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Radiomics characterizes tumor phenotypes by extracting large numbers of quantitative features from 
radiological images. Radiomic features have been shown to provide prognostic value in predicting 
clinical outcomes in several studies. However, several challenges including feature redundancy, 
unbalanced data, and small sample sizes have led to relatively low predictive accuracy. In this study, 
we explore different strategies for overcoming these challenges and improving predictive performance 
of radiomics-based prognosis for non-small cell lung cancer (NSCLC). CT images of 112 patients 
(mean age 75 years) with NSCLC who underwent stereotactic body radiotherapy were used to predict 
recurrence, death, and recurrence-free survival using a comprehensive radiomics analysis. Different 
feature selection and predictive modeling techniques were used to determine the optimal configuration 
of prognosis analysis. To address feature redundancy, comprehensive analysis indicated that Random 
Forest models and Principal Component Analysis were optimum predictive modeling and feature 
selection methods, respectively, for achieving high prognosis performance. To address unbalanced 
data, Synthetic Minority Over-sampling technique was found to significantly increase predictive 
accuracy. A full analysis of variance showed that data endpoints, feature selection techniques, and 
classifiers were significant factors in affecting predictive accuracy, suggesting that these factors must be 
investigated when building radiomics-based predictive models for cancer prognosis.

The current clinical workflows generate thousands of images per patient making it impractical for clinicians to 
study all the images. Moreover, human interpretation of medical images is inherently biased and prone to fail in 
discovering the entirety of potentially informative imaging data. As a new field of study, radiomics aims to dis-
cover and translate this un-decoded information in medical images1. Radiomics is defined as the extraction of a 
large amount of quantitative features from medical images2. By capturing the entirety of tumor site and the ability 
of extracting information from 3D images, radiomics has the distinct advantage of assessing tissue heterogeneity, 
a well described phenomenon in cancer analysis with varying cell phenotypes. This is in contrast to other clinical 
procedures such as biopsy where only a small fraction of tumor is sampled with the significant chance that the 
index tumor is entirely missed3 leading to misinterpretations and non-optimal clinical decisions.

Radiomic features offer comprehensive and quantitative measurements of tumors through 3D images includ-
ing texture, intensity, heterogeneity, and morphology information allowing a comprehensive analysis of tumor 
phenotype1. Recent studies have found that radiomic features may have significant associations with clinical 
outcomes and gene-expression levels4–9. These features can also be used to develop diagnosis or prognosis models 
that may serve as a tool for personalized diagnosis and clinical decision support systems.

Radiomics-based prognosis analysis pipeline constitutes several stages. Figure 1 shows a typical pipeline for 
radiomics analytics. First, raw images are pre-processed to annotate regions of interest (ROIs) such as cancerous 
regions (tumors). This is usually done by contouring the ROIs manually by clinicians or automatically via seg-
mentation algorithms3. Next, a large number of quantitative imaging features is extracted from these ROIs. In the 
next step, endpoint data (i.e., clinical outcome such as disease recurrence) is analyzed to guide the construction 
of predictive models which involves feature reduction and outcome classification.

Although previous studies have found several radiomic features having significant association with clinical 
outcomes including survival or recurrence for different cancer types, each individual feature could only explain a 
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small amount of variation in the outcomes7. In addition, the traditional testing methods are prone to lead to the 
multiple testing problem, increasing the false positive rate (type one error) if not corrected, or increasing the false 
negative rate (type two error)10,11. Setting critical P value as 0.05, we expect to see 5 significant results from 100 
testing using random data. Hence, in radiomics analytics, since the number of features is usually large (e.g., 100), 
the impact of multiple testing problems is significant and perhaps unavoidable. Furthermore, with a large number 
of features, radiomics studies generally have small sample sizes, leading to the “Large P, small N” problem, where 
the number of features is much larger compared to the sample sizes11. Moreover, the clinical outcomes are usually 
unbalanced, which is not optimal for model training. These negatively affect the prediction accuracy of prognosis 
models, which need to be addressed when building an efficient radiomics-based prognosis model.

In this study, we investigate the predictive performance of the combinations of 5 unfiltered feature reduc-
tion techniques and 8 different classifiers applied to quantitative CT feature of a dataset of Non-small Cell Lung 
Cancer (NSCLC) patients with 3 clinical outcome namely recurrence, death, and recurrence-free survival. To 
address the unbalance dataset problem, 4 subsampling methods were also investigated. We aim to determine an 
optimal configuration of radiomics-based prognosis analytics in terms of feature selection, subsampling, and 
predictive models that yields the best prognosis accuracy for the disease and thus, potentially enhancing the 
applicability of radiomics analytics in clinical practice.

Methods
Dataset. This retrospective study was approved by the Research Ethics Board of Sunnybrook Health Sciences 
Centre and all methods were performed in accordance with the guidelines and regulations of this ethics board. 
112 NSCLC patients with mean age 75 years who underwent stereotactic body radiotherapy (SBRT) were 
included in this study. CT scans, manual contours, and clinical outcomes were available for all included patients. 
Patients were followed-up with CT of the chest and abdomen every 4 months for the first 3 years after SBRT and 
every 6 months thereafter. Local and lobar recurrences were assessed for each pulmonary lesion treated. Regional, 
distant failure and overall survival were calculated based on each patient treated. Recurrence, death, and recur-
rence-free survival were calculated based on the status of patients at the end of the 3-year follow-up.

The delineation of the tumors was performed manually consistently by a thoracic radiologist with 14 years 
of experience in thoracic imaging using ProCanVAS, an in-house developed computer-aided diagnosis tool for 
cancer analysis12. Each lesion was contoured on every sequential slice that was visible and the largest ROI for each 
patient was selected as the representative cross section of the lesion. In total, 2159 ROIs were assessed and the 
lesions had a cross section mean size of 242 mm2. Thirty radiomic features (11 first order features, and 19 second 
order features) were extracted from the ROIs with maximum size for each patient. Table 1 lists details of the 
radiomics features13,14.

Feature reduction and predictive models. A large number of quantitative features can be extracted 
from medical images. However, many of these feature may be simply noise, or highly correlated with each other. 
Feature reduction is necessary to select a subset of useful and unique features, increasing the prediction accu-
racy and minimizing the computational cost. The feature reduction procedure can be categorized as supervised 
or unsupervised. In supervised feature selection, such as filtering feature selection, features are selected based 
on their discriminative value of outcomes. These types of feature selection methods, however, are prone to 
over-fitting15 and ignore the effects of interaction of features among themselves which may benefit the predictive 

Figure 1. Radiomics Analytics Pipeline. 

Feature group Number of features Description

Statistical - First order 11 ROI Size (# of pixels), ROI size (mm2), Mean gray level, Standard Deviation, Median gray 
level, Min ROI, Max ROI, Mean Positive Values, Uniformity, Kurtosis, Skewness

Textural - Second order 19
Contrast, Energy, Correlation, Homogeneity, Entropy, Normalized Entropy, Variance, 

Inverse Difference Moment, Sum of Average, Sum of Variance, Sum of Entropy, Difference 
of Variance, Difference of Entropy, Information Measure of Correlation, Autocorrelation, 

Dissimilarity, Cluster Shade, Cluster Prominence, Maximum Probability

Table 1.  Summary of radiomics features.
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model. Furthermore, an individual feature alone may not be able to distinguish clinical outcome, but it may offer 
valuable information when combined with other features. Thus, in the filtering method, when selecting features, 
those valuable information is lost. In contrast, unsupervised feature reduction is based on dimensionally reduc-
tion algorithms, which maintains more information in the dataset, and hence, is robust to over-fitting16. As a 
result. unsupervised feature selection is not based on clinical outcomes (i.e., endpoints), and thus, the effect of 
interaction among features is maintained1. In this study, 5 unsupervised feature reduction methods were investi-
gated including Principle Component Analysis (PCA), Independent Component Analysis (ICA), Zero Variance 
(ZV), Near Zero Variance (NZV), and Consensus Clustering (CC) combined with PCA17,18.

Among non-filtering feature selection methods, PCA is the most well-known approach that selects a small 
number of uncorrelated variables, called “principal components”, which could explain most of the variation in 
the data. ICA not only removes correlations among the variables, it also removes higher order dependence and 
thus, further reduces the number of features19. ZV and NZV methods remove the features with zero or near zero 
variance, respectively. CC is a consensus clustering method which clusters the features into clusters that have 
maximum intra-class redundancy and minimum inter-class correlation, and then, it picks a representative fea-
ture for each cluster. CC +  PCA is the combination of consensus clustering and PCA within those clusters which 
has more than 2 features17. The performance of these feature reduction techniques along with no reduction and 
a filtered feature selection method (Wilcoxon test) was evaluated using 8 common machine learning classifiers 
as listed in Table 2. The predictive performance of non-filter reduction techniques was also compared with the 
Wilcoxon method.

Radiomics-based prognosis models utilize the quantitative imaging features to generate predictions, or in 
many cases, classifications for endpoint events such as “Recurrence” or “No Recurrence”. In machine learning, 
classification is considered as a supervised learning task of inferring a function from labeled training data20. 
The classification algorithm analyzes the training data and outcomes (labels), based on which it builds an opti-
mized predictive model21. In our study, 8 classification algorithms were used which include Random Forest (RF), 
Generalized linear model (GLM), Support Vector Machine (SVM), Naïve Bayes (NB), Neural network (NNET), 
K-nearest Neighbor (KNN), Mixture Discriminant Analysis (MDA), and Partial Least Squares Generalized Linear 
Models (PLS), and their predictive performance was measured by Area Under Receiver Operating Characteristic 
ROC curve (AUC) via cross-validation22–26.

Table 2 summarizes the feature selection and classification methods used in this study.

Subsampling. Many clinical outcomes have unbalanced ratio, which do not meet the assumptions of bal-
anced endpoints for most machine learning-based predicative models27. To tackle this problem, 4 subsampling 
methods were investigated including down sampling, up sampling, Random Over Sampling Examples (ROSE), 
and Synthetic Minority Over-sampling Technique (SMOTE)28,29. Down sampling method down-samples the 
majority cases during model training while up sampling method up-samples the minority cases. These two meth-
ods are rather simple but either lose information or create a “non-universal decision region” since the data points 
that are created are in fact duplicates and are not able to help the prognosis model obtain more information. 
Synthetic Minority over Sampling Technique (SMOTE) is an enhanced sampling method in which, the compu-
tation for new synthetic sampling is based on Euclidian distance for variables. As a result, the synthetic cases will 
have attributes with values similar to the existing cases and not merely replications as oversampling does, thus, 
increasing the representation of the minority class in the resulting dataset while reflecting the structure of the 
original cases28,30. It has been shown that SMOTE is robust to the variation of unbalanced ratio with a variety 
of classifiers28. In this study, SMOTE was shown to outperform the other subsampling methods and thus, it was 
used to generate new synthetic cases and the AUCs of SMOTE boosted dataset were compared with those of the 
original dataset.

Software Packages. Feature extract was done by ProCanVAS12 and Matlab 2015a. Statistical Analysis, 
model training, and validation was done in R 3.2.5 and caret package18.

Results
Prediction performance. Figure 2 shows the predictive performance of different combinations of classifiers 
and feature reduction methods for three clinical outcomes.

Feature Reduction methods Abbreviation Classifiers Abbreviation

No selection NON Random Forest RF

Principal component analysis PCA Generalized linear model GLM

Independent component 
analysis ICA Support Vector Machine SVM

Near zero variance NZV Naïve Bayes NB

Zero Variance ZV Neural network NNET

Consensus Clustering +  PCA CC +  PCA k-nearest neighbor KNN

Wilcoxon WLCX Mixture Discriminant 
Analysis MDA

Partial Least Squares GLM PLS

Table 2.  Summary of feature selection and classification methods.
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As it can be seen for recurrence (REC) in Fig. 2, the best result is achieved by RF classifier and NZV feature 
selection (AUC =  0.76). For death, NB classifier and ZV feature selection yield the highest AUC of 0.77. Finally, 
the best AUC for recurrence free survival (RFS) is achieved by MDA classifier with no need to use a feature sec-
tion method (AUC =  0.73).

Averaging across different classifiers, among all feature selection methods, PCA method yielded the highest 
average AUC at 0.70 for all three outcomes. Although CC +  PCA has shown its potential in feature selection, its 
prediction performance is not as high as other feature reduction techniques (AUC =  0.68). Considering its high 
computational cost and relatively low AUC, CC would not be the first choice as a feature selection techniques. 
While averaging all feature selection methods across all three outcomes, RF showed the highest mean AUC (0.71), 
which is consistent with previous results4. Many radiomics studies have used Support Vector Machine (SVM), 
which also shows relatively high prediction accuracy as well. Considering the general “Large P, small N” dataset 
where SVM works better than RF, SVM may also be taken into consideration when selecting proper classifiers for 
rather small datasets.

In this study, we used unsupervised feature selection methods to maintain more information in the dataset 
and achieve a competitive prediction accuracy. Previous research has shown that the WLCX feature selection 
method has high performance among supervised feature selection techniques4. To compare the performance of 
supervised and unsupervised feature selection methods, we compared the prediction performance of PCA and 
WLCX. The result showed that PCA (mean AUC =  0.70) has significantly higher AUC than that of WLCX which 
equals to 0.67 (P value =  0.0004643) indicating the potential in achieving higher prediction accuracy using unsu-
pervised feature selection methods.

Analysis of Variance. To investigate which factor significantly impacts the prediction performance meas-
ured by AUC, an analysis of variance was performed. In variance analysis, assumptions of ANOVA (i.e., normal 
distribution of residuals and equal variance in each group) were met. There were 48 cases for each feature selec-
tion method, 36 cases for each classification algorithm, and 96 cases for each endpoint.

Through the analysis of variance, it is clear that different endpoints explained 65% of the variation in AUC. 
Feature selection techniques explained 20% and classification methods contributed another 10%. In ANOVA 
testing, these three factors have significant influence on AUC. However, the interaction of feature selection and 
classifiers is not significant and only explained less than 5% of the total variance, indicating that there is only 
minimal interaction effect between feature selection and classification methods. In other words, when choosing 
unsupervised feature selection methods and classifiers, there is no need to look at specific combination of selec-
tion method and classifier since the interaction is minimal (Fig. 3).

Subsampling. The most unbalanced outcome data in our study was death with the ratio of 0.23. To investi-
gate whether data balancing methods improve the results, we applied 4 subsampling methods to our death dataset 
namely down-sampling, up-sampling, ROSE, and SMPTE along with the original result with no subsampling 
using RF classifier. Although they improved AUC comparably, SMOTE was able to enhance AUC in a balanced 
way such that while maintaining high specificity, it was also able to increase sensitivity significantly, since the 
algorithm keeps more information without deleting or adding duplicate data entries.

Comparing the AUC for SMOTE and the original data for death outcome, applying SMOTE significantly 
improves AUC (P value =  0.03744), indicating the significant positive impact of SMOTE method on the prog-
nosis performance. For best overall combination of classifier and feature selection (RF classifier and PCA feature 
selection), SMOTE increased AUC from 0.74 to 0.77 (Fig. 4).

Sample Size. Sample size is an important factor in the predictive performance of radiomics-based prog-
nosis. This is especially true for clinical studies where the sample size is often limited due to high cost of patient 
recruitment and collection of clinical outcome data. Furthermore, clinical outcomes often have unbalanced ratios, 
meaning that the observations for the minority class (e.g., death) are less frequent. This all leads to small sample 
sizes. On the other hand, it has been shown that machine learning algorithms generally need 80 to 560 observa-
tions to achieve a root-mean-square-error below 0.0131. To test the robustness of our radiomics-based prognosis 
analysis pipeline, an experiment was performed using the optimal pipeline (PCA +  RF +  SMOTE) for sample 
sizes ranging from 30 to 112 patients for the dataset used in this paper with death as outcome (Fig. 5).

Figure 2. Individual results for 3 outcomes (recurrence (REC), Death, and recurrence free survival (RFS)). 
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It is interesting to observe that a threshold for the data size can be set (e.g., 50) below which, the predictive 
performance of radiomics-based prognosis may not be adequate. It is also worth noting that, as discussed in the 
previous section, subsampling methods such as SMOTE increase sample size by adding to the minority cases and 
thus, balancing the data. Therefore, with an outcome ratio of k (i.e., k =  (# of majority cases)/(# of minority cases) 
), it can be shown that a subsampling method can increase the data size by a factor of 

+
k

k
2

1. Thus, for our death 
dataset where the outcome ratio is 23% (i.e., k =  4.35), SMOTE increased the data size by ~63%. Hence, the 
lower-bound of sample size for our dataset (e.g., 50) is in fact increased to ~81, which is consistent with the one 
reported in the literature as the minimum number of cases needed for a robust predictive model31. It is seen that 
by increasing the sample size over 50, the AUC first drops slightly and then increases by adding more cases. The 
change in AUC is within the range (~3%) that could be observed when different cases enter the experiment ran-
domly thus slightly affecting the performance negatively. As the number of cases increases, the AUC follows the 
overall trend of the plot; the more cases are added, a higher AUC is achieved.

The AUCs in Fig. 5 converge to ~0.70 when full sample set is used, which is lower than that reported in Fig. 4 
(0.77 with PCA +  RF +  SMOTE for death). The reason for this apparent discrepancy is that for smaller data sizes 
(e.g., 30), some radiomic features had to be excluded since the classifier was unable to perform due to small sam-
ple size and high number of features. Thus, this experiment was performed with a subset of features leading to 
lower AUCs compared to the experiments with full dataset as reported in the Results section.

Figure 3. AUC Variance Analysis. 

Figure 4. AUCs for Death data using SMOTE subsampling method. 
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Discussion
Radiomics has recently shown potential in achieving personalized medicine for different disease such as cancer. 
However, the large number of radiomic features, small number of observations, and unbalanced datasets are 
major challenges when building radiomics-based prognosis models. In this study, different unsupervised feature 
selection methods, classification techniques, and subsampling methods were investigated for different outcomes 
to study the optimal configuration and workflow for radiomic-based prognosis analytics.

Generally, a radiomics dataset contains a large number of features with a significant amount of noise and a 
highly correlated feature structure. These factors together are detrimental to the predictive model building pro-
cess and negatively affect the prediction performance of the models. With similar data structure, genomics studies 
have overcome the feature redundancy problem through different feature selection approaches32,33. In radiomics 
domain, it is necessary to apply feature reduction when building robust prognosis models in order to achieve 
higher accuracy, better data visualizations and understanding, reducing measurement and storage requirements, 
and minimizing the training and inference time.

Among feature selection methods, the unsupervised feature selection, which is based on dimensionality 
reduction algorithms transforming the high-dimensional feature space into a meaningful representation34 was 
selected for our study. Compared to filtered (supervised) feature selection methods, the dimensionality reduc-
tion algorithms are less prone to over-fitting16. In our study, PCA showed great value in reducing the number of 
features, and yielded the highest overall (average) predictive performance. It is important to realize that some 
radiomic features may not have high predictive value individually but become important when interaction effects 
among the features are taken into consideration. Compared to filtered feature reduction techniques which may 
eliminate important features, unsupervised feature reduction maintains the interaction among features, benefit-
ing the predictive model training process.

Consistent with previous results, RF has the highest predictive value among different classifiers. Using RF to 
build a predictive model with high specificity and sensitivity, it is also important to tackle the unbalanced data 
problem. Down-sampling, up-sampling, SMOTE and ROSE sub-sampling techniques were applied and showed 
improvement in terms of AUC, and especially sensitivity. For unbalanced dataset, machine learning algorithms 
tend to sacrifice the minority group to achieve a higher accuracy. Thus, in clinical radiomics studies, the subsam-
pling methods can significantly improve the sensitivity, leading to better predictive performance. Although all 
these subsampling methods improved AUC comparably, SMOTE was able to enhance AUC in a balanced way; 
while maintaining high specificity, it was also able to increase sensitivity significantly. In addition, SMOTE has 
been shown to be robust to the variation of unbalanced ratio with a variety of classifiers28. Thus the combination 
of PCA feature selection, RF classifier, and SMOTE subsampling (PCA +  RF +  SMOTE) constitutes an optimal 
radiomics pipeline for prognosis of clinical outcomes. The analysis of variance also showed that while individual 
classifiers and unsupervised feature selection methods have significant impact on the prediction performance, 
the interaction effect of these two on the results is not significant. In other words, when choosing non-filtering 
feature selection methods and classifiers, there is no need to look at specific combination of selection methods 
and classifiers for high accuracy prediction model.

Although it has been previously reported in the literature that radiomics-based signatures may have a complimentary  
role in predicting survival and other clinical outcomes in early or advanced stage lung cancer patients6,35, none of 
these studies has specifically compared different data reduction methods and classification techniques, as done 
in this work, or addressed how the radiomics-based prognostic model can be optimized. Moreover, these studies 
focus on survival analysis using univariate or multivariate analysis where one or a few (e.g., 3) imaging features 
are used. In contrast, in this study, we take the predictive modeling approach where a large radiomics feature set 
is analyzed for prognosis of the disease. Nevertheless, the most similar study to this work is by Ganeshan et al.6 
where the prognostic value of CT imaging features were studied for lung cancer. While we analyzed 3 outcomes 
(recurrence, death, and recurrence-free survival), Ganeshan et al. only analyzed one outcome namely death. 
Moreover, we used 112 cases compared to 56 in Ganeshan’s study6.

There are other related studies on lung cancer, all of which have used PET images35–37. Apart from the fact that 
in our study, we used CT images, all these studies only looked at one or found significant results for one clinical 
outcome (e.g., distant metastasis, death or disease-free survival respectively) while our study included 3 different 
clinical outcomes. Therefore, while these studies found prognostic value for only one outcome, in this paper, we 

Figure 5. AUC for Death data for different sample sizes. 
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show the prognostic value of an optimal radiomics-based pipeline for all 3 clinical outcomes (i.e., recurrence, 
death, and recurrence-free survival).

Survival analysis of clinical outcomes tend to focus on individual risk factors which influence the outcome the 
most. This has also been widely investigated in radiomics analytics to find significant features which influence a 
given clinical outcome the most. However, those significant features can only explain a small amount of variation 
individually, limiting their applications in clinical practice. Furthermore, since the number of features is usually 
high, survival analysis also faces the multiple testing problems. Thus, without proper control, survival analyses 
are expected to give a high amount of false positive significant features reducing the reliability of analysis. Thus, a 
feature-selection based analytics may mitigate this obstacle and help develop a more robust prognosis framework.

It has been previously shown that for NSCLC patients, radiomics-based predictive models can significantly 
improve the prognosis performance of traditional methods, which usually have rather low accuracy36. On the 
contrary, a well-trained radiomics-based prognosis model could make the prediction more accurate and unbi-
ased. As more the potential of radiomics is realized, the number of radiomics datasets will increase significantly. 
How to fully take advantage of such data is a challenge in this field. Through this study, we aimed to determine 
the optimal configuration of radiomics-based predictive modeling analytics in terms of feature selection, subsam-
pling, and classifiers to improve the prediction performance for further clinical applications.

Conclusion
In this study, an optimal radiomics-based prognosis model for NSCLC patients for different outcomes were inves-
tigated. It was found that in order to achieve the optimum performance for predictive model, unfiltered feature 
selection methods such as PCA must be used in conjunction with sub-sampling techniques such as SMOTE and 
proper classification models such as Random Forest technique.

Ethics Approval. The institutional research ethics board approved this retrospective single institution study.
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