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Abstract: Hyperspectral imaging is a popular tool used for non-invasive plant disease detection.
Data acquired with it usually consist of many correlated features; hence most of the acquired
information is redundant. Dimensionality reduction methods are used to transform the data sets
from high-dimensional, to low-dimensional (in this study to one or a few features). We have chosen
six dimensionality reduction methods (partial least squares, linear discriminant analysis, principal
component analysis, RandomForest, ReliefF, and Extreme gradient boosting) and tested their efficacy
on a hyperspectral data set of potato tubers. The extracted or selected features were pipelined to
support vector machine classifier and evaluated. Tubers were divided into two groups, healthy and
infested with Meloidogyne luci. The results show that all dimensionality reduction methods enabled
successful identification of inoculated tubers. The best and most consistent results were obtained
using linear discriminant analysis, with 100% accuracy in both potato tuber inside and outside images.
Classification success was generally higher in the outside data set, than in the inside. Nevertheless,
accuracy was in all cases above 0.6.

Keywords: hyperspectral imaging; dimensionality reduction; LDA; PLS; PCA; RandomForest;
ReliefF; XGB; Meloidogyne; Solanum tuberosum

1. Introduction

Quarantine pests are of major importance for agriculture and the food industry, and
are being officially monitored and controlled [1]. Among these, root-knot nematodes
(RKN) of the genus Meloidogyne present the most destructive group of plant-parasitic
nematodes. They can infest a broad range of host plants, and are alone responsible for
approximately 5% of global crop losses. These are soil-borne parasites, where they infest the
host plants’ root system and cause non-specific symptoms on above-ground parts of plants.
Furthermore, they can cause latent (asymptomatic) infestations in potato tubers [2], which
pose an additional threat in seeding material, as they could be spread over larger areas
quite quickly. The parasite M. luci has been originally described by Carneiro et al. from
samples from Brazil, Chile, and Iran [3], and has since been found several times in Europe
as well [4]. Even though M. luci belongs to the group of tropical RKNs, it can survive winter
in fields under temperate and Mediterranean climates [5]. It is therefore considered an
emerging pest in Europe and was included in the alert list of harmful organisms in 2017 [6].

Since RKNs cause non-specific symptoms, laboratory diagnoses are required for
accurate identification. Traditionally RKN species are identified morphometrically, and by
analysing dehydrogenase and esterase isozyme phenotypes [7]. These methods require the
isolation of mature females from plant tissue, making them unsuitable for a large number
of samples. First visible symptoms are presented as reduced plant growth. Infections
start in small areas of the crop, but can over the years become full field infestations if
not appropriately handled. Particularly latent infestations of potato seed tubers have the
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potential to facilitate this process and lead to infestations over larger areas in just one or
two seasons. These characteristic of RKN infestations show a clear need for detection of
infestations in early stages [8].

Precision agriculture helps reduce the spread of diseases, and includes well-established
practices to mitigate losses [9]. The plant immune system reacts to stressors by changing
their biophysical and biochemical makeup, which in turn affects their spectral proper-
ties [10]. Currently the most common remote sensing method, used for plant diseases
detection, is hyperspectral imaging (HSI) [1]. Nowadays, HSI is used in various applica-
tions, such as biotechnology, agriculture, environmental monitoring, and chemistry [11]. In
HSI, reflected light is captured and data stored in several spectral bands, with a high spec-
tral resolution (bandwidths are typically around 4–5 nm). Consequently, a large number
of spectral bands are acquired at each capture, for the entire spectrum the sensors record
(typically between 400 and 2500 nm).

Hyperspectral imaging has been used extensively for assessing plant root and tuber
quality. The published research can generally be divided into three interlinked groups,
according to the investigated properties: (1) physical properties (e.g., colour and texture),
(2) chemical constituents (e.g., proteins and polysaccharides), and (3) pest and disease
detection. Research into the latter is mostly focused on early detection of infections and
infestations in above-ground parts of plants [12]. Biotic and abiotic stressors can cause
changes in spectral signatures, by triggering various defense mechanisms, such as produc-
tion of specific metabolites, induction of hypersensitive reactions, and changes in plant
tissues [7]. The most extensive use of remote sensing of potato tubers has been for quality
assessment, e.g., detection of defects [13] and bruises [14], and chemometric analyses, such
as sugar [15], cellulose and starch content [16]. On the other hand, only a handful of studies
deal with pest and disease detection in potato tubers. For example, Dacal-Nieto et al. and
Huang et al. used hyperspectral imaging and support vector machines to detect hollow
heart disease [17,18], and Zhou et al. used partial least squares as a pre-processing step in
linear discriminant analysis to detect blackheart [19]. A partial least squares discriminant
analysis approach was used by Garhwal et al. to detect zebra chip disease [20], and Al Riza
et al. used a combination of genetic algorithms for feature selection and partial least squares
to detect common scab [21]. But results aren’t always so clear-cut, as Zhao et al. found
that infrared and thermal imaging did not distinguish between healthy and Liberibacter
solanacearum infected tubers in storage [22].

Hyperspectral data shows a high level of collinearity between spectral bands, leading
to high redundancy and decreases the signal-to-noise ratio. Furthermore, the data sets are
of high dimensionality, which increases the difficulty of knowledge discovery and pattern
recognition. Dimensionality reduction is therefore an obligatory and crucial step in HSI
data pre-processing [10].

With dimensionality reduction (DR) methods we retain the descriptive power of the
data, but reduce the number of dimensions. This process removes some patterns in the
data, but the features of interest remain. The large number of spectral bands can cause
reduced discriminating ability of the HSI features. This problem is especially severe when
the available training set consists of a small amount of samples (referred as the curse of
dimensionality). Dimensionality reduction is therefore a crucial step that transforms the
data to lower dimensional space, while preserving relevant information [23]. Generally,
DR methods can be grouped into two sets: (1) feature extraction, and (2) feature selection.
Feature extraction methods transform the whole feature space to a lower dimensional one,
while feature selection approach picks out the most significant features from the whole
feature space. Furthermore, contrary to feature extraction, feature selection preserves
physical characteristics of the original feature space. But, feature selection information is
lost, as features are removed from further analysis. Furthermore, feature extraction is less
prone to overfitting and often results in better classification accuracy [23,24]. However,
there is no standard approach which would yield the best possible result for any specific
dataset [25].
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In recent years researchers have shown big interest in developing new methods and
tools for processing of hyperspectral data. Trends show that many authors decide to
choose feature selection over feature extraction DR algorithms. However conventional
feature extraction algorithms are still present, due to a better performance in some cases.
Moghimi et al. tested the performance of NaCl treated wheat with different feature se-
lection methods [11]. They aggregated all with ensemble method to increase robustness
and accuracy. The transformed data were classified using quadratic discriminants analysis
(QDA) and validated using 5-fold cross-validation. Similarly, AlSuwaidi et al. also used
feature selection method for crop disease detection [26]. As classification method they used
support vector machines (SVM). Moghadam et al. showed that SVM is one of the best
classification algorithms used for plant disease detection due to its generalization ability [1].
Their feature extraction method is used based on probabilistic topic modelling. Collected
features with reduced dimensionality were pipelined to Latent Dirichlet Allocation model
for plant leaves disease detection. On the other hand, Jin et al. directly used convolu-
tional neural networks (CNN) for classification, without any dimensionality reduction [27].
Feature extraction problems for HSI are oftentimes solved by using convolutional neural
networks [28,29]. However, CNNs usually need more training data in comparison with
conventional methods [28,30], limiting their applicability.

This study was motivated by the need to find a dimensionality reduction method for
detection of M. luci-infested potato tubers using hyperspectral imaging. The DR method ses
were twofold: (1) DR methods can achieve good classification accuracy even with should
enable accurate identification in combination with support vector machines (SVM), with
only one extracted feature, or a very limited number thereof. Our hypothesis only one
feature, and (2) data from the outside of tubers will achieve better classification success.
Since only a limited amount of information is available about spectral and chemical ef-
fects of nematode infestations on potato tubers, we tested two tuber processing methods.
We selected six dimensionality reduction methods, three from each group: Partial least
squares (PLS), Linear discriminant analysis (LDA), Principal component analysis (PCA),
RandomForest (RF), ReliefF (RFF), and Extreme gradient boosting (XGB). Of these, LDA
provided the best results, as it achieved the highest classification accuracy in both external
and internal images of potato tubers. All DR methods achieved better success with data
from outside of tubers, except for LDA, where the results were equal.

2. Materials and Methods
2.1. Tuber Cultivation and Preparation

The tubers were obtained from an experiment on potato (Solanum tuberosum cv., variety
Desiree) infestation with M. luci, which was established from June to September 2018 in
a glasshouse at the Agricultural Institute of Slovenia. A total of 20 day-old plants were
transplanted to 13 cm-diameter pots (V = 1 L) and supported with 1 m plastic-coated stakes.
The substrate of 10 randomly selected plants was inoculated with M. luci at the beginning
of the experiment [31]. Roots of tomato plants, infested by M. luci (i.e., egg-masses were
visible on the root surface; the parasites were from the collection at the Agricultural
institute of Slovenia) were cut into pieces and mixed. A subset of infested roots was then
weighed and nematode eggs were collected in suspension, in accordance with Hussey
& Barker [32]. The number of eggs was determined visually under a stereomicroscope
(Nikon SMZ800). Infested roots were introduced to the substrate to a final concentration of
250 × 103 eggs/plant. The presence of M. luci was confirmed with isoenzyme analysis [4].
The microplot experiment was completed at the end of the growing season at 97 days
after inoculation.

Potato tubers were harvested at the end of the growing season in 2018 and stored
in boxes in a dark storage room with ventilation and a temperature of 18 ± 2 ◦C for the
incubation period, until further processing. Tubers from infested pots were visually checked
for signs of infection (surface galls) (Figure 1). Visibly decaying tubers were excluded from
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further analysis. The tubers were divided into two groups, inoculated and healthy, of
5 tubers each.

Figure 1. Inoculated and healthy potato tuber. (a) inoculated tubers, and (b) healthy tubers. Note the
galls on the surface of the infested tubers. The difference in size is not necessarily symptomatic.

2.2. Hyperspectral Image Acquisition

For hyperspectral imaging tubers were sliced in half and placed on a black background.
This way both the outside and inside of tubers could be imaged simultaneously. Reflectance
spectra in 448 bands in the VNIR (visible to near infrared) and SWIR (short-wave infrared)
regions were acquired using two Norsk Elektro Optikk AS (Oslo, Norway) pushbroom
hyspex cameras, VNIR-1600 (400–988 nm, 160 bands, bandwidth 3.6 nm, spatial resolution
at 1 m distance 0.1 mm) and SWIR-384 (950–2500 nm, 288 bands, bandwidth 5.4 nm, spatial
resolution 0.25 mm), mounted vertically above the samples at a distance of 1 m. The
samples were illuminated with two calibrated halogen lamps with homogeneous light
intensity between 400 and 2500 nm, placed above the samples next to the cameras. The
lamps were switched on 15 min before image acquisition to stabilize the light source’s tem-
perature drift and establish spatial uniformity of illumination [33]. A calibrated diffuse grey
reference plate with 20% reflectance (SphereOptics, Herrsching, Germany) was included in
each image and used to calculate reflectance. The signal-to-noise ratio was increased by
scanning each line three times and calculating the average. Hyperspectral images were
radiometrically calibrated to radiance units (W sr−1m−2).

2.3. Pre-Processing and Analysis

The data analysis workflow consisted of five stages (Figure 2). First, radiometrically
corrected images were loaded into working memory. Second, images were segmented
and these segments were then used to calculate reflectance values and mean spectra of
each sample. The segmented image of each tuber was then divided into six equal parts.
Reflectance values and mean spectra for each of these sub-segments were extracted. Then,
data was split into training (4 potatoes) and test sets (1 potato). This process was repeated
5 times. In the next stage, we applied dimensionality reduction algorithms to extract the
most relevant, features. In addition to DR methods, we also included a data set without
any dimensionality reduction (labelled “None”). In the last stage, the chosen features were
tested using support vector machine classification.
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Figure 2. Analysis flowchart for proposed procedure. Data load: Image acquisition. Pre-processing:
Image segmentation and feature preparation techniques. Step 1: Separation of training and validation
dataset with cross-validation. Step 2: Dimensionality reduction with LDA, PCA, RF, RFF, XGB or
PLS. Step 3: Classification with the use of SVM and 5-fold cross-validation.

2.3.1. Segmentation

Image segmentation was performed using spectral information divergence (SID). It
uses a divergence measure to match HSI image pixels to reference pixels [34]. In HSI each
pixel consists of multiple values which form a discrete signal. For j-th pixel we can write:

x(j) = (x1, x2, . . . , xD)
T (1)

where xi represents the value of spectral band Bi acquired at wavelength λi. Index D
represents a number of spectral bands. Probabilistic measure pi can be calculated for each
element xi. Probabilities for all elements are then written into vector of probabilities p:

pi = p(xi) =
xi

∑D
i=1 xi

p
(

x(j)
)

= (p1, p2, . . . , pD)
T (2)

Relative entropy can be calculated between p and q probability vectors with Kullback–
Leibler information measure:

KL
(

p
(

x(j)
)
| | q

(
r(Ck)

))
=

D

∑
i=1

pi·log
pi
qi

(3)

where q
(

r(Ck)
)

represents probability measure for reference vector r of k-th segmen-
tation class. In our case, possible segmentation classes are included in a set: Ck ∈
{potato tuber, background, reference panel}. Reference vectors for each segmentation class
separately are constructed from manually selected area of pixels. An area for segmentation
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class Ck is defined as: Sk =
(

x(1), x(2), . . . , x(N)
)

where N represents number of pixel
vectors included in area corresponding to segmentation class k. Reference values can be
calculated from pixels for each spectral band:

ri =
1
N

N

∑
j=1

xiji = (1, 2, . . . , D) (4)

Reference vector is then defined as:

r(Ck) = (r1, r2, . . . , rD)
T (5)

Probability vector q
(

r(Ck)
)

= (q1, q2, . . . , qD) can then be calculated by (3) for all
segmentation classes. When reference vectors are known, SID values can be calculated [35]:

SID
(

p
(

x(j)
)

, q
(

r(Ck)
))

= KL
(

p
(

x(j)
)
| | q

(
r(Ck)

))
+ KL

(
q
(

r(Ck)
)
| | p

(
x(j)
) )

(6)

Equation (6) assigns divergence value to each pixel constructing the HSI image. Pixels
from an HSI image are classified to segmentation class Ck with smallest divergence value.
The greater the similarity of pixel to reference signal, the smaller the value of divergence.
With the use of additional thresholding it is possible to fully separate predefined segmenta-
tion classes. Thresholding values were chosen with trial-and-error approach. Segmentation
masks for each class can then be built based on calculated divergence values (Figure 3).

Figure 3. Hyperspectral image of tubers prior to segmentation. (a) With labelled segmentation class
which construct the image. (b) Same image with applied segmentation masks of potato tubers and
labelled consecutive sample number.

2.3.2. Preparation of Features

Feature vectors can be created from segmentation masks. Pixels that correspond to
the same segmentation class Ck define observing object o(z) =

(
x(1), x(2), x(j), . . . , x(N)

)
T ,

where N represents number of connected pixels located within the segmentation mask.
Feature vector O is calculated from defined objects with arithmetic mean for D spectral
bands. For z-th object it can be calculated using following equations:

O(z)
i = 1

N

N
∑

j=1
x(z)ij i = (1, 2, . . . , D)

O(z) = (O1, O2, . . . , OD)
T

(7)
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Spectral reflectance was calculated for tuber data, using a 50% grey reference panel.
For each HSI image we calculate feature vector O(0), which represents the reference panel.
Reflectance values of reference panel were provided by the manufacturer (SphereOptics,
Germany). We assigned those values to vector R(0). For arbitrary object z, in the same
image where O(0) was calculated, converted feature vector R(z) can be calculated as:

R(z)
i = R(0)

i /O(0)
i ·O

(z)
i i = (1, 2, . . . , D)

R(z) = (R1, R2, . . . , RD)
T (8)

An important note to add is that object of reference panel o(0) is filtered before usage
in Equation (8). The reason is to remove outliers for more accurate calculation of feature
vector O(0). Outliers are filtered with median absolute deviation (MAD). Values outside
±2MAD were removed before further calculation. MAD can be calculated by Equation (9),
for each spectral band: i = (1, 2, . . . , D). In equation x(i) represents vector of all pixels at

i-th spectral band. Value labeled as
∼
x
(i)

represents median value of this vector. With I raw
vector of ones is labelled.

x(i) =
{

o(0)ij

∣∣∣i ∈ D, 1 ≤ j ≤ N
}

1×N
∼
x
(i)

= median
(

x(i)
)

MAD(i) = median
(∣∣∣∣x(i) − ∼x(i)

I
∣∣∣∣)

(9)

The feature vector R(z) was then smoothed using a Savitzky–Golay filter to emphasize
small spectral variations the same way as in Schafer [36]. Savitzky–Golay filter is based on
local least squares polynomial approximation. It was shown that it reduces noise while
maintaining shape and important information in a feature vector [26]. In this study the filter
window length was 15, polynomial order was 2 and second order derivatives were used.
Parameters were chosen with regard to the highest exhibition of performance evaluated
with classification accuracy.

Dimensionality Reduction

In this paper three feature extraction methods (Principal component analysis, Linear
discriminant analysis, and Partial least squares), and three feature selection methods
(RandomForest, Extreme Gradient Boosting, and ReliefF) are taken into consideration.
Main reason for pre-processing the data with the use of stated algorithms is to reduce the
number of dimensions in initial space. From all algorithms we extracted only the most
prominent features.

Principal Component Analysis

Principal component analysis is an unsupervised linear transformation technique
used in machine learning applications and multivariate statistics. It is widely used across
different fields, most prominently for feature extraction, dimensionality reduction and
visualization. It helps identify patterns in data based on the correlation between features.
PCA aims to find the directions of maximum variance in high-dimensional data and projects
it onto a new subspace with equal or fewer dimensions than the original one [37]. This
is achieved based on a covariance matrix formulation of centered and normalized data.
Axes of original coordinate system are transformed so that newly created axes describe
maximal covariance of the data. Each axis is described by an eigenvector, whose variance
corresponds to its eigenvalue. Eigenvectors and eigenvalues of covariance matrix Σ can be
calculated using Singular value decomposition (SVD), which can be written as:

Σ =
1

n− 1
XTX = PΛPT =

m

∑
j=1

λjpjp
T
j (10)
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In Equation (10) data instances are included in matrix X ∈ Rn×m, where n represents
number of data instances and m number of attributes in each instance. Matrix P ∈ Rm×m

represents m orthogonal basis vectors pj, j = 1, . . . , m and Λ diagonal matrics composed
of eigenvalues λj, j = 1, . . . , m. To each eigenvalue λj belongs particular basis vector pj.
Matrix of eigenvectors P is organized so that column vectors are sorted by decreasing
magnitude of eigenvalues λ1 < λ2 < · · · < λm. In other words, eigenvectors are sorted by
decreasing amount of information they provide.

Since HIS data contains many correlated features (i.e., spectral bands), the data set
can be fully described by using only a subset of eigenvectors of covariance matrix Σ. The
general assumption is that part of the information can be explained with k eigenvectors,
which we call principal components. Various criteria can be used to determine the number
of principal components, e.g., percentage of explained variance in the data. Mathematically
we can write:

∑s
j=1 λj

∑m
j=1 λj

≥ ε (11)

where ε represents predefined threshold. Usually it is set to 0.95 to keep 95% of initial
variance of the data. Another option is to directly choose desired number of principal
component. The covariance matrix can then be approximated by neglecting eigenvectors
with small corresponding eigenvalues. In other words, we neglect pj, where j = s+ 1, . . . , m.
Approximated covariance matrix can then be calculated as:

Σs =
s

∑
j=1

λjpjp
T
j (12)

where vectors pj, j = 1, . . . , s define principal directions in which the data extends and is
weighted by corresponding eigenvalues.

Linear Discriminant Analysis

Linear discriminant analysis is a robust classification method, but can also be used
for dimension reduction and data visualization. Unlike PCA, which tries to maximize
variance, it is a supervised machine learning method that computes decision boundaries
which enhance the separation between multiple classes used.

It tries to separate different classes by maximizing distances between projected means
and minimizing projected variance. Both optimization problems are incorporated in one
single criterion function which can be, for binary classification, written as:

max
w

J(w) =
(m1 −m2)

2

s2
1 + s2

2
(13)

where (m1 −m2)
2 represents the difference in means between the two classes and s2

1 + s2
2

the total scatter (standard deviations) of the two classes. The goal of LDA is to find the
vector w that maximizes criterion function J(w).

In LDA it is assumed that all K classes have equal covariance. Following this assump-
tion we can obtain the following discriminant function for k-th class:

δk(x) = xTΣ−1µk −
1
2

µT
k Σ−1µk + log πk (14)

Which predicts the class with the highest value of δk(x) given an input x ∈ Rp×1.
In Equation (14) Σ ∈ Rp×p represents common covariance matrix, µk ∈ Rp×1 the mean
of inputs for class k and πk prior distribution of class k. Symbol p represents number of
attributes in each data instance.

Features are transformed so that classes are as separate as possible from each other
and that features within a class are as close as possible. Transformed dimensions are ranked
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based on the separation ability. Maximal number of components must be at least one fewer
than the number of classes used for classification. Therefore, since we performed binary
classification in this study, only the first and only linear discriminant was used [38].

Partial Least Squares

Partial least squares is a technique that transforms the initial dataset to a reduced set of
uncorrelated features using a technique similar to principal component analysis. It extracts
features that describe maximum correlation with target variables; i.e., they provide the
greatest predictive ability. This method is especially useful when features in initial dataset
are highly collinear [39].

The underlying core equations of PLS could be written as:

X = TPT + E (15)

Y = UQT + F (16)

where X ∈ Rn×m is the matrix of independent variables (with hyperspectral data spectral
bands) and Y ∈ Rn×p is the matrix of dependant variables (these can be measured variables
or dummy coded nominal variables). Symbol n represents number of data instances, m
number of attributes in each independent variable and p number of attributes in each
dependent variable. Matrices T, U ∈ Rn×l respectively represent projections (scores) of
X and Y. Matrices P ∈ Rm×l and Q ∈ Rp×l respectively represent orthogonal loadings
matrices of X and Y. Symbol l represents a user-defined number of latent factors used in
for regression. Model is optimized in such a way that the first score in X has maximum
covariance with the first score in Y. Therefore, we can predict the first score in Y from the
first score in X.

Partial least squares has some advantages over basic ordinary least square (OLS)
solution. It is able to dispose correlated variables and model their shared and underlying
information. In contrast to many machine learning methods, it can directly model multiple
dependent variables at the same time. Several variants of PLS exist; we used Partial least
squares discriminant analysis, which is an extension of PLS regression, the foundation for
other variants.

ReliefF

ReliefF is an extension of the basic Relief algorithm, and is a generally well-performing
attribute selector. It can provide a combined view of relevance and conditional dependen-
cies between attributes. The algorithm prescribes a separate weight (wj) to each attribute,
where higher values correspond to more important attributes. The basic idea of the al-
gorithm is that is penalizes attributes which provide different result of the same class in
comparison with its nearest neighbours [40].

At the beginning, ReliefF sets all attribute weights wj
i to zero, these are then iteratively

adapted. Then, it selects a random observation xr and k-nearest observations for each class.
All the weights are updated for each nearest neighbours xq by equations:

wi
j = wi−1

j −
∆j
(
xr, xq

)
m

·drq (17)

wi
j = wi−1

j +
pyq

1− pyr
·
∆j
(
xr, xq

)
m

·drq (18)

where wi
j represents the weight of the j-th attribute at iteration i, m is the total number of

iterations, pyq and pyr are prior probabilities of classes where xq and xr respectively belong,
and drq is the distance function, which is subject to scaling. Symbol ∆j

(
xr, xq

)
represents
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the difference between prediction values of observations xr and xq for j-th attribute Fj. For
continuous attributes it is calculated as:

∆j
(
xr, xq

)
=

∣∣xrj − xqj
∣∣

max
(
Fj
)
−min(Fj)

(19)

RandomForest

Random forest is an ensemble technique that combines multiple de-correlated decision
trees. Decision trees are fitted on various randomly chosen subsets of a given dataset.
Overall performance of the model is increased by aggregating predictions from all trees
and performing a majority vote for each class in classification problems.

In the training phase of Random forest a technique called bootstrap aggregation or
bagging is used.

Given training data instances in a matrix X ∈ Rn×m and corresponding labels y ∈ Rn×1

(where n represents number of data instances and m number of attributes in each instance),
bagging repeatedly selects random data instances with replacement and fits B decision trees
f to these instances. Unseen data instances x′ are predicted by averaging all predictions
made by individual decision trees:

ŷ =
1
B

B

∑
b=1

fb
(
x′
)

(20)

where ŷ represents approximated predicted output. Bagging decreases variance without
increase of bias. This leads to more accurate performance even if each individual decision
tree is highly sensitive to noise. Furthermore, Random forest also includes feature bagging,
i.e. selection of a random subset of the attributes in the training set. A small number of
attributes may have a very strong prediction power for the response variable. Consequently,
these attributes would be selected many times causing decision trees to become correlated.
We used the Gini index as split criterion and for assessing variable importance. For each
Random forest 100 trees were constructed [41].

Extreme Gradient Boosting

Gradient boosting is one of the most powerful and flexible machine learning meth-
ods, which can be applied to various machine learning problems. It refers to a class of
ensemble methods used for predictive modelling problems. Similarly to Random forests,
it is constructed from decision tree models (weak learners). Unlike Random forest, weak
learners are added one at a time to correct errors produced by prior decision trees. This type
of error correction is called boosting, where models are iteratively trained with gradient
descent optimization of any differentiable loss function. For instance, a squared error may
be used for regression problems and logarithmic loss for classification problems. New
decision trees are trained on error residuals produced by initial learner. Intuitively, newly
trained models are influenced more by misclassified observations or by areas where they
are performing poorly. The contribution from all decision trees are aggregated to make the
final prediction [42].

Simplified optimization could be mathematically written as follows. First model is
initialized with a constant value with minimization of loss function L(xi, yi, θ):

f̂(0)(X) = argmin
θ

n

∑
i=1

L(xi, yi, θ) (21)

where X ∈ Rn×m is a matrix of input data instances with corresponding labels y ∈ Rn×1.
Symbols n and m represent number of data instances and number of attributes in each
instance, respectively. Based on the weak learner from the previous iteration, gradients and
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hessians are calculated and then a new weak learner is fitted using optimization problems.
At the end of iteration, the model transfer function is updated as:

f̂(m)(X) = f̂(m−1)(X) + f̂(m)(X) (22)

where m = (1, 2, . . . , M), where M is the total number of weak learners. Unseen data
instances x′ are then predicted by summation of all predictions made by individual deci-
sion trees:

ŷ = f̂
(
x′
)
= f̂(M)

(
x′
)
=

M

∑
m=0

f̂(m)

(
x′
)

(23)

2.4. Support Vector Machines

Extracted or selected features from dimensionality reduction were pipelined to support
vector machine classificator. Classification models were therefore built on reduced data
sets, consisting of only the most prominent feature. In this study performance is tested on
radial-basis kernel function for data transformation [43]. Hyperparameter tuning (gamma
and C) was performed using a grid search, whereupon combinations yielding the best
accuracy were retained.

Trained SVM classifier was evaluated using mean accuracy. It was iteratively trained
and tested 5 times for each DR algorithm. Accuracies from all iterations were then averaged.
For this reason an objective criteria is devised for comparison between all DR methods:

c(m) = 1
F

1
P

F
∑

f=1

P
∑

p=1
Γ
(

yp, ŷ(m)
p

)
Γ
(
yp, ŷp

)
=

{
1; if yp = ŷ(m)

p
0; else

yp, ŷ(m)
p ∈ {Healthy, Inoculated}

(24)

In Equation (24) mean accuracy is labelled as c(m). Superscript represents m-th DR
method belonging to a set Mm ∈ {PCA, LDA, PLS, RF, RFF, XGB}. Mean accuracy is
calculated from comparison between predicted ŷp and known yp labels of potato tuber,
which can be either healthy or inoculated. It is calculated on test feature vectors for P
predictions and F folds. In our case F = 5 and P = 12. Precision, recall and F1-score were
calculated using equations in [44]. All analyses were performed in Python, using libraries
scikit-learn [45] and XGBoost [46].

3. Results and Discussion

The first extracted features, or limited set of selected features, proved to be sufficient
for accurate detection of infested potato tubers. Spectral differences between inoculated
and healthy tubers were more pronounced in images of their outside (Figure 4). Spectral
signatures of the outside of tubers show a larger variability in infested tubers, than in
healthy ones. These differences are more pronounces in the SWIR region, where inoculated
tubers uniformly exhibited higher reflectance than healthy tubers. In contrast, data from
inside tubers shows comparatively little variability, regardless of inoculation status. The
high variability in outside images could be a consequence of tuber surface characteristics.
Healthy tubers are comparatively smooth, while galls cover the surface of inoculated tubers.
This leads to a more varied viewing geometry, which was accounted for in pre-processing
of the images.

We used the first two principal components for data visualization in a generated
feature space. Feature vectors were separated into 5 cross-validation folds, and PCA
performed on each fold of the training data, and applied to both train and test sets. The
generated features from all folds were pooled to generate scatter plots of the first two
PCA components (Figure 5). The first two components explain more than 80% of the
variance in the data (93% for outside, and 84% for inside tubers). These scatter plots show
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a better distinction between healthy and inoculated tubers for data from the outside of
tubers. Yet any linear separability does not appear to be present, at least not in the first two
PCA components.

Figure 4. Reflectance feature vectors for (a) inside and (b) outside of potato tuber. Green colour refers
to healthy and red to inoculated specimens. Separation between VNIR and SWIR cameras is marked
with violet colour.

Females of root-knot nematodes reside within a few millimeters below tuber skin, in
the vascular ring, where they form comparatively large egg-sacs [47]. When these grow
enough, they form galls on tuber surface. Even though some evidence exists that RKNs
change the chemistry of the entire tuber, i.e., also the starchy insides [2], we expected
classification success to be higher in outside data. This hypothesis was confirmed for all DR
methods (Figure 6). All methods achieved a mean accuracy of at least 0.6 (Tables 1 and 2).
LDA showed the most consistent results, as it achieved a mean accuracy of 1.0 in both inside
and outside tuber data. Overall RF came second, with XGB yielding very similar accuracies.
PLS came next, followed by PCA, and lastly ReliefF achieved the worst results. Data was
also analysed without any DR. Even though this method was capable of achieving good
accuracy, a mean of 0.9 from both data sets, it is computationally much more burdensome.
With SVMs solving the quadratic problem involves inverting the kernel matrix, with a
complexity of up to n3, where n is the feature space [43]. RandomForest, XGB and ReliefF
suffer from the same problem, as they only select features, i.e. they generate a subset of the
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original feature space. Furthermore, even though all three feature selection methods are
robust, they can suffer from overfitting and should be optimized accordingly [48]. In this
regard feature extraction methods are beneficial, since they generate a new feature space,
with lower dimensionality.

Increasing the number of features has an expected effect, of increasing classification
accuracies (Figure 7). The most profound effect is observable in PCA and RFF, while RF
shows the smallest change. Unlike the other five methods, only one feature gets extracted
by LDA in binary classification. Interestingly, PCA on inside data decreases accuracy with
the first three components. Accuracy then increases with more features, but still remains
bellow PLS and LDA accuracies. With more features extracted, only PLS and XGB achieve
a 100% accuracy in both inside and outside tuber data. Our results indicate that even with
an extreme reduction, to just one feature, identification accuracies are still acceptable to
excellent (mean accuracy between 0.8 and 1.0).

Figure 5. Scatter plot of first two principal components for (a) inside and (b) outside of potato tubers.
Yellow colour refers to healthy and purple colour to inoculated specimens.

Figure 6. Mean accuracy for several dimensional reduction algorithms. Accuracy of classifier trained
on data from: outer side of potato (orange columns), inner side of potato (blue columns).
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Table 1. Comparison of classification results with only one feature for selected DR methods for
outside tuber data.

Outer Side of Potato Tuber

Method Class Precision Recall F1-Score Accuracy

LDA
Healthy 1.00 1.00 1.00

1.00Inoculated 1.00 1.00 1.00

PLS
Healthy 0.88 0.77 0.82

0.83Inoculated 0.79 0.90 0.84

PCA
Healthy 0.86 0.60 0.71

0.75Inoculated 0.69 0.90 0.78

RF
Healthy 0.93 0.83 0.88

0.88Inoculated 0.85 0.93 0.89

RFF
Healthy 0.88 0.77 0.82

0.83Inoculated 0.79 0.90 0.84

XGB
Healthy 0.81 0.83 0.82

0.82Inoculated 0.83 0.80 0.81

None
Healthy 1.00 1.00 1.00

1.00Inoculated 1.00 1.00 1.00

Table 2. Comparison of classification results with only one feature for selected DR methods for inside
tuber data.

Outer Side of Potato Tuber

Method Class Precision Recall F1-Score Accuracy

LDA
Healthy 1.00 1.00 1.00

1.00Inoculated 1.00 1.00 1.00

PLS
Healthy 0.75 0.80 0.77

0.77Inoculated 0.79 0.73 0.76

PCA
Healthy 0.70 0.77 0.73

0.72Inoculated 0.74 0.67 0.70

RF
Healthy 0.89 0.80 0.84

0.85Inoculated 0.82 0.90 0.86

RFF
Healthy 0.64 0.47 0.54

0.60Inoculated 0.58 0.73 0.65

XGB
Healthy 0.89 0.80 0.84

0.85Inoculated 0.82 0.90 0.86

None
Healthy 0.94 1.00 0.97

0.97Inoculated 1.00 0.93 0.97

Compared to no DR, dimensionality reduction using PLS and PCA on outside data
reduced detection accuracy (Table 2). On the other hand, in a data set with less pronounced
patterns, such as tuber insides, classification accuracy was increased by using PLS. One
of the purposes of dimensionality reduction is to generate or retain only those features,
which are informative for the problem under study. This way the signal-to-noise ratio can
be improved, leading to better model performance.

Dimensionality reduction algorithms use different metrics to asses feature importance.
For example, principal components analysis uses a correlation matrix between generated
components and original features. Correlations above or below 0.7 or−0.7, respectively, are
considered as relevant. In PLS correlations can also be considered, but a more accurate as-
sessment of feature importance is possible using variable importance in projection analysis
(VIP) [49]. VIP coefficients reflect the relative importance of each variable for each variate
in the prediction model. Variable importance in LDA was calculated as LDA scalings, i.e.,
the eigenvectors of the components. Important to note here is that LDA is a discriminant
analysis method and as such it maximizes the between-group variance. The eigenvectors of
the comparison matrix of between and within group’s sum of squares and cross-products
describe how much the original variables contribute to the new component(s). Gini im-
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portance, used with RandomForests and Extreme gradient boosting, provides a relative
ranking of the original features, and is a by-product of the training of the classifier [50].
Lastly, ReliefF assigns feature relevance depending on the difference between this feature
and two neighbours of the same and opposite classes [51]. Each of these methods provides
their own metric of variable importance. In order to directly compare all methods, we
normalized their values to a range of 0 to 1.

Figure 7. Influence of increasing number of features on classification error rates for both inside and
outside tuber data. Since LDA generates only one feature in binary classification it wasn’t included in
this figure. (a) Principal component analysis, (b) Partial least squares, (c) Random forest, (d) ReliefF,
and (e) Extreme gradient boosting.

RandomForest and XGB identified several relevant wavelengths, distributed compara-
tively evenly throughout the spectrum, in both data sets. Similarly, LDA also identified a
large number of relevant wavelengths, but unlike RF, these were not evenly distributed in
the outside data set. In this set the importance of variable shifted towards the SWIR region.
Only ReliefF showed a different pattern, compared to the other five methods. Interestingly,
while PLS, LDA, RF, and XGB show a similar grouping of relevant wavelengths in the
same SWIR regions (1500–1600 nm, 1850–2000 nm, and 2300–2450 nm), PCA found relevant
regions between these groups (1600–1800 nm, and 2100–2200 nm). On the other hand,
ReliefF found relevant wavelengths in the range 1000–1400 nm, i.e., in shorter wavelengths
than the other methods. With inside data, only PCA found relevant regions in the SWIR
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part of the spectrum, above 1500 nm (1600–1850 nm), while the remaining methods found
a strong grouping of relevant wavelengths closer to the VNIR region, between 1000 and
1200 nm (Figure 8). This spectral region is linked to various hydrocarbons, both aliphatic
and aromatic [52]. The region identified by PCA is also linked to different hydrocarbons
(aliphatic, aromatic, and methyl), but also alcohols, amines and proteins. In the outside
data set, regions linked to water, polysaccharides, aromatic amines (1850–2000 nm), and
lipids and glucose (2300–2450 nm) were identified as relevant. In order to fully test the
accuracy of the different variable importance measures, employed by the dimensionality
reduction methods, more detailed chemometric analyses of potato tubers are needed.

Figure 8. Importance of individual wavelengths, as determined by the different DR methods. (a) in-
side, and (b) outside of potato tuber. Brighter colours represent higher importance. Separation
between VNIR and SWIR cameras is marked with red color.

Differences on the inside of tubers are most likely of a chemical nature, while the
outside is influenced by both differences in chemistry as well as surface texture. While
surface texture effects can be reduced using normalization and Savitzky–Golay derivatives,
they can still affect the classifications. The infested tubers used in this study had visible
symptoms (bulges on the outside, approximately 3–5 mm in diameter), covering at most
50% of the surface. In our case, they added another distinguishing dimension, leading to
better classification accuracy with data from tuber surfaces. Nevertheless, the feasibility of
hyperspectral imaging for detection of latent (i.e., without visible symptoms) infestations
with nematodes in potatoes has been shown by Žibrat et al. [2]. In that case surface texture
didn’t influence spectral signatures; therefore the observed differences are exclusively
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due to differences in chemistry between healthy and infested tubers. From a practical
application standpoint, even if tubers in production spot checks would have to be halved
and imaged, the throughput of such a method would be much higher than with molecular
analyses (e.g., real–time PCR). So the benefit of using hyperspectral imaging for detecting
infestations, even with processed tubers, is evident.

Molecular spectra are the result of motions of atomic nuclei. They can rotate, vibrate,
wag and move together or apart along a straight line (this type of movement is called
stretching). Vibrations follow a functional description, i.e. the type of vibration determines
the frequency at which it absorbs energy. The amplitude of absorption is determined by
absorptivity and the number of molecules in the beam path of a particular sensor. Changes
in spectral responses follow Beer’s Law, which states that the absorbance is equal to product
of absorptivity of a molecule and the concentration of molecules. The above means that
the light absorbed by plant tissue depends on the chemical composition of that tissue, the
concentration of individual molecule species, and their interactions [52]. We’ve identified
several groups of molecules, which account for the differences between healthy and infested
potato tubers (such as aliphatic and aromatic hydrocarbons). The two spectral regions,
VNIR and SWIR, are generally linked to different characteristics of plants, but there is some
overlap. In the VNIR region we mostly get information about pigments and structure,
e.g., morphological structure of plant leaves. In addition, in wavelengths above 700 nm
there is also information related to hydrocarbons (mostly aliphatic) and alcohols, these
are generally the third and fourth overtones of the C-H stretch. The SWIR region carries
information on plant biophysical properties (e.g., hydrocarbons and proteins). Changes in
chemistry can therefore be measured in both. Since we do not know how exactly nematode
infestations change the chemistry of potato tubers, we decided to use both systems. The
wider spectral range of the combined system enables us to better search for the effects of
nematode infestations. With the currently available information we can only speculate
which exact compounds account for the observed differences between inoculated and
healthy potato tubers.

We identified several relevant wavelengths from each DR method. The latter use
different methods for deciding, which wavelength is relevant, so we would recommend
to look for overlaps between the methods. Those wavelengths which were identified as
relevant by different methods are good candidates for a multispectral sensor. Different
bandpass filters are commercially available, with different spectral ranges and bandwidths.
So it might not be necessarily needed to develop new filters. Using these filters we would
effectively get a multispectral data set. New classification models would then have to be
developed using this reduced data. Using this procedure we could assess the importance
of each new wide band and determine which ones significantly increase classification
success. Potentially this would mean that by reducing a hyperspectral dataset to a few-
band (~5 bands) multispectral one we would still get acceptable classification accuracy.
Production of such a dedicated multispectral system would be much cheaper, than a
hyperspectral one, with similar classification success.

4. Conclusions

In this study we have shown that discrimination between healthy and inoculated
potatoes with quarantine pests is possible based on hyperspectral image analysis. We
successfully reduced the initial hyper-dimensional feature space to one–dimensional (or
few–dimensional) with the use of dimensionality reduction algorithms, and still obtained
high classification accuracies. These results suggest that a comparatively low–cost imaging
system utilizing band–pass filters could be designed for the specific purpose of identifying
tubers infested by root–knot nematodes. But the study was performed on a very small data
set and further analyses are needed to fully test this idea.
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5. Strajnar, P.; Širca, S.; Knapič, M.; Urek, G. Effect of Slovenian climatic conditions on the development and survival of the root-knot
nematode Meloidogyne ethiopica. Eur. J. Plant Pathol. 2011, 129, 81–88. [CrossRef]

6. EPPO Alert List: Addition of Meloidogyne luci together with M. ethiopica; EPPO Reporting Service No. 11-2017, Num. Article:
2017/218. Available online: https://gd.eppo.int/reporting/article-6186 (accessed on 10 September 2021).

7. Cunha, G.T.; Visôtto, L.I.; Lopes, E.A.; Oliveira, C.M.G.; God, P.I.V.G. Diagnostic methods for identification of root-knot nematodes
species from Brazil. Crop. Prot. 2018, 48, 2. [CrossRef]
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