjic & Ash, 1997), and the aesthetic
or structural condition of trees (Dale & Frank, 2014a; Just, Frank & Dale, 2018;

Figure 3 2016 parasitoid wasp communities. Abundance of parasitoid wasps per 7-day sampling
period in 2016 on (A) maples and (B) oaks. Colored boxes mark the interquartile range (IQR), and
whiskers extend to the largest value within 1.5 � IQR. Values beyond 1.5 � IQR are marked as points.
Exotic species are outlined in black. Parasitoid families that differed significantly between tree species in
univariate tests are marked with � (Tables S3 and S4). Parasitoid wasp families that use scale insects as
hosts (Kosztarab, 1996) are bolded on the y-axis. Global tests indicated significant differences in the
parasitoid wasp communities of maples and oaks (p < 0.05), where all maple species had different
communities andQ. phellos had a different community than the other two oak species (Tables S3 and S4).

Full-size DOI: 10.7717/peerj.6531/fig-3
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Speight et al., 1998; Sperry et al., 2001). Conversely, in the urban sites we studied, exotic
trees had fewer pests and may be more likely to maintain growth and services such as
temperature reduction and carbon sequestration with fewer management costs
(Chalker-Scott, 2015; Hitchmough, 2011).

Scale insects and other hemipteran herbivores are prey or hosts for hundreds of
predatory and parasitic arthropods as well as prey for birds and other vertebrates
(Brennan, Morrison & Dahlsten, 2000; Clout & Hay, 1989; Evans, Towns & Beggs, 2015;
Moeed & Fitzgerald, 1982; Morse, 1971; Witmer, 1996). In our study, the abundance
and community composition of predators and parasitoid wasps, as sampled by sticky
cards, were generally similar between native and exotic congeners. In 2012, both predator
and parasitoid wasp abundance were highest within the native species Q. phellos.
Parasitoid wasp abundance was lowest within the exotic species Q. acutissima. Parasitoid
wasp abundance overall was greatest in Q. phellos but the family Dryinidae was the only
family that was significantly more abundant. Dryinid wasps parasitize Hemipterans
in the suborder Auchenorrhyncha which includes leafhoppers, planthoppers, lace bugs,
and others but not scale insects (suborder Sternorrhyncha) (Klejdysz et al., 2018).
Oaks support many Auchenorrhyncha that could be hosts for Dryinid wasps including
specialists like oak lace bug (Corythucha arcuata) and oak treehopper (Platycotis vittata)
and many generalists (Johnson & Lyon, 1976; Southwood, 1961; Southwood, Moran &
Kennedy, 1982; Southwood et al., 2004, 2005). The most abundant parasitoid families
within oaks were Aphelinidae, Platygatridae, and Mymaridae. Most Aphelinids
are parasitoids of Sternorrhyncha which includes scale insects, aphids, and mealybugs
(Viggiani, 1984). Coccophagus lycimnia is a common Aphelinid parasitoid of
Parthenolecanium spp. scale which is the most common scale on Q. phellos in our region
(Meineke, Dunn & Frank, 2014; Meineke et al., 2013; Robayo Camacho et al., 2018).
A total of 21 parasitoid species have been reared from Parthenolecanium scales from
Q. phellos (Meineke, Dunn & Frank, 2014; Meineke et al., 2013; Robayo Camacho et al.,
2018). Most Platygastrids parasitize flies in the family Cecidomyiidae many of which are
herbivorous leafminers and gall makers but the family also includes predatory flies
that prey on scales, aphids, and other Hemipterans (Hagen et al., 1999). All species within
the family Mymaridae parasitize eggs of other insects, frequently those of scale insects and
their relatives (Hemiptera: Coccoidea) (Harris, 1968).

Where differences in natural enemy abundance were observed within maples in
2016, a native species, A. saccharum, had the lowest abundance of predators and
parasitoid wasps. The native species A. rubrum, which often has severe infestations of
gloomy scales (Melanaspis tenebricosa) in cities (Dale & Frank, 2014a, 2014b;
Metcalf, 1912; Youngsteadt et al., 2015), had significantly higher abundance of
Signiphoridae wasps which parasitize scales, mealybugs, or psyllids (Gibson, Huber &
Woolley, 1997). Signiphora spp. (Signiphoridae), Encarsia spp. (Aphelinidae), Ablerus
spp. (Aphelinidae), and Coccidoctonus (Encyrtidae) have been reared from gloomy
scales (Dale & Frank, 2014b). Acer palmatum, which had very low scale insect density,
had significantly more Aphelinidae parasitoids than the other Acer species.
Members of Aphelinidae, primarily parasitoids of aphids, scales, whiteflies, and other

Frank et al. (2019), PeerJ, DOI 10.7717/peerj.6531 11/21

http://dx.doi.org/10.7717/peerj.6531
https://peerj.com/


hemipterans, could have been attracted to A. palmatum by aphids or other herbivores we
did not sample (Frank et al., 2013).

Many other arthropods are present within oak and maple canopies (Johnson & Lyon,
1976; Southwood, Moran & Kennedy, 1982). For example, 537 and 297 lepidopteran
species are associated with the genera Quercus and Acer respectively (Tallamy &
Shropshire, 2009). Thus, many parasitoids and predators we captured may interact with
herbivores other than scales or with each other as higher-order natural enemies.
In addition, sticky cards are a passive sampling technique that is biased toward flying taxa
and can capture “tourists” in addition to species that have close associations with tree
species or its herbivores. For example, few North American carabid species are arboreal so
some of the carabids we captured could have been incidental or tourists in our study trees.
However, arthropods collected from Q. phellos and A. rubrum foliage with sweep
nets in previous research included many of the same taxa as collected on sticky cards in
addition to predatory mites (Phytosiidae), lacewings (Neuroptera: Coniopterygidae,
Chrysopidae), ants (Hymenptera: Formicidae), 17 families of spiders, and many others
(McCluney, George & Frank, 2018; Meineke et al., 2017).

Low scale density on A. palmatum and other exotic species could have resulted from the
combined influence of high natural enemy abundance and low susceptibility to many
scale species. Generalist predators in the families Anthocoridae and Coccinellidae,
which feed on scales and other Hemipterans, were captured in similar numbers in native
and exotic trees. Spiders, which are common in urban trees and feed on many taxa,
were also of similar abundance in native and exotic trees (McCluney, George & Frank,
2018; Meineke et al., 2017). Other researchers have also found similar densities of
arthropod natural enemies on native and exotic trees even though the exotic species had
lower herbivore densities (Hartley, Rogers & Siemann, 2010; Procheş et al., 2008;
Southwood, Moran & Kennedy, 1982). Natural enemies frequently visit and remain in
habitats due to the vegetation structure, microclimates, or other resources that may
be similar for native and exotic tree species. Our results corroborate these findings but this
pattern requires further research to understand the factors, other than herbivores,
that define the conservation value of exotic trees.

There is growing evidence that some insect taxa, or even insects in general, are declining
due to land use change, climate change, exotic plants, insecticides, and other factors
(Conrad et al., 2006; Hallmann et al., 2017; Potts et al., 2010). All these issues converge
when managing urban trees to conserve arthropods and minimize pests. Urban forest
design and planting recommendations generally include increasing tree diversity
at multiple taxonomic levels using a mixture of native and non-native species
(Raupp, Cumming & Raupp, 2006; Elevitch & Wilkinson, 2001). The primary goal of
increasing urban tree diversity has been to reduce catastrophic damage caused by exotic
pests such as emerald ash borer and Dutch elm disease. Although we only studied three
exotic maples and one exotic oak they are among the most commonly planted species in
our region. Our results suggest that planting these exotic tree species is also a valuable
contribution to conserving arthropod communities (Chalker-Scott, 2015; Hitchmough,
2011). Since these exotic species are also less susceptible to scales, and potentially
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other pests, they may not require insecticide applications that harm non-target organisms
and thus reverse conservation goals (Goulson, 2013; Luck & Dahlstein, 1975; Raupp et al.,
2001; Woodcock et al., 2016).

The exotic species we studied conserved similar arthropod natural enemy abundance
and community structure at the family level as their native congeners. There are likely
differences in natural enemy communities at lower taxonomic levels particularly
among specialists that require a particular herbivore species on which to feed. Native trees,
such as oaks that host hundreds of herbivorous species (Southwood, 1961), may have
richer specialist herbivore diversity and a different array of natural enemy species than
exotic trees (Burghardt et al., 2010; Keane & Crawley, 2002). However, the extent of these
differences may vary with arthropod, life stage, feeding guild, taxonomic isolation of
the tree species, and other factors we could not assess (Burghardt & Tallamy, 2013, 2015).
In addition, arthropod communities on distantly related tree species or those with
no native relatives such as ginkos (Ginkgo biloba) or crape myrtle (Lagerstroemia spp.) are
likely more distinct than comparisons between congeners (Burghardt & Tallamy, 2013,
2015). However, we hypothesize that herbivory and the biodiversity supported by a
tree depends as much on urban variables such as habitat fragmentation, impervious
surface cover, and temperature as it does on geographic origin of the tree species
(Frank, 2014; Le Roux et al., 2018; Long, D’Amico & Frank, 2018; McCluney, George &
Frank, 2018; Meineke et al., 2017). Thus, even a native urban tree will likely support a
different arthropod community than the same tree species in a natural habitat and
have different conservation value (Herrmann, Pearse & Baty, 2012; Manning, Fischer &
Lindenmayer, 2006; Turrini & Knop, 2015). Our results support mixing native and exotic
trees to achieve conservation and pest management goals.

CONCLUSIONS
Conservation of arthropods, for their own sake, and to support birds are commonly cited
reasons to plant native instead of exotic trees in urban spaces (Goddard, Dougill &
Benton, 2010; Tallamy, 2004). Our analyses of the scale insect and natural enemy
communities in some native and exotic maple and oak species does not fully support this
perspective. The native tree species in our research did not always host more
herbivorous scale insects than the exotic species and we found similar natural enemy
communities within the native and exotic species. Moreover, high densities of scale insects
in native A. rubrum and Q. phellos have been found to reduce tree condition and
growth in previous research (Dale & Frank, 2014a; Meineke et al., 2016; Meineke &
Frank, 2018). We conclude that the exotic oak and maple species we studied could be
as valuable as the native species for conserving arthropod natural enemies.
The pest susceptibility of native tree species must be balanced against potential
conservation benefits when selecting trees for urban planting.
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