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Defensins are host defense peptides present in nearly all living species, which play a
crucial role in innate immunity. These peptides provide protection to the host, either by
killing microbes directly or indirectly by activating the immune system. In the era of
antibiotic resistance, there is a need to develop a fast and accurate method for predicting
defensins. In this study, a systematic attempt has been made to develop models for
predicting defensins from available information on defensins. We created a dataset of
defensins and non-defensins called the main dataset that contains 1,036 defensins and
1,035 AMPs (antimicrobial peptides, or non-defensins) to understand the difference
between defensins and AMPs. Our analysis indicates that certain residues like Cys,
Arg, and Tyr are more abundant in defensins in comparison to AMPs. We developed
machine learning technique-based models on the main dataset using a wide range of
peptide features. Our SVM (support vector machine)-based model discriminates
defensins and AMPs with MCC of 0.88 and AUC of 0.98 on the validation set of the
main dataset. In addition, we created an alternate dataset that consists of 1,036 defensins
and 1,054 non-defensins obtained from Swiss-Prot. Models were also developed on the
alternate dataset to predict defensins. Our SVM-based model achieved maximumMCC of
0.96 with AUC of 0.99 on the validation set of the alternate dataset. All models were
trained, tested, and validated using standard protocols. Finally, we developed a web-
based service “DefPred” to predict defensins, scan defensins in proteins, and design the
best defensins from their analogs. The stand-alone software and web server of DefPred
are available at https://webs.iiitd.edu.in/raghava/defpred.

Keywords: innate immunity, defensins, AMPs, computer aided, machine learning
1 INTRODUCTION

Defensins are a group of antimicrobial peptides (AMPs) that are an essential part of the innate
immune system. Because of their broad-spectrum antimicrobial efficacy, they are imperative effector
components in the defense of a host against infections (1–3). Based on configuration, defensins are
categorized into two categories: a-defensins (a-helices) and b-defensins (b-sheets). Defensins are
minute, cationic peptides that enable phagocytes, the skin, and the mucosa to fight bacteria. They
also have a broad range of antimicrobial activity against viruses, mycoplasma, tumor, and fungi.
They do have an amphipathic nature and acts on the membrane or envelopes the wall using their
org November 2021 | Volume 12 | Article 7806101
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nature (4–6). The critical cellular secretors of these peptides
include neutrophils and epithelial cells, but defensins are also
generated by monocytes, macrophages, dendritic cells, and
lymphocytes (7). According to previous studies, defensins are
commonly dispersed among different body compartments in
nearly all living organisms; however, they seem to be elevated in
specific pathogenic body cells (8). These host defense peptides
aid in the fight against bacterial, viral, and fungal infections via
cells that produce them (7). Defensin peptides mostly destroy the
structure of bacterial cell membranes as part of their action
mechan i sm dur ing wh ich they infl i c t membrane
permeabilization, which thereby results in the release of
nutrients from the bacterial cell (9). They achieve this by
binding to the membrane and forming destructive pores on
the cell membrane. Defensins are induced by various stimuli
(10). They are majorly synthesized and released from dendritic
cells, monocytes, neutrophils, eosinophils, and epithelia cells. In
addition to their antimicrobial activity, defensins are also actively
involved in a range of immune-modulatory functions such as
mitogenesis, cytokine release, and histamine release, as depicted
in Figure 1.

• In the era of drug resistance, many emerging strains of
pathogens (i.e., bacteria, fungi, parasites) are being found to
be resistant to existing drugs, particularly against antibiotics
(11, 12). This includes multidrug-resistant strains that are
Frontiers in Immunology | www.frontiersin.org 2
resistant to most of the existing drugs (13–15). In order to
manage treatment of drug-resistant strains of pathogens,
researchers are exploring alternatives to antibiotics (16, 17).
One of the potential alternatives to antibiotics is protein-/
peptide-based therapeutics. In the last two decades, there is a
significant rise in the number of peptide-based therapeutics
approved by the FDA (18–21). Some of the FDA-approved
AMPs include poly(2-oxazoline)s, which are used as synthetic
mimics of host defense peptides (22), as well as daptomycin,
gramicidin, and colistin (23).

AMPs are one of the major classes of therapeutic peptides that
are commonly used to kill microbial pathogens including the
drug-resistant strain of pathogens (24, 25). In the past, numerous
computational resources and methods have been developed for
predicting AMPs including chemically modified AMPs (26–34).
In addition to AMPs, a number of methods have been developed
to predict peptides for killing a specific class of microorganism
which include prediction of antibacterial, antituberculosis,
antiviral, antifungal, and antiparasite peptides (35–41). Though
these antimicrobial peptides are an alternative to small-
molecule-based drugs, their toxicity, half-life, and allergenicity
are major challenges (42–44). Thus, there is a need to explore a
new class of AMPs called defensins, which are used by hosts to
defend themselves from pathogens. These defensins have
numerous advantages over AMPs as they are damage-
FIGURE 1 | A schematic diagram for the role of defensins in the host immune system.
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associated molecular patterns (DAMPs) and released in the host
itself. Due to this, they are less toxic and are highly tolerated by
the body. They occur naturally and are recognized by pattern
recognition receptors (PRRs) (45, 46). In the past, a number of
methods have been developed for predicting defensins and their
classes (47–50). We discussed the available tools in the section
Comparison With Existing Tools.

In this paper, we describe a reliable method developed for
predicting defensins with high precision. We systematically
collected defensins, AMPs, and non-defensins from various
sources to create the largest possible datasets. In this study, we
tried to understand the differences and similarities between
defensins and AMPs. We observed significant differences in
defensins and AMPs. Thus, we developed models for
discriminating antimicrobial peptides and defensins. In
addition, we developed models for discriminating defensins
and non-defensins. In order to help the scientific community,
we developed a stand-alone software as well as a web server.
2 MATERIALS AND METHODS

2.1 Creation of Datasets
Defensins were obtained from various sources that include
previous studies (48–50), DRAMP2.0 (51), and CAMPR3 (30).
We only collected experimentally validated defensin sequences
which have antimicrobial activity. It was observed that defensins
have a wide range of lengths (5–120 residues), but most of them
(77.59% of the total sequences) have 10–60 residues. Thus, in this
study, we removed all defensins which have number of residues
less than 10 or more than 60 residues. We also removed
sequences containing non-natural or non-standard amino
acids (B, J, O, U, X, and Z). Finally, 1,036 unique defensins
were obtained. These defensin sequences have been used to
create two datasets, as described below.

2.1.1 Defensins/AMPs or the Main Dataset
Our main dataset contains defensins as positive sequences and
AMPs as negative sequences. As described above, we collected
1,036 defensins from different sources. We obtained 2,297
experimentally validated AMPs from the CAMPR3 database.
Basically, we have taken all peptides excluding peptides of the
defensin family. Similar to defensins, the sequence lengths were
restricted between 10 and 60 residues. We also discarded
sequences containing amino acids other than natural amino
acids. In summary, our main dataset contains 1,036
experimentally validated defensins and 1,035 AMPs (or
non-defensins).

2.1.2 Defensins/Proteins or the Alternate Dataset
Our alternate dataset has defensins and non-defensins. In order
to obtain non-defensins, we searched Swiss-Prot (52) with
following queries: “Non-AMPs” and “Non-Defensin” and “Not
antibacterial” and “Not antifungal” and “Not antiviral” and “Not
antiparasitic” and “Not antimicrobial” proteins. Initially, we
obtained ~42,357 protein sequences, out of which we
Frontiers in Immunology | www.frontiersin.org 3
randomly selected 1,055 unique sequences having a number of
residues between 10 and 60. In simple words, our alternate
dataset contains 1,036 defensins and 1,054 non-defensin
sequences as shown in Figure 2.

2.2 Sequence-Based Features
The stand-alone version of Pfeature (53) was used to calculate a
variety of features from protein sequences in this analysis.
Thousands of features/descriptors of protein or peptide
sequences can be calculated using Pfeature. We applied the
composition-based function module of Pfeature and created a
vector of 8,968 features. Apart from these, we have also tried
different composition features individually from Pfeature on
both datasets. The corresponding results are shown in
Supplementary Tables 1, 2.

2.3 Feature Selection and Ranking
Identifying an essential collection of features from the vast
dimension of features is one of the main challenges of the
study. We used the SVC-L1-based feature selection strategy,
which incorporates the support vector classifier (SVC) with
linear kernel, penalized with L1 regularization. SVC-L1 was
chosen because it uses many methods to pick the right features
from a vast number of feature vectors and is incredibly quick in
comparison to other methods (54). Its main goal is to reduce the
objective function, which takes into account the loss function
and regularization. To minimize dimensions, the SVC-L1
algorithm chooses non-zero coefficients and, afterwards,
applies the L1 penalty to choose appropriate features. During
the optimization process, the L1 regularization generates sparse
models by removing a few of the features from the model by
setting the coefficients to zero. The sparsity is regulated by the
“C” parameter, which is dependent on the number of features
selected; the smaller the “C” value, the fewer features are selected.
For parameter “C,” we used the default value of 0.01 (55).
Subsequently, the significance of these features in classifying
proteins was then evaluated using the software “feature selector.”
The program “feature selector” ranks the features depending on
the amount of time a feature is used to split data across all trees,
using a DT-based algorithm called the Light Gradient Boosting
Machine (56).

2.4 Machine Learning
In this study, several machine learning algorithms have been
used to develop models for classification using Python’s library
scikit-learn (57). It includes extra tree (ET), random forest (RF),
logistic regression (LR), support vector machine (SVM), k-
nearest neighbors (KNNs), and multilayer perceptron (MLP).
Different hyperparameters corresponding to these classifiers
were tuned using “GridSearch” and only the best results
were incorporated.

2.5 Cross-Validation Techniques
In order to provide internal and external validation, we divide our
datasets into training and validation sets in 80% and 20% ration,
respectively. In case of internal validation, we used a five-fold
cross-validation technique, where sequences in the training sets
November 2021 | Volume 12 | Article 780610
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are first arbitrarily divided into five equivalent folds (58, 59).
Thereafter, four of these folds are used for training and the
remaining fold is used for testing. The procedure is replicated
five times until each of the five folds has been used for testing at
least once. Finally, the performance of the model is calculated by
averaging the performance on the five folds. This is called internal
validation where parameters are optimized on 80% training
dataset to achieve the best performance. In order to validate the
performance of our models, we evaluate the performance on 20%
validation dataset, called external validation.

2.6 Evaluation Parameters
We used well-established evaluation criteria to assess the efficacy
of various machine learning classification models. We used both
threshold-dependent and independent parameters in this
analysis like sensitivity (Sens), specificity (Spec), and accuracy
(Acc). To assess the results of the models, a receiver operating
characteristic (ROC) curve was plotted between sensitivity and 1
− specificity. Thereafter, we used the typical threshold-
independent parameter AUROC (area under the ROC curve)
values for assessment. The following equations were used to
quantify these parameters:

Sens =
TP
P

� 100

Spec =
TN
N

� 100
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Acc =
TP + TN
P + N

� 100

MCC =
TP � TN − FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
p

where TP = true positive, FP = false positive, TN = true
negative, and FN = false negative.

2.7 Architecture of the Web Server
To predict defensins and AMPs and defensins and non-
defensins, a web server called “DefPred” (https://webs.iiitd.edu.
in/raghava/defpred) was developed. HTML5, Java, CSS3, and
PHP scripts were used to build the front end of the web server. It
was built on responsive templates, which modify the size of the
screen depending on the device. It works for virtually all
electronic devices, including smartphones, tablets, and
desktop computers.
3 RESULTS

We conducted some preliminary analyses on the main and
alternate dataset sequences to understand the preference of
certain types of residues. Thereafter, the models were
developed on the “main” and “alternate” datasets. A
comprehensive detail about these analyses as well as the
performance of the models is shown in the following sections.
FIGURE 2 | A brief workflow of the study.
November 2021 | Volume 12 | Article 780610
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3.1 Compositional Analysis
The amino acid composition (AAC) for defensins, AMPs, and
non-defensin peptides was calculated. Figure 3 depicts the
typical amino acid composition of defensin, antimicrobial, and
non-defensin peptides. As shown in Figure 3, defensins have a
higher amino acid composition for certain types of residues (i.e.,
C, D, E, N, R, T, Y) in comparison to AMPs. In comparison to
non-defensins, defensins have a higher amino acid composition
for the following types of residues: C, G, R, and Y. Similarly,
AMPs have a higher composition for certain types of residues
(e.g., C, I, K, L) in comparison to non-defensins. These
observations indicate that defensin and AMPs are different in
terms of preference of residues, despite that both of them have
antimicrobial activity. These observations indicate that
antimicrobial peptide prediction is not suitable for predicting
defensins as both have preference to different types of residues.
Besides, we also conducted the “Mann–Whitney test” to
determine the statistical significance among these three groups.
We found that among 60 pairs, 54 were statistically significant
(Supplementary Table 3). AMPs and non-defensins have non-
significant amino acid residue pairs like A and W. AMPs and
defensins have M residue as a non-significant pair. At the same
time, non-defensins with defensins have F, H, and T as non-
significant pairs.
3.2 Preferential Position Analysis
In this analysis, the preference of a particular amino acid at a
specific position in the protein string was studied. A two-sample
logo (TSL) for the main and alternate datasets is represented in
Figure 4. The most significant amino acid residue represents the
relative abundance in the sequence. It is important to note that
Frontiers in Immunology | www.frontiersin.org 5
the first 10 positions represent the N-terminal residues of
peptides, and the last 10 positions represent the C-terminus of
peptides. We observed that the amino acid “C” was enriched at
positions 1, 2, 3, 5, 6, 7, 8, and 9 of the C-terminus and at
positions 3, 4, 5, 6, 8, and 9 of the N-terminus. Also, the amino
acid “N” was enriched at position 10 of the C-terminus and “S”
was enriched at position 7 of the N-terminus. However, the non-
defensins show an abundance of “K,” “L,” and “A” at various
positions in both C- and N-termini.
3.3 Development of the Prediction Models
3.3.1 Feature Selection
Firstly, we computed a wide range of features using the Pfeature
software. As all features are not important, so we removed all
irrelevant features. Based on the SVC-L1 feature selection
technique outlined in the Materials and Methods section, 93
important features for the main dataset and 68 important
features for the alternate dataset (Supplementary Tables 4, 5)
were identified from the 8,498 features. With the support of the
“feature selector” tool, for each of these datasets, all features were
ranked according to their normalized and cumulative scores.
3.3.2 Machine Learning-Based Models
on Selected Features
As outlined earlier, a total of 8,948 features fetched from
Pfeature’s composition-based module were reduced to 93
(main dataset) and 68 (alternate dataset) features after
applying the SVC-L1-based selection procedure. A range of
machine learning classifiers including SVM, LR, KNN, RF,
MLP, and ET were implemented on both these datasets. The
FIGURE 3 | The average amino acid compositional analysis among defensins, AMPs, and non-defensins.
November 2021 | Volume 12 | Article 780610
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performance of these models is illustrated in Table 1. Clearly, for
the main dataset, SVM performs the best with AUROC and
Matthews correlation coefficient (MCC) values of 0.98 and 0.88,
respectively, at the training dataset. For the corresponding
validation dataset, an AUROC of 0.97 and an MCC of 0.87
were obtained. LR was the second best model with 0.97 AUROC
and 0.84 MCC at the training dataset and 0.97 AUROC and 0.85
MCC at the validation dataset. Similarly, for the alternate dataset,
SVM was the best model with 0.99 AUROC and 0.94 MCC at the
Frontiers in Immunology | www.frontiersin.org 6
training dataset and 0.99 AUROC and 0.96 MCC at the
validation dataset.

3.3.3 Machine Learning-Based Models on
Top-Ranked Selected Features
In addition to the development of prediction models over
complete selected features, we assessed the significance of
various feature sets. The goal was to determine the feature set
with minimal features that can reliably distinguish defensins with
TABLE 1 | The performance of the machine learning models on SVC-L1 selected features for both datasets.

Model Hyperparameters Training set Validation set

Sens Spec ACC AUROC MCC Sens Spec ACC AUROC MCC

Main dataset
SVM C = 2, g = 1, k = rbf 93.24 94.81 94.03 0.98 0.88 93.72 93.24 93.48 0.97 0.87
LR C = 1 92.4 91.67 92.03 0.97 0.84 92.75 91.79 92.27 0.97 0.85
ET ne = 30 93.73 94.08 93.9 0.98 0.88 93.24 93.72 93.48 0.97 0.87
RF ne = 90 91.07 95.41 93.24 0.98 0.87 91.3 95.17 93.24 0.98 0.87
KNN al = ball-tree, nn = 10, w = distance 92.52 94.32 93.42 0.97 0.87 92.27 90.82 91.55 0.96 0.83
MLP a = identity, HL = 3, m = 100, s = adam 92.4 89.73 91.07 0.95 0.82 93.72 87.92 90.82 0.96 0.82
Alternate dataset
SVM C = 2, g = 0.5, k = rbf 95.05 98.46 96.77 0.99 0.94 97.1 99.05 98.09 0.99 0.96
LR C = 10 94.93 97.86 96.41 0.99 0.93 94.69 98.58 96.65 0.99 0.93
ET ne = 50 94.09 98.93 96.53 0.99 0.93 94.69 99.53 97.13 0.99 0.94
KNN al = brute, nn = 10, w = distance 92.88 98.22 95.57 0.99 0.91 94.69 98.58 96.65 0.98 0.93
RF ne = 70 95.66 97.27 96.47 0.99 0.93 96.14 97.16 96.65 0.99 0.93
MLP a = tanh, HL = 10, m = 100, s = adam 92.4 97.86 95.16 0.98 0.9 93.72 98.1 95.93 0.98 0.92
Nove
mber 2021
 | Volume
 12 | Article 7
g, gamma; ne, n_estimators; k, kernel; a, activation; HL, hidden layer size; s, solver; al, algorithm; w, weight; m, max_iter; nn, n_neighbors.
A

B

C

D

FIGURE 4 | Two-sample logos generated from the (A) C-terminus (last 10 residues) of the main dataset, (B) N-terminus (first 10 residues) of the main dataset,
(C) C-terminus (last 10 residues) of the alternate dataset, and (D) N-terminus (first 10 residues) of the alternate dataset.
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AMPs and non-defensins with high AUROC and accuracy. As a
result, we created various models based on the top (10, 20, 30,…,
93) features in the case of the main dataset and top (10, 20, 30,
…, 68) features in the case of the alternate dataset, respectively,
and tested them on the training and validation datasets. The
complete results corresponding to these are provided in
Supplementary Tables 3, 4 highlights the performance of the
various models. As seen from the results, the best features were
identified, i.e., the top 60 for the main and the top 50 for the
alternate dataset. SVM (training: 0.98 AUROC, 0.88 MCC and
validation: 0.98 AUROC, 0.88 MCC) is the best model for the
main dataset followed by LR (training: 0.96 AUROC, 0.82 MCC
and validation: 0.97 AUROC, 0.83 MCC). Similarly, for the
alternate dataset, SVM (training: 0.99 AUROC, 0.93 MCC and
validation: 0.99 AUROC, 0.96 MCC) is the best model followed
by LR (training: 0.99 AUROC, 0.91 MCC and validation: 0.98
AUROC, 0.90 MCC) as shown in Table 2 and Figure 5.

3.4 Comparison With Existing Methods
We have also compared our models developed in this study with
the methods developed in the past. As shown in Table 3, these
methods have been developed over the years on different datasets
where size and type are different. Thus, it is not possible to
compare these methods directly with other methods. In previous
studies, defensin peptides were obtained either from the
Defensins Knowledgebase, developed in 2006 (61), or from
Swiss-Prot (62). One of the limitations of previous studies is
the size of the dataset. In this study, we have taken the largest
possible dataset to develop reliable models where data were
obtained from different sources. In addition, we created two
datasets called the main and alternate datasets to discriminate
defensin from antimicrobial peptide and non-defensins. Our web
service not only allows to predict defensin but also to scan
defensin peptides in proteins as well as to design highly efficient
defensins. In contrast, most of the web services developed in the
past are inactive. This justifies the development of this new
method which will complement existing methods.
Frontiers in Immunology | www.frontiersin.org 7
3.5 The Web Server “DefPred”
We built a user-friendly prediction web server that incorporates
various modules to predict defensin proteins in order to support
the scientific community. The prediction models of the study are
applied in the web server. Based on the score of the prediction
models at a different threshold, users will predict whether a query
peptide is defensin or non-defensin. Predict, Protein-scan,
Design, Downloads, and Algorithm are the five major modules
in the web server. The user can distinguish defensins from non-
defensin peptides using the “Predict” module. The positive and
negative datasets used in this analysis are both available for
download in FASTA format. HTML, Java, and PHP scripts were
used to build the web server “DefPred.” A detailed description of
these modules is provided below. The Predict module predicts
whether the submitted protein sequence is defensin or not. Users
can submit multiple peptides in FASTA format in the box or can
upload the file containing the same. This module allows the user
to predict using model-1 developed on the main dataset to
predict defensins from AMPs. Model-2 was developed to
predict defensins and non-defensins. The Design module
allows the user to generate all possible analogs for a sequence
and then rank these peptide sequences based on their scores. This
allows the user to identify the best analog of defensin. The Scan
module is developed to identify regions in a protein that have
defensin-like properties. In order to serve the community, we
have developed the stand-alone software in Python. We have also
provided a stand-alone facility in the form of Docker technology.
This stand-alone software is integrated into our package
“GPSRdocker,” which can be downloaded from the site https://
webs.iiitd.edu.in/gpsrdocker/ (63).
4 DISCUSSION

Antibiotic resistance is emerging among microbes throughout
the world, and current treatments are ineffective to treat drug-
TABLE 2 | The performance of machine learning models on top 60 features for main dataset and top 50 features for alternate dataset.

Model Hyperparameters Training dataset Validation dataset

Sens Spec ACC AUROC MCC Sens Spec ACC AUROC MCC

Main top 60
SVM C = 2, g = 1, k = rbf 89.26 96.74 93 0.98 0.86 90.82 97.1 93.96 0.98 0.88
LR C = 0.1 86.85 93.24 90.04 0.96 0.8 88.89 93.72 91.3 0.97 0.83
ET ne = 50 92.4 95.41 93.9 0.98 0.88 92.4 95.41 93.9 0.98 0.88
RF ne = 60 91.68 95.29 93.48 0.98 0.87 91.3 94.69 93 0.98 0.86
MLP a = tanh, HL = 17,m = 100, s = adam 74.79 70.77 72.78 0.85 0.46 91.79 91.3 91.55 0.96 0.83
KNN al = ball-tree, nn = 10, w = distance 91.8 93 92.4 0.97 0.85 91.79 90.34 91.06 0.96 0.82
Alternate top 50
SVM C = 2, g = 1, k = rbf 95.17 97.98 96.59 0.99 0.93 97.1 99.05 98.09 0.99 0.96
LR C = 1 95.54 95.02 95.28 0.99 0.91 95.65 95.73 95.69 0.98 0.91
ET ne = 40 95.17 98.22 96.71 0.99 0.93 95.65 98.58 97.13 0.99 0.94
KNN al = ball-tree, nn = 9, w = distance 94.33 97.86 96.11 0.99 0.92 95.65 98.1 96.89 0.98 0.94
RF ne = 50 95.3 98.22 96.77 0.99 0.94 96.65 97.63 96.65 0.99 0.93
MLP a = tanh, HL = 15, m = 100, s = adam 92.64 97.75 95.22 0.98 0.91 92.27 97.63 94.98 0.98 0.9
Nove
mber 2021
 | Volume
 12 | Article 7
g, gamma; ne, n_estimators; k, kernel; a, activation; HL, hidden layer size; s, solver; al, algorithm; w, weight; m, max_iter; nn, n_neighbors.
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resistant microorganisms. The fear of a post-antibiotic age, with
rising pathogen drug resistance, necessitates the development of
alternatives to traditional antibiotics or small molecule-based
treatments. AMPs are a class of potential agents with curative
prospects due to their diverse therapeutic properties. The innate
immune systems of several organisms rely heavily on these
evolutionarily conserved molecules. Defensins are a special
class of AMPs that have a wide range of functions and use
several modes of action, making them less likely to be drug
resistant (8, 64). Moreover, the differences in the mechanism of
microbicidal action of defensins from other antibiotics make
them beneficial in fighting infections when used in tandem with
conventional antibiotic treatments (65). Naturally existing
defensins are efficient, non-toxic microbicides that might be
effective for treating infections caused by antibiotic-resistant
pathogens. Recent studies have suggested that they achieve this
Frontiers in Immunology | www.frontiersin.org 8
by damaging bacterial cell membranes but not mammalian cell
membranes. With this information, developing next-generation
defensins with enhanced biological activity profiles is a plausible
objective that will allow defensins to be employed to augment
human health in the near future. New antimicrobials with
defensin-based bactericidal and immunomodulatory
characteristics may be effective in conjunction with
conventional antibiotic therapy against drug-resistant bacteria
while also increasing survival from common infections (65).
Furthermore, previous research has demonstrated that defensin
and antibiotic combinations may be utilized synergistically to
battle infections, including biofilms, permitting for lower dosages
of both drugs while still improving treatment efficacy (66–69).
The advancement in in-silico research particularly in the field of
bioinformatics has led to the identification and delineation of
properties of defensins that enable them to exert their diverse
A

C

B

D

FIGURE 5 | AUROC plots (A) main (top 60 selected features on the training datasets), (B) main (top 60 selected features on the validation datasets), (C) alternate
(top 50 selected features on the training datasets), and (D) alternate (top 50 selected features on the validation datasets).
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range of biological activities. However, since defensins and
AMPs have highly similar nature, it is difficult to distinguish
defensins and thereby challenging to develop solely defensin-
based therapeutics.

Our study addresses this issue by proposing state-of-the-art
machine learning models which can be employed to discriminate
and predict defensins from other AMPs and defensins from
other proteins (non-defensins). Additionally, since the dataset is
crucial in machine learning as well as for a robust in-silico
prediction model, we created a very detailed and up-to-date
dataset using updated repositories. To better understand the
structure and positional preference of defensins, TSL and
compositional analytical experiments were conducted. In
previous studies, defensins have been found to be high in
cysteine (C) amino acid (7) which is consistent with our
findings. The properties of the experimentally validated
defensins present in the literature were utilized for developing
various prediction models. The program “Pfeature” was used to
generate 8,968 features from sequence data. The SVC-L1 of the
scikit package was used to pick selected features, which were then
ranked using feature selector methods. The compositional
analysis demonstrated that some types of residues such as C,
R, N, L, and Y are preferred in defensins, whereas others such as
M are not. This was also corroborated from one of the top-
ranked selected features AAC_C which denotes the amino acid
composition of cysteine in a protein sequence. AAC_C ranked
first in the main and second in the alternate dataset. Some other
high-ranked features included CeTD_SA1 which is composition-
enhanced transition and distribution of group 1 (A, L, F, C, G, I,
V, W) for solvent accessibility attribute, and PAAC1_E is the
pseudo-amino acid composition of glutamic acid in the main
dataset (Supplementary Table 4 and Table 2). In the case of the
alternate dataset, a few top-ranked features were CeTD_SS1,
which is a composition of group 1 (A, L, F, C, G, I, V, W) residue
for the secondary structure attribute, and BTC_T, which is the
total bond composition present in the sequence (Supplementary
Table 5 and Table 2). Amino acid composition of cysteine is
Frontiers in Immunology | www.frontiersin.org 9
common in both main and alternate datasets, indicating that
defensins outstand with more “C” content (Figure 3). It is worth
noting that new feature selection strategies picked 93 features for
the main and 68 features for the alternate dataset, which include
the abovementioned features. In our work, we used these 93 and
68 features to build the two classification models. Furthermore, a
five-fold cross-validation technique was used to validate the
performance of different models based on the top-ranked
features. We wanted a minimal set of features with the least
amount of performance loss to prevent over-optimization of the
models. For the final classification models, for the main and
alternate datasets, we chose the top 60 and top 50 features,
respectively. Model-1, which utilized the main dataset, is a SVM
classifier that achieved maximum performance of 0.98 AUROC
and 0.88 MCC in the training dataset and 0.98 AUROC and 0.88
MCC in the validation dataset for classifying defensins from
AMPs, whereas model-2, which used the alternate dataset,
classified defensins from non-defensins. Model-2 is also a SVM
classifier which performed best on the training and validation
datasets with AUROC of 0.99 and MCC of 0.93 and AUROC of
0.99 and MCC of 0.96, respectively.

Despite numerous improvements, there are a few limitations
of this study. The current study aimed to develop a prediction
method for identifying defensins/AMPs and defensins/non-
defensins. To achieve this, we used the sequence data from all
available species such as mammals, plants, and insects due to the
small number of experimentally validated defensins, although
the ideal process to develop a host-specific method for predicting
defensins should contain data from the concerned host only.
Additionally, our models do not account for structural properties
such as secondary structure details, surface accessibility rating,
and disulfide bond information. Furthermore, for prediction, our
models ignore information regarding post-translational
modifications (e.g., terminus modification, incorporation of
chemical moieties, glycosylation, and phosphorylation).
Although a systematic effort has been made in this analysis to
create the best possible models under the current conditions, it is
TABLE 3 | Describing the major components of the existing methods and DefPred such as the source of the dataset, size of data, major features, type, and performance.

Study Source of dataset Size of data Major
features

Classifier
used

Type Accuracy Web server
availability,

status

PMID

49 Defensin Knowledgebase 286 P ID_RAAA Jackknife
test

Prediction 91.36% No 19591890

60 PubMed, iHOP, UniProt,
HubMed

238 P, 238 N RQA
descriptors

RF Classification 78.12% No Not-
available

47 NCBI, UniProt 383 P, 383 N AAC, DPC,
PSAAC

SVM Classification 99% Yes, inactive 22670676

48 Defensin Knowledgebase 333 P iDEF-
PseRAAAC

SVM Prediction 85.59% Yes, inactive 26713618

50 Defensin Knowledgebase 328 P iDEF-
PseRAAC

SVM Prediction 91.16% Yes, active 31391777

DefPred CAMPR3, DRAMP2.0, Defensin
Knowledgebase, Swiss-Prot

1,036 P, 1,035 N (main);
1,036 P, 1,054 N (alternate)

Selected
features

SVM Prediction 93.96% (main),
98.09% (alternate)

Yes, active Not-
available
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expected that the future research will be able resolve these issues
in order to improve prediction.

Finally, in order to serve the scientific community, we have
developed a web server named “DefPred” as well as the stand-
alone version which incorporated our best models. The stand-
alone version is Python-based and offers numerous options to
the user. On the other hand, the associated server is user-friendly
and compatible with multiple screens such as laptops, android
mobile phones, iPhone, and iPad. We have also provided a
stand-alone facility in the form of Docker technology. This
stand-alone software is integrated into our package
“GPSRdocker,” which can be downloaded from the site https://
webs.iiitd.edu.in/gpsrdocker/ (63). We anticipate that this work
will benefit researchers working in the area of vaccine designing
and also enable a deeper understanding of immune
defense response.

5 CONCLUSION

In this work, we have presented a prediction server “DefPred” for
the identification and classification of defensins. It possesses two
models “model-1” and “model-2” for the classification of
defensins from other AMPs (the main dataset) and defensins
from any random proteins (the alternate dataset), respectively.
Both models have been created from different datasets that are
available on the web server. The web server employs SVM
supervisory models in both datasets. Around 9,000 features
have been taken into account, and after feature selection and
ranking, 98 features for the main dataset and 68 features for the
alternate dataset have been selected. Furthermore, among them,
the best models for the main and alternate datasets were obtained
at the top 60 and top 50, respectively. The present work is an
attempt to provide a platform for addressing this important
aspect of defensin prediction. To facilitate the scientific
Frontiers in Immunology | www.frontiersin.org 10
community in developing better methods for the prediction of
defensins, we have provided our datasets used in the present
study. Also, we have provided the stand-alone version
for “DefPred.”
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