COMMUNICATIONS

Received 21 May 2016
Accepted 21 June 2016

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; crystal salts; hydrogen-bonding patterns; base-pairing; $\pi-\pi$ stacking; $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

CCDC reference: 1486940

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Crystal structure of 4-amino-5-chloro-2,6-dimethylpyrimidinium thiophene-2,5-dicarboxylate

Ammaiyappan Rajam, ${ }^{\text {a }}$ Packianathan Thomas Muthiah, ${ }^{\text {a* }}$ Ray J. Butcher ${ }^{\text {b }}$ and Matthias Zeller ${ }^{\text {c }}$

${ }^{\mathbf{a}}$ School of Chemistry, Bharathidasan University, Tiruchirappalli 620024 , Tamilnadu, India, ${ }^{\mathbf{b}}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ${ }^{\text {c }}$ Department of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555, USA. *Correspondence e-mail: tommtrichy@yahoo.co.in

In the title salt, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{ClN}_{3}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{4} \mathrm{~S}^{-}$, the cations and anions are linked via $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming $R_{6}^{6}(37)$ ring motifs that are interconnected with each other, producing sheets. Separate parallel inversionrelated sheets are linked through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\pi-\pi$ stacking interactions [centroid-centroid distance $=3.5414$ (13) A], forming double layers parallel to (101). Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, as well as $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, connect the double layers into a three-dimensional network.

1. Chemical context

In crystal engineering, non-covalent interactions, such as hydrogen bonding, play a key role in molecular recognition processes (Desiraju, 1989). Pyrimidine derivatives have gained considerable importance because of their remarkable biological properties, for example as anti-fungal, antiviral, anticancer and anti-allergenic agents (Ding et al., 2004). Thiophenecarboxylic acid and its derivatives have attracted attention because of their wide range of pharmacological properties and numerous applications, such as the preparation of DNA hybridization indicators, single-molecule magnets, photoluminescence materials and the treatment of osteoporosis as inhibitors of bone resorption in the tissue culture (Bharti et al., 2003; Taş et al., 2014; Boulsourani et al., 2011). The present study investigates the hydrogen-bonding patterns in 4-amino-5-chloro-2,6-dimethylpyrimidinium thiophene-2,5dicarboxylate (I).

2. Structural commentary

The asymmetric unit of $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{ClN}_{3}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{4} \mathrm{~S}^{-}$, (I), contains one 4-amino-5-chloro-2,6-dimethylpyrimidinium cation and one thiophene-2,5-dicarboxylate anion (Fig. 1). Protonation of the pyrimidine occurs at atom N 1 , leading to a $\mathrm{C} 2 B-\mathrm{N} 1 B-$

Figure 1
The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.

C6B angle of 122.5 (2) ${ }^{\circ}$ which an increase of $c a 3.8^{\circ}$ compared to the $\mathrm{C} 2 B-\mathrm{N} 3 B-\mathrm{C} 4 B$ angle $118.7(2)^{\circ}$ involving the unprotonated N 3 atom.

3. Supramolecular features

The carboxylate group of the thiophene-2,5-dicarboxylate anion interacts with the protonated N 1 atom of the pyrimidinium moiety with a single point heterosynthon via N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). In addition, the components are connected through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) to form an $R_{6}^{6}(37)$ ring graph set motif. This

Figure 2
Packing diagram for (I), viewed along the a axis, showing a single sheet formed by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Symmetry codes are given in Table 1. Dashed lines represent hydrogen bonds.

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).
$C g$ is the centroid of the $\mathrm{S} 1 A / \mathrm{C} 2 A-\mathrm{C} 5 A$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 A-\mathrm{H} 3 A \cdots \mathrm{O} 2 A^{\mathrm{i}}$	$1.04(4)$	$1.44(4)$	$2.475(2)$	$176(4)$
$\mathrm{N} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 1 A$	$0.85(3)$	$1.87(3)$	$2.719(3)$	$178(3)$
$\mathrm{N} 4 B-\mathrm{H} 4 B 1 \cdots \mathrm{~N} 3 B^{\mathrm{ii}}$	$0.86(3)$	$2.40(3)$	$3.218(3)$	$158(3)$
$\mathrm{N} 4 B-\mathrm{H} 4 B 2 \cdots \mathrm{O} 4 A^{\mathrm{iii}}$	$0.94(3)$	$1.86(3)$	$2.784(3)$	$170(3)$
$\mathrm{C} 7 B-\mathrm{H} 7 B B \cdots \mathrm{~S} 1 A^{\text {iv }}$	0.98	2.86	$3.807(2)$	164
$\mathrm{C} 8 B-\mathrm{H} 8 B B \cdots \mathrm{O} 3 A^{\mathrm{v}}$	0.98	2.53	$3.281(3)$	134
$\mathrm{C} 8 B-\mathrm{H} 8 B C \cdots \mathrm{O} 2 A^{\text {vi }}$	0.98	2.47	$3.301(3)$	143
$\mathrm{C} 7 B-\mathrm{H} 7 B B \cdots \mathrm{Cg}^{\text {iv }}$	0.98	2.69	$3.556(3)$	148

$\begin{aligned} & \text { Symmetry codes: } \\ & x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2} ; \\ & \text { (i) }\end{aligned} \quad x+\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2} ; \quad$ (ii) $\quad-x+2,-y+1,-z+1 ; \quad$ (v) $\quad-x+1,-y,-z+1$; $\quad x-\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2} ; \quad$ (iii) \quad (vi)
motif includes anions connected by $\mathrm{O}-\mathrm{H} . \mathrm{O}$ hydrogen bonds along [101] and involves the cations along [010] to form a 2D sheet (Fig. 2). Two separate 2D sheets (which are indicated in red and yellow in Fig. 3) are interconnected by a selfcomplementary base pair between the pyrimidinium moiety through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond interactions with an $R_{2}^{2}(8)$ ring graph set motif and $\pi-\pi$ stacking interactions between the pyrimidinium ring and the thiophene ring with an observed interplanar distance of 3.4188 (10) \AA, a centroid-to-centroid (Cg1-Cg2) distance of $3.5414(13) \AA$ (where $C g 1$ is the centroid of the ring $\mathrm{N} 1 B / \mathrm{C} 2 B-\mathrm{C} 6 B$ and $C g 2$ is the centroid of the ring S1A/C2A-C5A) and slip angle (the angle between the centroid vector and the normal to the plane) of 18.0°; these are typical aromatic stacking values (Hunter, 1994). Through these interactions, parallel inversion-related sheets are connected into double layers parallel to (101). In addition, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interactions connect the double layers into a three-dimensional network (Fig. 3).

4. Database survey

The crystal structures of aminopyrimidine derivatives (Schwalbe \& Williams, 1982) and aminopyrimidine carboxylates (Hu et al., 2002), have been reported. Several co-crystals/ salts of aminopyrimidine derivatives have been reported from our laboratory including co-crystals/salts of aminopyrimidines with carboxylic acid (Muthiah et al., 2006; Devi \& Muthiah, 2007; Subashini et al., 2008; Thanigaimani et al., 2009; Ebenezer \& Muthiah, 2010, 2012; Ebenezer et al., 2011), aminopyrimidines-thiophenecarboxylic acid (Jegan Jennifer et al., 2014), the crystal structure of 2-amino-4,6-dimethoxy-pyrimidiniumthiophene-2-carboxylate (Rajam et al., 2015) and metal complexes with 4 -amino-5-chloro-2,6-dimethylpyrimidine (Karthikeyan et al., 2016)

5. Synthesis and crystallization

A hot DMF solution of 4-amino-5-chloro-2,6-dimethylpyrimidine (39 mg , Alfa Aesar) and thiophene-2,5-dicarboxylic acid (43 mg , Alfa Aesar) were mixed and warmed for

Figure 3
A view along the b axis, showing double layers (indicated in red and yellow) formed by hydrogen bonds and $\pi-\pi$ stacking interactions. The weak $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds connect the double layers to form a three-dimensional network. Dotted lines represent $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions. Solid lines indicate the stacking interactions.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{ClN}_{3}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{4} \mathrm{~S}^{-}$
$M_{\text {r }}$	329.76
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	100
a, b, c (A$)$	7.9948 (3), 11.3928 (4), 15.7757 (6)
β (${ }^{\circ}$)	98.520 (2)
$V\left(\mathrm{~A}^{3}\right)$	1421.04 (9)
Z	4
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	0.44
Crystal size (mm)	$0.23 \times 0.19 \times 0.06$
Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.424, 0.746
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	10749, 3911, 2862
$R_{\text {int }}$	0.053
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.704
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.060, 0.185, 1.10
No. of reflections	3911
No. of parameters	208
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.59, -0.69

[^0] SHELXL2014 (Sheldrick, 2015), SHELXLE (Hübschle et al., 2011), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).
half an hour over a water bath. The mixture was cooled slowly and kept at room temperature. After a few days colourless plate-like crystals were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H} \mathrm{H}$ atoms were located in difference Fourier maps and refined isotropically. All other H atoms were placed in calculated positions and refined using a riding-model approximation with $\mathrm{C}-\mathrm{H}=$ $0.95 \AA(\mathrm{CH})$ or $0.98 \AA\left(\mathrm{CH}_{3}\right)$. Isotropic displacement parameters for these atoms were set to $1.2(\mathrm{CH})$ or $1.5\left(\mathrm{CH}_{3}\right)$ times $U_{\text {eq }}$ of the parent atom. Idealized Me H atoms were refined as rotating groups. There are larger than expected residual density peaks close to the Cl and S atoms but these are not chemically sensible and are assumed to be related to the quality of the crystal.

Acknowledgements

PTM is thankful to the UGC, New Delhi, for a UGC-BSR one-time grant to Faculty. The authors wish to acknowledge the United States National Science Foundation (grant No. 1337296) for funds to purchase the diffractometer.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Bharti, S.-N., Naqvi, F. \& Azam, A. (2003). Bioorg. Med. Chem. Lett. 13, 689-692.
Boulsourani, Z., Geromichalos, G. D., Repana, K., Yiannaki, E., Psycharis, V., Raptopoulou, C., Hadjipavlou-Litina, D., Pontiki, E. \& Dendrinou-Samara, C. (2011). J. Inorg. Biochem. 105, 839849.

Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
Devi, P. \& Muthiah, P. T. (2007). Acta Cryst. E63, o4822-o4823.
Ding, M. W., Xu, S. Z. \& Zhao, J. F. (2004). J. Org. Chem. 69, 83668371.

Ebenezer, S. \& Muthiah, P. T. (2010). Acta Cryst. E66, 0516.
Ebenezer, S. \& Muthiah, P. T. (2012). Cryst. Growth Des. 12, 37663785.

Ebenezer, S., Muthiah, P. T. \& Butcher, R. J. (2011). Cryst. Growth Des. 11, 3579-3592.
Hu, M.-L., Ye, M.-D., Zain, S. M. \& Ng, S. W. (2002). Acta Cryst. E58, o1005-o1007.

Hübschle, C. B., Sheldrick, G. M. \& Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.
Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.
Jennifer, S. J. \& Muthiah, P. T. (2014). Chem. Cent. J. 8, 20.
Karthikeyan, A., Zeller, M. \& Thomas Muthiah, P. (2016). Acta Cryst. C72, 337-340.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Muthiah, P. T., Balasubramani, K., Rychlewska, U. \& Plutecka, A. (2006). Acta Cryst. C62, o605-0607.

Rajam, A., Muthiah, P. T., Butcher, R. J. \& Jasinski, J. P. (2015). Acta Cryst. E71, o479-o480.
Schwalbe, C. H. \& Williams, G. J. B. (1982). Acta Cryst. B38, 18401843.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Subashini, A., Muthiah, P. T. \& Lynch, D. E. (2008). Acta Cryst. E64, o426.
Taş, M., Topal, S., Çamur, S., Yolcu, Z. \& Çelik, O. (2014). Main Group Met. Chem. 37, 39-47.
Thanigaimani, K., Subashini, A., Muthiah, P. T., Lynch, D. E. \& Butcher, R. J. (2009). Acta Cryst. C65, o42-o45.

supporting information

Acta Cryst. (2016). E72, 1043-1046 [doi:10.1107/S2056989016010148]

Crystal structure of 4-amino-5-chloro-2,6-dimethylpyrimidinium thiophene-2,5dicarboxylate

Ammaiyappan Rajam, Packianathan Thomas Muthiah, Ray J. Butcher and Matthias Zeller

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

4-Amino-5-chloro-2,6-dimethylpyrimidinium thiophene-2,5-dicarboxylate

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{ClN}_{3}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{4} \mathrm{~S}^{-}$
$M_{r}=329.76$
Monoclinic, $P 2_{1} / n$
$a=7.9948$ (3) Å
$b=11.3928$ (4) \AA
$c=15.7757$ (6) \AA
$\beta=98.520$ (2) ${ }^{\circ}$
$V=1421.04(9) \AA^{3}$
$Z=4$

Data collection

Bruker AXS D8 Quest CMOS
diffractometer
Radiation source: I-mu-S microsource X-ray tube
Laterally graded multilayer (Goebel) mirror monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$F(000)=680$
$D_{\mathrm{x}}=1.541 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6601 reflections
$\theta=3.1-30.0^{\circ}$
$\mu=0.44 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, colourless
$0.23 \times 0.19 \times 0.06 \mathrm{~mm}$
$T_{\text {min }}=0.424, T_{\text {max }}=0.746$
10749 measured reflections
3911 independent reflections
2862 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-11 \rightarrow 9$
$k=-15 \rightarrow 16$
$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.185$
$S=1.10$
3911 reflections
208 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement

supporting information

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1146 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001
\end{gathered}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=1.59 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.69 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1A	0.83375 (7)	0.63795 (4)	0.43028 (4)	0.01808 (18)
O1A	0.6790 (2)	0.57301 (14)	0.58125 (10)	0.0252 (4)
O2A	0.6743 (2)	0.75418 (14)	0.63699 (10)	0.0218 (4)
O3A	1.0617 (2)	0.81066 (15)	0.26723 (10)	0.0227 (4)
H3A	1.110 (5)	0.780 (3)	0.214 (2)	0.060 (11)*
O4A	0.9244 (3)	0.63757 (15)	0.25678 (12)	0.0309 (4)
C1A	0.7104 (3)	0.6802 (2)	0.58237 (14)	0.0178 (4)
C2A	0.7953 (3)	0.7287 (2)	0.51203 (14)	0.0187 (4)
C3A	0.8446 (3)	0.84283 (19)	0.49963 (15)	0.0204 (5)
H3AA	0.8325	0.9054	0.5381	0.024*
C4A	0.9151 (3)	0.85594 (18)	0.42313 (15)	0.0199 (5)
H4AA	0.9568	0.9282	0.4046	0.024*
C5A	0.9166 (3)	0.75252 (19)	0.37866 (14)	0.0182 (4)
C6A	0.9689 (3)	0.7288 (2)	0.29484 (14)	0.0198 (5)
Cl1B	0.43554 (7)	0.14586 (5)	0.77201 (3)	0.02236 (18)
N1B	0.6246 (2)	0.34003 (17)	0.60286 (13)	0.0206 (4)
H1B	0.639 (4)	0.413 (3)	0.5956 (19)	0.031 (7)*
N3B	0.6059 (2)	0.14982 (16)	0.54703 (13)	0.0205 (4)
N4B	0.5127 (3)	-0.00013 (17)	0.62434 (14)	0.0242 (4)
H4B1	0.512 (4)	-0.043 (3)	0.5793 (19)	0.040 (9)*
H4B2	0.478 (4)	-0.039 (3)	0.671 (2)	0.045 (9)*
C2B	0.6450 (3)	0.2616 (2)	0.54118 (15)	0.0204 (5)
C4B	0.5460 (3)	0.1121 (2)	0.61845 (15)	0.0205 (5)
C5B	0.5201 (3)	0.1938 (2)	0.68398 (14)	0.0196 (4)
C6B	0.5592 (3)	0.3099 (2)	0.67489 (15)	0.0191 (4)
C7B	0.7142 (3)	0.3044 (2)	0.46395 (15)	0.0235 (5)
H7BA	0.6941	0.2453	0.4185	0.035*
H7BB	0.8360	0.3181	0.4787	0.035*
H7BC	0.6579	0.3778	0.4439	0.035*
C8B	0.5357 (3)	0.4046 (2)	0.73702 (15)	0.0250 (5)
H8BA	0.4198	0.4019	0.7502	0.037*
H8BB	0.5563	0.4810	0.7120	0.037*
H8BC	0.6156	0.3931	0.7898	0.037*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	$0.0222(3)$	$0.0148(3)$	$0.0193(3)$	$-0.00038(18)$	$0.0096(2)$	$-0.00055(19)$
O1A	$0.0324(9)$	$0.0188(8)$	$0.0273(9)$	$-0.0044(7)$	$0.0142(7)$	$0.0021(7)$
O2A	$0.0242(8)$	$0.0230(8)$	$0.0207(8)$	$-0.0008(6)$	$0.0118(6)$	$-0.0003(6)$
O3A	$0.0267(8)$	$0.0229(8)$	$0.0217(8)$	$-0.0026(7)$	$0.0140(7)$	$-0.0021(7)$
O4A	$0.0445(11)$	$0.0221(9)$	$0.0308(10)$	$-0.0068(7)$	$0.0212(8)$	$-0.0064(7)$
C1A	$0.0186(9)$	$0.0192(10)$	$0.0164(10)$	$0.0001(8)$	$0.0054(8)$	$-0.0009(8)$
C2A	$0.0169(9)$	$0.0197(10)$	$0.0207(10)$	$0.0010(8)$	$0.0064(8)$	$-0.0006(9)$
C3A	$0.0234(11)$	$0.0193(10)$	$0.0199(11)$	$-0.0029(8)$	$0.0078(9)$	$-0.0015(8)$
C4A	$0.0208(10)$	$0.0183(11)$	$0.0218(11)$	$-0.0040(8)$	$0.0076(9)$	$-0.0013(8)$
C5A	$0.0166(9)$	$0.0184(10)$	$0.0210(11)$	$-0.0010(8)$	$0.0081(8)$	$-0.0002(8)$
C6A	$0.0212(10)$	$0.0203(11)$	$0.0197(11)$	$0.0030(8)$	$0.0089(8)$	$0.0015(9)$
C11B	$0.0281(3)$	$0.0207(3)$	$0.0200(3)$	$-0.0013(2)$	$0.0090(2)$	$-0.0002(2)$
N1B	$0.0218(9)$	$0.0168(9)$	$0.0239(10)$	$-0.0020(7)$	$0.0055(8)$	$0.0024(8)$
N3B	$0.0225(9)$	$0.0188(10)$	$0.0212(10)$	$0.0004(7)$	$0.0059(8)$	$0.0018(7)$
N4B	$0.0349(11)$	$0.0171(10)$	$0.0227(10)$	$0.0003(8)$	$0.0116(9)$	$0.0000(8)$
C2B	$0.0165(9)$	$0.0210(11)$	$0.0235(11)$	$0.0009(8)$	$0.0021(8)$	$0.0015(9)$
C4B	$0.0183(10)$	$0.0215(11)$	$0.0228(11)$	$0.0013(8)$	$0.0071(8)$	$0.0006(9)$
C5B	$0.0201(10)$	$0.0187(10)$	$0.0207(11)$	$0.0003(8)$	$0.0050(8)$	$0.0002(9)$
C6B	$0.0176(9)$	$0.0163(10)$	$0.0233(11)$	$0.0006(8)$	$0.0026(8)$	$-0.0003(9)$
C7B	$0.0240(10)$	$0.0208(11)$	$0.0273(12)$	$0.0000(9)$	$0.0094(9)$	$0.0024(10)$
C8B	$0.0327(12)$	$0.0177(11)$	$0.0256(12)$	$0.0009(9)$	$0.0078(10)$	$-0.0044(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

S1A-C2A	1.716 (2)	N1B-H1B	0.85 (3)
S1A-C5A	1.722 (2)	N3B-C2B	1.318 (3)
O1A-C1A	1.247 (3)	N3B-C4B	1.358 (3)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	1.269 (3)	N4B-C4B	1.312 (3)
O3A-C6A	1.306 (3)	N4B-H4B1	0.86 (3)
O3A-H3A	1.04 (4)	N4B-H4B2	0.94 (3)
O4A-C6A	1.226 (3)	C2B-C7B	1.492 (3)
C1A-C2A	1.490 (3)	C4B-C5B	1.429 (3)
C2A-C3A	1.381 (3)	C5B-C6B	1.372 (3)
C3A-C4A	1.414 (3)	C6B-C8B	1.488 (3)
C3A-H3AA	0.9500	C7B-H7BA	0.9800
C4A-C5A	1.372 (3)	C7B-H7BB	0.9800
C4A-H4AA	0.9500	C7B-H7BC	0.9800
C5A-C6A	1.470 (3)	C8B-H8BA	0.9800
C11B-C5B	1.721 (2)	C8B-H8BB	0.9800
N1B-C2B	1.348 (3)	C8B-H8BC	0.9800
N1B-C6B	1.363 (3)		
C2A-S1A-C5A	91.32 (10)	H4B1-N4B-H4B2	115 (3)
C6A-O3A-H3A	109 (2)	N3B-C2B-N1B	122.3 (2)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	126.5 (2)	$\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	119.5 (2)

$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	117.76 (19)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	115.72 (19)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	128.7 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}$	111.97 (17)
C1A-C2A-S1A	119.24 (16)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	112.3 (2)
C2A-C3A-H3AA	123.9
C4A-C3A-H3AA	123.9
C5A-C4A-C3A	112.36 (19)
C5A-C4A-H4AA	123.8
C3A-C4A-H4AA	123.8
C4A-C5A-C6A	130.0 (2)
C4A-C5A-S1A	112.08 (16)
C6A-C5A-S1A	117.83 (16)
O4A-C6A-O3A	125.4 (2)
O4A-C6A-C5A	119.7 (2)
O3A-C6A-C5A	114.8 (2)
C2B-N1B-C6B	122.5 (2)
C2B-N1B-H1B	121 (2)
C6B-N1B-H1B	116 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	118.7 (2)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} 1$	118 (2)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} 2$	127 (2)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	-179.2 (2)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	2.2 (3)
O1A-C1A-C2A-S1A	3.9 (3)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}$	-174.75 (16)
C5A-S1A-C2A-C3A	0.03 (18)
$\mathrm{C} 5 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	177.43 (18)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	-177.4 (2)
S1A-C2A-C3A-C4A	-0.4 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	0.6 (3)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	176.1 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}$	-0.6 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	0.31 (18)
C2A-S1A-C5A-C6A	-176.79 (17)
C4A-C5A-C6A-O4A	-162.8 (2)
S1A-C5A-C6A-O4A	13.7 (3)
C4A-C5A-C6A-O3A	17.1 (3)
S1A-C5A-C6A-O3A	-166.44 (16)

N1B-C2B-C7B	118.2 (2)
N4B-C4B-N3B	117.9 (2)
N4B-C4B-C5B	122.1 (2)
N3B-C4B-C5B	120.0 (2)
C6B-C5B-C4B	119.5 (2)
C6B-C5B-Cl1B	120.89 (18)
C4B-C5B-Cl1B	119.55 (17)
N1B-C6B-C5B	116.8 (2)
N1B-C6B-C8B	117.9 (2)
C5B-C6B-C8B	125.2 (2)
C2B-C7B-H7BA	109.5
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{H} 7 \mathrm{BB}$	109.5
H7BA-C7B-H7BB	109.5
C2B-C7B-H7BC	109.5
H7BA-C7B-H7BC	109.5
H7BB-C7B-H7BC	109.5
C6B-C8B-H8BA	109.5
C6B-C8B-H8BB	109.5
H8BA-C8B-H8BB	109.5
C6B-C8B-H8BC	109.5
H8BA-C8B-H8BC	109.5
H8BB-C8B-H8BC	109.5
$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	-1.3 (3)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	178.83 (19)
$\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}$	-1.3 (3)
$\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	178.6 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 4 \mathrm{~B}$	-177.9 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	2.5 (3)
$\mathrm{N} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	179.2 (2)
N3B-C4B-C5B-C6B	-1.2 (3)
N4B-C4B-C5B-C11B	-2.4 (3)
N3B-C4B-C5B-C11B	177.20 (17)
C2B-N1B-C6B-C5B	2.4 (3)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}$	-177.5 (2)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	-1.2 (3)
C11B-C5B-C6B-N1B	-179.59 (16)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}$	178.8 (2)
C11B-C5B-C6B-C8B	0.4 (3)

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg is the centroid of the $\mathrm{S} 1 A / \mathrm{C} 2 A-\mathrm{C} 5 A$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 A-\mathrm{H} 3 A \cdots \mathrm{O} 2 A^{\mathrm{i}}$	$1.04(4)$	$1.44(4)$	$2.475(2)$	$176(4)$
$\mathrm{N} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 1 A$	$0.85(3)$	$1.87(3)$	$2.719(3)$	$178(3)$

$\mathrm{N} 4 B-\mathrm{H} 4 B 1 \cdots \mathrm{~N} 3 B^{\mathrm{ii}}$	$0.86(3)$	$2.40(3)$	$3.218(3)$	$158(3)$
$\mathrm{N} 4 B-\mathrm{H} 4 B 2 \cdots \mathrm{O} 4 A^{\mathrm{iii}}$	$0.94(3)$	$1.86(3)$	$2.784(3)$	$170(3)$
$\mathrm{C} 7 B-\mathrm{H} 7 B B \cdots \mathrm{~S} 1 A^{\mathrm{iv}}$	0.98	2.86	$3.807(2)$	164
$\mathrm{C} 8 B-\mathrm{H} 8 B B \cdots \mathrm{O} 3 A^{\mathrm{v}}$	0.98	2.53	$3.281(3)$	134
$\mathrm{C} 8 B-\mathrm{H} 8 B C \cdots \mathrm{O} 2 A^{\mathrm{vi}}$	0.98	2.47	$3.301(3)$	143
$\mathrm{C} 7 B — \mathrm{H} 7 B B \cdots C g^{\mathrm{iv}}$	0.98	2.69	$3.556(3)$	148

Symmetry codes: (i) $x+1 / 2,-y+3 / 2, z-1 / 2$; (ii) $-x+1,-y,-z+1$; (iii) $x-1 / 2,-y+1 / 2, z+1 / 2$; (iv) $-x+2,-y+1,-z+1$; (v) $x-1 / 2,-y+3 / 2, z+1 / 2$; (vi) $-x+3 / 2$, $y-1 / 2,-z+3 / 2$.

[^0]: Computer programs: APEX2 and SAINT (Bruker, 2014), SIR92 (Altomare et al., 1993),

