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Abstract: The spreading of antibiotic resistance is responsible annually for over 700,000 deaths
worldwide, and the prevision is that this number will increase exponentially. The identification of
new antimicrobial treatments is a challenge that requires scientists all over the world to collaborate.
Developing new drugs is an extremely long and costly process, but it could be paralleled by drug
repositioning. The latter aims at identifying new clinical targets of an “old” drug that has already
been tested, approved, and even marketed. This approach is very intriguing as it could reduce
costs and speed up approval timelines, since data from preclinical studies and on pharmacokinetics,
pharmacodynamics, and toxicity are already available. Antidepressants and antipsychotics have been
described to inhibit planktonic and sessile growth of different yeasts and bacteria. The main findings
in the field are discussed in this critical review, along with the description of the possible microbial
targets of these molecules. Considering their antimicrobial activity, the manuscript highlights
important implications that the administration of antidepressants and antipsychotics may have on
the gut microbiome.
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1. Introduction

Life-threatening microbes are more and more often displaying insensitivity to the
commonly used therapeutics, up to the point that antimicrobial resistance is nowadays
considered a global challenge. Indeed, this phenomenon is responsible annually for over
700,000 deaths worldwide, and it has been estimated that this number will increase expo-
nentially [1,2]. E. coli, S. aureus, Enterococcus spp., P. aeruginosa, Kleibsiella spp., coagulase-
negative Staphylococci, and Candida spp. are among the most frequently isolated microbes
in health care-associated infections [3]. The development of new antimicrobial treatments
is a challenge that scientists are approaching through global collaboration. Unfortunately,
developing a new drug is an extremely expensive and long process that may take up to
17 years to be completed, and as a consequence, the discovery of new antibacterial agents
has dropped by more than 50% [4], while the development of bacteria resistance has been
increasing and very rapidly spreading. A parallel approach is drug repositioning, meaning
the identification of new clinical targets for a drug already tested, approved, and even
marketed [5]. This approach could cut costs and speed up the approval timelines, as data
on preclinical studies, pharmacokinetics, pharmacodynamics, and toxicity have already
been reported. Drug repositioning has been a very promising approach to finding possible
therapies against COVID-19, leading to the identification of several possible treatments,
such as antivirals (i.e., Lopinavir/Ritonavis, Remdesivir), immunosuppressors (i.e., Rux-
olitinib, Tocilizumab, Eculizumab), and immunomodulators (i.e., Camostat, Interferons,
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Sargramostin). Currently, in the USA, more than 1000 clinical trials employing one of these
drugs or a combination of them have been undertaken, and additional trials are ongoing in
the rest of the world [6–8].

Different strategies can be applied to drug repurposing. First, non-antimicrobial
approved drugs can be tested directly on cell-based models to sort out those display-
ing antimicrobial activity. This strategy can be undertaken even in a high-throughput
mode [9–11]. It is a phenotype-based process and therefore it does not clarify the action
mechanism of the new active drugs identified [12]. Once a drug and its microbiological
target are clarified, it is possible to perform a screening on barcode mutant libraries in
order to identify the relative molecular target. Here, thanks to chemogenomic profiling that
follows haploinsufficiency profiling or homozygous profiling assays, pathways, or even
proteins whose activity were selectively modified by the presence of the drug, are identified.
This provides important information on the biological effects of the tested molecule [13–16].
For example, following this approach, the molecular target of psychoactive drugs, such as
drofenine, clozapine, propiomazine, and metergoline, were suggested to be small ribosomal
subunit and cytochrome c oxidase (COX17), the terminal component of the mitochondrial
respiratory chain [17]. Chemogenomic profiling is a very powerful tool that can be applied
to a limited number of microbes, as mutant libraries were only developed for the main
model organisms (i.e., yeasts S. cerevisiae, C. albicans, S. pombe and bacteria E. coli and P.
aeruginosa). An alternative approach to identifying the antimicrobial activity of a drug
is based on screening for a clear phenotype in more clinically relevant environments, for
example, on whole-animal systems [18]. In this case, other tests (biochemical, genomic, and
computational) are necessary to identify the molecular target(s) [12]. Screenings can also
be performed in silico by taking advantage of recent improvements of high-performance
computers, artificial intelligence (AI) [19], and the availability of a vast amount of biological,
chemical, and pharmacological data.

There are almost 50 drugs that have been approved to be used on new targets due to
drug repositioning initiatives [2,20–22]. Among those, amphotericin B, a known antifungal,
is now approved to be used on visceral leishmaniasis, while chlorcyclizine, usually used
to treat allergic reactions, can be employed as an antiviral, and the antibacterial doxy-
cycline could be employed against malaria [23–25]. The first-generation antipsychotic
haloperidol can induce ferroptosis in hepatocellular carcinoma cells. Ferroptosis is con-
nected with the accumulation of Reactive Oxygen Species (ROS), and in this condition,
haloperidol increases the cellular concentrations of GSH and Fe2+ and lipid peroxida-
tion. [26–28]. Haloperidol is now employed in cancer preclinical and clinical studies. The
antidepressants fluoxetine has been found to be beneficial against COVID-19 infections [6].
Taking fluoxetine lowers the risks of intubation and death by reducing the “cytokine
storm” [29,30]. Moreover, several groups have reported the capacity of antidepressants
and antipsychotics to inhibit the growth of different microbes, many of which are related
to healthcare-associated infections. Overall, repurposed drugs could be used alone or,
even better, in association with known antimicrobials to potentiate their actions. The latter
strategy allows lowering the drugs’ concentration and diminishing their possible toxicity
and, at the same time, maximizing their joint action and preventing antimicrobial resistance
development [31]. This strategy was already proven successful [32–34]. These studies
suggest that these molecules could be integrated into a drug repositioning pipeline. This
review aims at listing all the available data, reporting the microbiological targets identified
upon treatment and discussing these findings. More importantly, the novelty of this review
is that it highlights some important implications that the use of antidepressants could have
on the ecology of the human gut.

To identify all the relevant manuscripts for this perspective review, several biblio-
graphic searches were undertaken from May to August 2021 on “PubMed”, “Elsevier’s
Scopus”, Web of Science Clarivate Analytics, and “Google Scholar”. The searches in-
cluded several different combinations of keywords (i.e., sertraline-antimicrobial, sertraline-
repurposing, sertraline-fungi, SSRIs-bacteria, etc.).
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2. Brief Overview of the Actions of Antidepressants and Antipsychotics

Depression has been mainly correlated with alterations in the noradrenergic and
serotonergic functions. The link between a lower activity of the serotonin pathways and the
development of depression is almost 50 years old. Indeed, in the 1950s, it was found that
iproniazide and imipramine could improve the condition of depressed people and later, it
was found that iproniazide, a MonoAmine Oxidase Inhibitor (MAOI), and imipramine,
a Tricyclic Antidepressant (TCA), were able to inhibit the reuptake of monoamines and
had the capacity to increase the effect of serotonin at the synapses [35]. Since the discovery
of the first MAOI and TCA, many more variant molecules were developed. The lack of
specificity of these drugs causes several undesirable side effects including toxic ones. To
overcome these problems, Selective Serotonin Reuptake Inhibitors (SSRIs) were developed,
a discovery that improved the quality of life of patients suffering from depression, as SSRIs
are more tolerated and safer than MAOIs and TCAs [35–37].

People suffering from psychotic behaviors (i.e., schizophrenic, aggressive, anxious, agi-
tated behaviors) are mostly cured with neuroleptics and benzodiazepines [27,38–41]. These
drugs act by blocking the dopamine receptors. These drugs act by: (a) blocking dopamine
receptors, or (b) combining the inhibition of serotonin uptake and dopamine receptors,
and producing side effects on cholinergic, histaminic, and adrenergic receptors [42,43] or
also (c) by promoting the activity of the neurotransmitter gamma-aminobutyric acid [44]
(GABA).

3. Repurposing of Antidepressant and Antipsychotic Drugs

Recent reports have shown that antidepressants may have a positive effect on other
pathologies. Indeed, besides their “classical” use, TCAs and SSRIs were beneficial when
administered to persons suffering from irritable bowel syndrome. The dose of antidepres-
sants used to treat patients with irritable bowel syndrome is lower than the one employed
to treat psychiatric disorders. With this lower dose, no effect on anxiety or depression were
generally reported [45–47]. Moreover, desipramine and fluoxetine reduce the risk of colitis
in animal models, even though these data have to be confirmed in clinical trials [46]. The
SSRIs fluoxetine, paroxetine, sertraline, escitalopram, and citalopram have been proven
to reduce several premenstrual syndrome symptoms, although in some cases, side ef-
fects have also been reported with a dose-depended relationship [48,49]. Interestingly,
sertraline had also positive effects in women suffering from premenstrual syndrome and
recurrent vulvovaginal candidiasis. Indeed, in these patients during the cure, no recurrent
episodes of yeast infection were reported [48,50]. This effect is not surprising, as many
antidepressants have been found to have a negative effect on the growth of Candida albicans
(see Table 1).
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Table 1. List of different antidepressants and antipsychotics; their “classical” action in humans is correlated to their described antimicrobial activity. For each drug. the microbial target, the
effective concentration at which antimicrobial activity is observed, and the physiological effects on the listed microbes are presented. Almost all papers report in vitro testing, with the
exception of [50–55], which report some in vivo testing.

Drug Microbial Target Concentration Effective on
Microbes Physiological Effects on Microbes References

ANTIDEPRESSANTs—SSRIs

Sertraline
(third generation of selective
serotonin reuptake inhibitors)

C. albicans, C. glabrata, C. tropicalis, C.
parapsilosis, C. dubliniensis, C. krusei,
A. fumigatus, A. flavus, A. terreus, C.
neofromans, S. cerevisiae, A. baumanii,

H. influenzae, C. jejuni, H. pylori, S.
aureus, P. aeruginosa, S. epidermidis, E.

faecalis, C. difficile, B. fragilis,
Prevotella spp

9–775 µM
(3–237 µg/mL)

Fungicidal; inhibits hyphal elongation and
phospholipase activity, reduces secreted aspartyl

proteinases (SAP) production, inhibits fungal viability,
has antifungal and anti-biofilm effects, displays a

synergistic effect with fluconazole, causes
mitochondrial depolarization and cell membrane

damage, induces autophagy

[50,51,56–63]

Fluoxetine
(third generation of selective
serotonin reuptake inhibitors)

C. albicans, E. coli
P. aeruginosa, S. aureus,

Coxsackievirus, E. coli, A. baumanii

130 µM–13 mM
(40–4000 µg/mL)

Inhibits cell growth; promotes mitochondrial
depolarization and membrane damage; decreases

metabolic activity of mature biofilms; displays
synergistic interaction with azoles such as fluconazole,
downregulates SAP genes expression and extracellular
phospholipase activity, inhibits bacterial growth and
synergizes with antibiotics, reduces the synthesis of

viral RNA and proteins.

[52,56,58,64–67]

Paroxetine
(third generation of selective
serotonin reuptake inhibitors)

C. albicans, E. coli, A. baumanii 110–282 µM
(40–101 µg/mL)

Inhibits cell growth; promotes mitochondrial
depolarization and membrane damage in yeast,

inhibits bacterial growth.
[56,58,67–69]

ANTIDEPRESSANTs—MAOIs

Clorgyline
(MonoAmine Oxidase Inhibitor) C. albicans, C. glabrata 5.1 µM

(1.4 µg/mL)

Broad-spectrum inhibitor of several
fungal efflux pumps, displays a synergistic interaction

with fluconazole
[56,70]

Phenelzine
(MonoAmine Oxidase Inhibitor) Salmonella 30–100 µM

(4–14 µg/mL) Inhibits TYR oxidoreductase [71]

ANTIDEPRESSANTS—TCAs
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Table 1. Cont.

Drug Microbial Target Concentration Effective on
Microbes Physiological Effects on Microbes References

Doxepin
(increases the levels of

norepinephrine, along with
blocking histamine, acetylcholine,

and serotonin)

C. albicans, C. glabrata, C. parapsilosis,
C. krusei, C. utilis

716 µM
(200 µg/mL)

Inhibits hyphae and biofilm formation, kills cells in a
mature yeast biofilm [72]

Imipramine
(increases the levels of serotonin and

norepinephrine and blocks some
serotonin, adrenergic, histamine,

and cholinergic receptors)

C. albicans, C. glabrata
C. parapsilosis, C. krusei, C. utilis

142 µM
(40 µg/mL)

Inhibits hyphae and biofilm formation, kills cells in a
mature yeast biofilm [72]

Nortryptiline
(blocks the reuptake of

norepinephrine, binds to
alpha-adrenergic, histaminergic,

and cholinergic receptors)

C. albicans, C. glabrata, C. parapsilosis,
C. krusei, C. utilis

190 µM
(50 µg/mL)

Inhibits hyphae and biofilm formation, kills cells in a
mature biofilm, induces cell lysis, and displays

synergistic activity with amphotericin B
[72,73]

Amitriptyline
(Inhibits the reuptake of serotonin

and norepinephrine)

Staphylococcus spp., Bacillus spp., V.
cholerae, Micrococcus spp, L.
sporogenes, Citrobacter spp.

36–722 µM
(10–200 µg/mL) Inhibits microbial growth [53]

Amoxapine
(Reduces the uptake of serotonin

and noradrenaline)
Salmonella, Y. pestis 1–100 µM

(0.3–30 µg/mL)
Inhibits GUS-mediated hydrolysis of d-glucuronides,

reduces cytotoxicity in murine macrophages [54,71]

ANTIPSYCHOTIC—NEUROLEPTIC

Aripiprazole
(partial agonist of serotonin and

dopamine receptors)
C. albicans 11–111 µM

(5–50 µg/mL)

At low doses, it inhibits biofilm formation, as well as
yeast-to-hyphal transition and flocculation; at high

doses, disrupts lipid rafts, induces membrane damage
[74]

Bromperidol
(antagonist of the dopamine

receptor)

Mycobacterium smegmatis, M.
tubercolosis, C. albicans, C. glabrata, A.

terreus

119–142 µM
(50–60 µg/mL)

Acts synergistically with spectinomycin on
Mycobacterium, is bactericidal, interacts positively with

azoles
[55,75]

ANTIPSYCHOTIC—BENZODIAZEPINE



Pharmaceuticals 2021, 14, 915 6 of 16

Table 1. Cont.

Drug Microbial Target Concentration Effective on
Microbes Physiological Effects on Microbes References

Diazepam
(increases the effect of the
neurotransmitter GABA)

C. albicans 108 µM–14 mM
(31.25–4000 µg/mL) Inhibits growth, hyphae formation, and biofilm growth [76]

Lorazepam
(enhancer of the effect of the
inhibitory neurotransmitter

gamma-aminobutyric acid on
GABA receptors)

C. albicans 96 µM–12 mM
(31.25–4000 µg/mL) Inhibits growth, hyphae formation, and biofilm growth [76]

Midazolam
(promotes the action of GABA)

C. albicans, S. aureus, E. faecalis, E.
coli, P. aeruginosa, A. baumanii

95 µM–12 mM
(31.25–4000 µg/mL)

Inhibits growth, hyphae formation, and biofilm
growth, inhibits bacterial growth [76–78]

ANTIPSYCHOTIC—ATYPICAL

Zotepine
(High affinity to dopamine
receptors, affects serotonin

receptors, its active metabolite,
norzotepine, serves as a potent

norepinephrine reuptake inhibitor)

C. albicans 0.1–40 µM
(0.03–12 µg/mL) Inhibits biofilm development [10]
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4. Candida albicans, a Common Target of Antidepressants and Antipsychotics

Many antidepressants and antipsychotics showed to be effective, at least in vitro,
against several types of fungi such as A. fumigatus, A. flavus, A. terreus, and C. neoformans,
and, especially, against Candida spp., particularly C. albicans (see Table 1 for details). Can-
dida albicans is a member of a healthy microbiota, colonizing the gastrointestinal tract,
skin, and oral cavity [79–81]. Unfortunately, alterations in the host immune response or
its microbiota or changes in the environment can stimulate the growth of C. albicans, a
phenomenon that can cause thrush, vaginal yeast infections, diaper rash, and even more
serious infections especially in immunocompromised individuals [82]. Moreover, this
yeast can easily colonize implanted medical devices thanks to its capacity to form stable
biofilms, a contamination that could lead to bloodstream infections and even invasive
systemic infections of organs or tissues [83]. Biofilm growth leads to inherent resistance
to antimicrobial agents, a phenomenon connected with the increased expression of efflux
pumps, the formation of the extracellular matrix, and the presence of persister cells [84,85].
Antifungal drugs used nowadays target ergosterol biosynthesis or 1,3-β-D-glucan synthe-
sis. With the development of resistance and the fact that high doses of antimicrobials can
cause liver and kidney damages [86], new molecules active against C. albicans, preventing
biofilm formation or destroying its integrity, are certainly needed [87,88]. Therefore, the
promising antimicrobial capacity of antidepressants and antipsychotics should be further
investigated. In parallel, as this yeast is considered a model organism, the identification
of the mechanism of action of a new antimicrobial is aided by the possibility to perform
chemogenomics studies, as mutant libraries are available, as well as to perform DNA
transformation, epitope tagging, and immunoprecipitation, to name a few.

5. Possible Antimicrobial Activities of Antidepressants and Antipsychotics

All three classes of antidepressants and many of the antipsychotics have antimicrobial
activity (see Table 1); interestingly, most of the targeted microbes are isolated in healthcare-
associated infections. Often, the reported biological effects following drug treatments
are similar for many of the tested microbes. By looking at Table 1, it is clear that the
consequences of the treatments have been described especially in Candida spp. In this
yeast, antidepressants or antipsychotics often negatively influence key virulence factors,
a phenomenon with negative consequences on the capacity of pathogenic fungi to attack
the human body. Indeed, frequent drug targets are the formation of hyphae, which is one
of the first steps in biofilm formation, the enzymes aspartyl proteinases, key virulence
factors able to degrade many human proteins (i.e., mucin, immune system molecules,
endothelial cell proteins, and coagulation factors), and phospholipase enzymes, proteins
able to break the ester bonds of phospholipids, inducing cell lysis [89]. Active proteinase
and phospholipase support the process of pathogenesis [90]. Many drugs have been shown
to disrupt cell membrane’s integrity, sometimes also acting at the level of lipid rafts. The
latter are areas of the membrane that are particularly rich in sphingolipids and are involved
in membrane trafficking, control of Na+/K+ balance, and pH homeostasis [91]. Damage to
the membranes can induce cell lysis or autophagy, the latter being a self-degrading process
that can be also be directly induced by some antifungals [92]. Autophagy is correlated
with mitochondria depolarization, another effect often observed when yeasts are treated
with antidepressants and antipsychotics. The working concentrations reported in Table 1
are within the same range of those of the known antimicrobials and antibiotics (for C.
albicans, the MIC90 of fluconazole is around 3 µM). Many works reported that these drugs
work synergistically with azoles, especially fluconazole, and with amphotericin B. All of
the combinations display a fractional inhibitory index (FICI or FIX) well below 0.5 [93].
This is a positive outcome, as these synergistic combinations could reduce the antibiotic
concentrations used to treat an infection, in parallel reducing the toxic side effects and
preventing the development of resistance [31].

Among the SSRIs, sertraline is the most studied, found to be active in some cases
already at the concentration of 9 µM. This drug was tested on more than 20 microbes includ-
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ing yeast and bacteria. On yeast, and especially on C. albicans, it inhibits virulence factors
such as hyphal formation and the secretion of aspartyl proteinases, kills yeast, and inhibits
biofilm formation. Moreover, this drug works synergistically with fluconazole [50,51,58].
In bacteria, sertraline was shown to inhibit growth and to work synergistically with other
antibiotics, but no further details have been reported [60–63]. To our knowledge, sertraline
is also the only drug being employed as an antifungal in humans, specifically, against
cryptococcal meningitis. Sertraline was initially demonstrated to be able to potentiate
the action of azoles against cryptococcal microbes [60]; later, it was tested in a Phase II
study [94] and a follow-up Phase III study in HIV patients infected by this fungus, but with
no convincing results [95].

Fluoxetine, an SSRI, was found to be active against bacteria, fungi [50,56,64,67], and,
interestingly, even a virus. Indeed, this drug was able to inhibit the viral RNA and proteins
of Coxsackievirus [66]. The latter is an enterovirus, a small non-enveloped RNA virus,
member of a genus responsible for different life-threatening conditions such as encephalitis
or myocarditis [96]. Clorgyline, a MAOI, is active against C. albicans and C. glabrata where
it inhibits efflux pumps and positively interacts with fluconazole [56,70]. A second MAOI,
phenelzine, was found instead to be active against Salmonella [71]. Works based on TCAs
showed that this class of molecules was active against Candida spp., where they inhibited hy-
phal formation, lysed the cells, and killed them even in a mature biofilm [72,73]. Moreover,
the TCA amoxapine is active against Salmonella and Y. pestis [54,71]. Interestingly, some
TCAs and the antipsychotic thioridazine are capable to resensitize methicillin-resistant S.
aureus (MRSA) to β-lactam [97–99]. This is relevant, as it opens the possibility to use this
drug, alone or in combination with known antibiotics, to treat resistant bacteria.

The neuroleptics aripiprazole and bromperidol can inhibit biofilm formation by Can-
dida spp., but the second was found to work synergistically with spectinomycin to inhibit
the growth of Mycobacterium smegmatis and M. tuberculosis [55,75]. Benzodiazepines are
active against C. albicans and can inhibit biofilm formation; they are also active against S.
aureus, E. faecalis, E. coli, P. aeruginosa, and A. baumanii [10,76–78].

6. Possible Mechanisms of Action

Antidepressants and antipsychotics display antimicrobial activity on a wide range of
microbes, as reported in Table 1. However, the examined reports do not include specific
details on their mechanism of action and molecular targets. The following paragraphs
summarize what is known so far on this topic.

6.1. Inhibition of Efflux Pumps

A direct target of SSRIs, and partially of some TCAs, is the human Serotonin Trans-
porter, a membrane-bound Na+-dependent solute carrier with 12 putative transmembrane
domains. Its action allows the import of serotonin inside cells, and antidepressants in-
hibit this action. It has been suggested that, in microbes, the same molecules lower the
activity of other proteins transporters such as xenobiotic efflux pumps (Figure 1). Indeed,
overexpression of the efflux pumps Cdr1, Cdr2, or Mdr1 is a common way adopted by C.
albicans to detoxify itself from xenobiotics [100]; P. aeruginosa does the same with MexAB-
OprM and MexXY-OprM [101], and S. enterica serovar Typhimurium increases the levels of
AcrB to excrete β-lactam antibiotics [102]. Inhibiting the removal of a toxic compound,
such as an antibiotic, would therefore allow the latter to exert its action within cells. This
idea is supported by the observation that the activity of C. albicans transporters overex-
pressed in multi-drug-resistant strains and expressed in S. cerevisiae, can be inhibited by
the antidepressants clorgyline [70].

6.2. Inhibition of Mitochondria Activity

As reported in several works, the action of antidepressants and neuroleptics in mi-
crobes involves different biological processes, and it is suggested that several different
components could be the target of these drugs [61]. Indeed, treatment of a C. albicans
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mutants library with nortriptyline identified mutants that are specifically sensitive or tol-
erant to this drug and others that share the same phenotype when treated with common
antifungals [73]. The work suggests that mitochondria are one of the targets of nortriptyline
(Figure 1), although it is not clear which function, carried out by this organelle (i.e., ATP
production and oxidative phosphorylation, maintenance of the redox state, cell survival or
apoptosis induction, lipid peroxidation), is affected. Inhibition of mitochondrial activity is
displayed also when yeasts are treated with other central nervous systems drugs [103].

Figure 1. Proposed mechanisms of action. Few are the mechanisms of action suggested for antidepres-
sants and antipsychotics. They involve inhibition of efflux pumps (A), disturbance of mitochondria
(B) (a list of possible functions that can be affected in the organelle are reported), and disruption of
the integrity of membranes or lipid rafts (C). Moreover, with chemogenomics and the use of barcoded
mutants (D), pathways and molecular targets of different psychoactive drugs were discovered in the
model organisms S. cerevisiae and C. albicans. Future studies will need to confirm these findings. Part
of the graph was made using https://smart.servier.com/ (accessed on 1 July 2021).

6.3. Interference with Membrane Integrity

It has been suggested that neuroleptics such as aripiprazole can interfere with Lanos-
terol 14 alpha-demethylase or CYP51, similarly to azoles, disrupting lipid rafts and inducing
membrane damage [74]. The antipsychotic phenothiazine and the antidepressant nortripty-
line have also been reported to disrupt cell membranes [72,104,105]. As mentioned earlier,
TCAs and thioridazine, an antipsychotic, are able to reverse the resistance of MRSA to
β-lactam. It has been reported that do so, TCAs act by repressing the expression of β-lactam
resistance genes, while thioridazine acts by inhibiting the expression of genes involved in
cell wall biosynthesis [98,99].

6.4. Possible Disturbed Pathways

Chemogenomic profiling with a haploinsufficiency approach focused on C. albicans
mutants identified the following processes and systems as possible targets of nortriptyline:
oxidative phosphorylation, fatty acid metabolism, ribosome biogenesis and machinery,
RNA binding, and the RNA splicing apparatus [73,106]. Following the same approach,
the targets of the TCA chlorpromazine in S. cerevisiae were suggested to be the regulation
of cell cycle, cell wall biogenesis, aromatic amino acid biosynthesis, and response to
chemicals [106]. With the same approach, Ericson et al., showed that in S. cerevisiae, the most
notable effect of fluoxetine was on the establishment of polarity, that of paroxetine was RNA
processing, and that of sertraline was vesicle-mediated transport [107]. Hillenmeyer et al.
reported that, in the same microbe, the small ribosomal subunit and cytochrome c oxidase

https://smart.servier.com/
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are the targets of psychoactive drugs [17]. The heterocyclic compounds acridines have been
widely used also as antibacterial agents, due to their capacity to bind DNA and interfere
with the activity of the enzymes topoisomerase I and II [108]. It has been suggested that
two or more benzene rings, a common feature of acridine and of some antidepressants and
antipsychotics (see Figure 2), could be among the key functional groups for antimicrobial
activity [53].

Figure 2. Chemical structure of some SSRIs, MAOIs, TCAs, and neuroleptics which highlights similarities and differences
between the different chemicals.

7. Implications of the Antimicrobial Activity of Antidepressants in Human Gut Ecology

In the previous sections, we described how antidepressants and antipsychotics nega-
tively influence the growth and physiology of different microbes, both bacteria and fungi.
This observation has broader therapeutic implications, as many microbes are symbionts or
opportunistic microorganisms in the human body, including skin and gut.

Recently, phenelzine, desipramine, venlafaxine, bupropion, aripiprazole, and (S)-
citolapram have been tested for this property also in isolated commensal bacteria. The
results have shown that these drugs can inhibit the growth of phyla that are dominant
within the human microbiota such as Bifidobacterium animalis and Bacteroides fragilis [109].
This work strongly suggests the capacity of antidepressants to act as antimicrobials also on
beneficial microbes residing in the human gut.

It is known that the gut forms a two-direction communication system with the brain,
forming the so-called “gut–brain axis”. Serotonin is a neurotransmitter whose concen-
tration is fine-tuned in our body. Indeed, low levels of this neurotransmitter have been
correlated with the development of depression, while high levels have been linked also
to colitis [110,111]. The gut microbiota was implicated in regulating the levels of sero-
tonin [110], and some of the microbes residing in the gut can produce serotonin (i.e.,
Lactococcus lactis subsp. cremoris, L. lactis subsp. Lactis, Lactobacillus plantarum, Streptococcus
thermophilus, E. coli K-12, Morganella morganii, Klebsiella pneumonia) [110,112,113]. So far, the
possibility that modifications of the gut microbiota could negatively influence serotonergic
signaling has only been suggested in pre-clinical studies, as data from clinical trials are still
very limited [110].

Moreover, it was reported that people suffering from depression frequently displayed
an altered gut microbiota, with a decreased richness and diversity of species [114]. For
example, Lin et al. showed that depressed patients display a different gut composition
with more bacteria of the phylum Firmicutes, less Bacteroidetes, and more bacteria of the
genera Prevotella, Klebsiella, and Streptococcus [115], while Naseribafrouei et al. showed
that Bacteroidales are increased in depressed patients who have a decreased level of the
Lachnospiraceae family (a more exhaustive list can be found in a recent review [116]). It
was reported that the frequent use of antibiotics was correlated with an increased risk of
developing depression or anxiety [65].



Pharmaceuticals 2021, 14, 915 11 of 16

Probiotics have been recently tested to re-establish a healthy microbial status, due
to their ability to balance the dysbiosis created under the depressive state [117]. As an
example, the psychobiotic B. breve A-1 improved depressive symptoms in patients with
schizophrenia [118], while a mixture of L. acidophilus, L. casei, and Bifidobacterium bifidum
was beneficial on depressive symptoms [119]. At the moment, many psychobiotics, being
them prebiotics, probiotics, postbiotics, and even single molecules involved in the gut
microbial signaling, are being tested to identify any possible therapeutic benefits [116,120].

Previous reports showed that patients suffering from depression display microbial
dysbiosis. As many of these studies were conducted in patients with depression, who were
often being treated for it at the time of the analyses, more studies are necessary to describe
the gut microbiome before and after medical treatments, so to understand if and how
antidepressants could influence dysbiosis. Moreover, taking antidepressants could affect
specifically those microbial strains able to produce serotonin, possibly adding a negative
factor to the overall compromised health system, which is an extra factor to considered.
A recent hypothesis suggests that shifts in the gut microbial composition upregulate pro-
inflammatory pathways leading to the worsening of depressive symptoms, a theory that
implicates also the immune system in this complex balance [116].

8. Conclusions

The development of antibiotic resistance is a global threat. To try to solve this problem,
new antibiotics or antimicrobials should be developed, a task that has to face many different
challenges. As a complement to new drug discovery, drug repositioning could be inves-
tigated. In this review, the antimicrobial capacity of antidepressants and antipsychotics
identified by different laboratories has been summarized. Many of these drugs have been
found to disturb the integrity of the cell membrane, mitochondria activity, and critical
Candida spp. virulence factors (i.e., hyphae formation, SAP, and phospholipase enzymes).
Less is known on their effects on bacteria. The premises are encouraging; however, more
aspects need to be investigated in depth before some of these drugs could be labelled as
true antimicrobials. To reach this point, it will be necessary to:

• Clearly identify the microbial molecular target(s) of each potential new drug, especially
in bacteria

• Describe the connection between the administration of these drugs and their influence
on the gut microbiome, after a short and/or prolonged administration, and in the
frame of the gut–brain axis

• Pinpoint the concentration at which these molecules would be active as antimicrobials,
a parameter that should be equal to, or even lower than, the one used to treat the
original disease

• Identify new uses, such as investigate the possibility of topical application
• Test whether, when combined with other known antimicrobials, they potentiate the

overall effects of the latter and at the same time, allow lowering antimicrobials’ global
concentration and their possible correlated toxic effect

• Better understand which of these drugs may have an acridine-like effect on DNA and
which are more active at the level of mitochondrial functions.
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