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The activated leukocyte attacked the vascular endothelium and the associated increase in VEcadherin number was observed in
experiments. The confocal microscopic system with a prism-based wavelength filter was used for multiwavelength fluorescence
measurement. Multiwavelength fluorescence imaging based on the VEcadherin within the aorta segment of a rat was achieved.
The confocal microscopic system capable of fluorescence detection of cardiovascular tissue is a useful tool for measuring the
biological properties in clinical applications.

1. Introduction

In recent years, the confocal microscopic technique has had
an important role in biology and medicine, especially for
fluorescence imaging of tissues [1–6]. Compared with the
conventional optical microscopy, the confocal microscopy
provides more advantages, including controllable depth
of field, elimination of out-of-focus information, and the
capability to collect serial optical sections from thick spec-
imens. Recently, fibered confocal fluorescence microscopy
was combined in endoscopic imaging system [7–9]. Confocal
endomicroscope aims at providing to the clinician optical
biopsies, that is, in vivo microscopic imaging of a living
tissue. Such systems have been successfully applied to the
in vivo explorations of the human skin, cervix, and oral
cavity, as well as to the endomicroscopic imaging of the
gastric and colonic mucosa and biliary tract. Lately, the
microscopic imaging was also achieved in the proximal and
distal respiratory systems [10].

Atherosclerosis may occur in the arteries of the brain,
heart, kidneys, vital organs, arms, and legs. It is the major
cause for myocardial infarction, stroke, and peripheral

vascular diseases. It is also the leading cause for illness
and deaths in the United States and other developed
countries [11]. Atherosclerosis has been studied extensively
with various animal models [12]. The degree of low-
density lipoprotein- (LDL-) induced leukocyte adhesion to
endothelium is considered to be an important factor of
developing atherosclerosis, and one of the earliest stages
of atherogenesis is endothelial dysfunction [13]. In animal
study using rats, the aorta endothelium has a relatively small
thickness of ∼100 µm, which makes it difficult to obtain
images under a conventional microscope. The confocal
fluorescence microscope is a suitable alternative for acquiring
sectioned images. It has observed LDL-induced leukocyte
adhesion to endothelium.

Simultaneous multiwavelength fluorescence screening,
for example, in observing certain proteins labeled with
different fluorescent dyes [14–16], has attracted increasing
attention [17]. Multiple excitation wavelengths are emitted
from various lasers. The multiwavelength fluorescence sig-
nals can be measured by detectors with optical filters. In a
conventional confocal fluorescence microscope, normally a
filter wheel with chosen wavelength ranges was used [18, 19].
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Figure 1: The schematic setup of our confocal microscope. The laser beam for excitation is incident upon the sample. With the prism, the
signal splits into three wavelength ranges, each of which is detected by one PMT.

However, with the choice of dyes widening, the design needs
be modified for multiwavelength measurement as detection
based on rotating the filter wheel for different wavelengths
with longer time-consuming and higher cost. Therefore, an
adjustable design for optical filters is needed to involve the
wavelength range of fluorescence [20–22].

In this paper, a confocal spectral microscope was used
to measure the multiwavelength fluorescence images from
the cut-open rat aorta. Both auto- and extra-fluorescence
detections have been achieved in experiments. Control-
lable prism-based wavelength filters are incorporated into
our microscopic system to obtain the multiwavelength
fluorescence images [23]. The activated leukocyte attacks
the vascular endothelium and the associated increase in
VEcadherin number is observed in the experiments.

2. Experiments

In our study, a confocal microscopic system (Leica TCS SP2)
was used to obtain the multiwavelength fluorescence images
of aorta samples. An Ar-Kr laser of 488 nm and a He-Ne laser
of 543 nm are the excitation light sources. Figure 1 shows
the schematic setup of our confocal microscopic system. The
laser beam passes though an acoustic optical tunable filter
(AOTF) and is coupled into a fiber bundle. The AOTF is

used to control the excitation intensity to avoid the photo-
bleaching of the sample. The laser beam is then reflected to
the sample by the dichroic beam splitter. The signal from
sample is collected with an objective, passes though the
dichroic beam splitter, and is finally incident on a prism.
With the prism, the signal splits into three wavelength ranges,
each of which is detected by one PMT [22]. The X-Y scanner
is used to scan the sample for 2D imaging. The cut-open
aorta tissue of a rat is prepared for in vitro measurement. The
Ar-Kr laser excites the green autofluorescence from proteins
in tissue, while the He-Ne laser stimulates the red extra-
fluorescence from the cells of rat’s endothelium labeled with
dye alexa568 conjugated lectin GS-IB4. The scanning line
rate is 400 Hz in the experiment.

The fluorescence images of rat’s aorta segments were
detected by a confocal microscope with the prism-based
filter for the wavelength selection. In human bodies, the
cholesterol cannot dissolve in blood. Lipoproteins play an
important role in the cholesterol transport between cells.
There are two kinds of lipoproteins: high-density lipoprotein
(HDL) and low-density lipoprotein (LDL). HDL carries
cholesterol away from the blood to prevent the heart disease.
LDL, so-called “bad cholesterol”, builds up in the inner
walls of the arteries. LDL causes the atherosclerosis when it
combines with other substance and then induces the plaque
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Figure 2: Red fluorescence images of the rat endothelial cells excited by He-Ne laser. The wavelength ranges are (a) 555–700 nm, (b) 555–
575 nm, and (c) 600–630 nm, respectively. (d) The fluorescence spectra: each colored curve represents the data taken at the spot marked with
the circle of that color.

generation in arteries [24, 25]. Thus, LDL indicates either
leukocyte-endothelium interaction or platelet aggregation in
the blood stream.

In this experiment, we observed the in vitro fluorescence
images of a cut-open aorta of the rat [26, 27]. The relation
between the VEcadherin and the activated leukocyte is
verified experimentally. The samples are prepared under
three distinct conditions: (1) the leukocyte is treated with
10 mg/mL native LDL solution and then mixed with the
buffer-treated endothelial cells; (2) the leukocyte is treated
with buffer and mixed with the endothelial cells, which are
treated with 10 mg/mL native LDL solution; (3) the leukocyte
and the endothelial cells are both treated with 10 mg/mL
native LDL solution.

3. Results and Discussion

The red fluorescence images of endothelial cells excited by
He-Ne laser are shown in Figure 2. Figure 2(a) is the image
with the measured fluorescence range spanning from 555 nm
to 700 nm, the TRITC fluorochrome range. In Figures 2(b)
and 2(c), the measured wavelength ranges of fluorescence
are 555–575 nm and 600–630 nm, respectively. Figure 2(d)
shows the fluorescence spectra of 3 selected spots, each
marked with a distinct color. The spectral range is 560–
700 nm at 20-nm wavelength intervals. The peak value of
each fluorescence spectrum is about 605 nm. Obviously,

Figure 2(d) shows the power of spectrum tail form incident
He-Ne laser is larger than the fluorescence signal, thus it
blurred the red fluorescence images. As a result, Figures
2(a) and 2(b) are the background images due to the
backscattered photons of He-Ne laser. Therefore, we select
optimal wavelength range in Figure 2(c) and it indicates the
pure red fluorescence image from endothelial cells.

The vascular endothelial cadherin (VECAD), the labeled
protein, increases in number after the samples have been
treated with LDL solution. The VECAD is an endothelial-
specific cadherin localized at the intercellular junctions
[28]. It could be associated with atherosclerotic lesions by
endothelial cells and blood vessels forming [29]. The green
fluorescence images from the labeled protein are shown
in Figures 3(a)–3(c). The measured fluorescence range of
Figure 3(a) is 500–540 nm, the FITC fluorochrome range. In
Figures 3(b) and 3(c), the measured wavelength ranges are
500–505 nm and 515–535 nm, respectively. The fluorescence
spectra with a wavelength range of 510–540 nm at 7.5-nm
intervals are shown in Figure 3(d). The peak value of each
spectrum is about 520 nm. Again, the spectrum tail from
the Ar-Kr laser blurred the excited green fluorescence signal.
Therefore, the 515–535 nm of measured wavelength ranges
is selected and the real green fluorescence signal appears in
Figure 3(c). The background signals due to the Ar-Kr laser
fringes are shown in Figures 3(a) and 3(b).
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Figure 3: Green fluorescence images of the labeled protein excited by the Ar-Kr laser. The wavelength ranges are (a) 500–540 nm, (b) 500–
505 nm, and (c) 515–535 nm, respectively. (d) The fluorescence spectra: each colored curve represents the data taken at the spot marked with
the circle of that color.

The filter wheel with fixed wavelength range, for exam-
ple, FITC, TRITC, and so forth, are not good enough
for florescence imaging. In order to increase the image
contrast as well as the signal-to-noise ratio and to avoid
the spectral cross talk, an adjustable wavelength filter is a
more appropriate option. Adopting the prism-based filter in
the microscopic system could be a helpful tool to analyze
fluorescence images immediately without the postprocessing
or image reconstruction.

Figure 4 shows the fluorescence images of the cut-
open rat aorta treated with 10 mg/mL LDL solution and/or
buffer solution. The wavelength ranges of the measured
fluorescence are 600–630 and 515–535 nm for the red and
green images, respectively. The first symbol of each label
in Figure 4 stands for the treatment of leukocyte, and the
second symbol represents that of the aorta segment. L stands
for treatment with 10 mg/mL native LDL solution, while C
means treatment with buffer solution.

In Figure 4(a), the leukocyte and endothelial cells do
not treat with any extra solution. There is no green auto-
fluorescence signal, which means no VECAD exists in the
sample. In Figures 4(b)–4(d), with the leukocyte and/or
rat’s aorta segment treated with 10 mg/mL LDL solution,
green autofluorescence is detected, meaning the increase in
VECAD number. As mentioned before, the LDL solution
activates the leukocyte to attack the rat’s aorta endothelial

cells and the VECAD number increases. There is then a rise
of the possibility of atherosclerosis, which affects the arteries
of the brain, heart, kidneys, vital organs, arms, and legs in
human bodies

4. Conclusion

In this paper, we have demonstrated the measurement of
multiwavelength fluorescence of the cut-open rat aorta using
a Leica TCS SP2 confocal fluorescence microscope. The
experimental results show that an adjustable wavelength
filter is suitable for imaging optimization. The spectral
range of 350–850 nm is wide enough for various kinds
of fluorescence measurement. Using the Ar-Kr laser for
green autofluorescence excitation and the He-Ne laser for
red extra-fluorescence excitation achieves the multicolor
images. The prism-based filter provides a flexible selection
of wavelength pass range. The optimization of wavelength
pass range suppresses noises from the excitation laser fringes,
improving the contrast and signal-to-noise ratio.

In this experiment, the results show that the leukocytes
attack the aorta endothelial cells after treatment with
10 mg/mL LDL solution, leading to the increase in number of
VECAD. VECAD plays an important role in endothelial cell
physiology. The cell contact regulates angiogenesis by con-
trolling endothelial cell adhesion and migration and induces
the generation of VECAD under a specific condition [30].
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Figure 4: The comparison between red fluorescence images (left) excited by He-Ne laser and green fluorescence images (right) excited by
Ar-Kr laser. (a) The leukocyte and the endothelial cells are both treated with buffer. (b) The leukocyte is treated with buffer and then mixed
with the endothelial cells which are treated with 10 mg/mL native LDL solution. (c) The leukocyte is treated with 10 mg/mL native LDL
solution and then mixed with the buffer-treated endothelial cells. (d) The leukocyte and the endothelial cells are both treated with 10 mg/mL
native LDL solution.
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VECAD mediates the ability of leukocytes to go through
the endothelial cells. Furthermore, it is considered to be
associated with the dysfunction of endothelial cells and can
accelerate atherosclerosis [31]. The confocal microscopic
system is a useful tool for the measurements of biological
properties with fluorescence detection of VECAD. It provides
real-time imaging while the leukocytes are transporting
through endothelial cells in the environment of tissue-
culturing dishes and can observe the change of VECAD
concentration immediately. Although our result shows only
the in vitro confocal images, it still offers a good feasibility for
cardiac endoscopy with fiber optics in clinical application.
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