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Abstract

Cognitive impairment and impaired mobility are major public health concerns. There is growing recognition that impaired
mobility is an early biomarker of cognitive impairment and dementia. The neural basis for this association is currently
unclear. We propose disrupted functional connectivity as a potential mechanism. In this 12-month prospective exploratory
study, we compared functional connectivity of four brain networks– the default mode network (DMN), fronto-executive
network (FEN), fronto-parietal network (FPN), and the primary motor sensory network (SMN) – between community-
dwelling older adults with $ two falls in the last 12 months and their non-falling counterparts (# one fall in the last 12
months). Functional connectivity was examined both at rest and during a simple motor tapping task. Compared with non-
fallers, fallers showed more connectivity between the DMN and FPN during right finger tapping (p = 0.04), and significantly
less functional connectivity between the SMN and FPN during rest (p#0.05). Less connectivity between the SMN and FPN
during rest was significantly associated with greater decline in both cognitive function and mobility over the12-month
period (r = 20.32 and 0.33 respectively; p#0.04). Thus, a recent history of multiple falls among older adults without a
diagnosis of dementia may indicate sub-clinical changes in brain function and increased risk for subsequent decline.
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Introduction

Cognitive impairment and impaired mobility among older

adults are major public health concerns. Both are associated with

increased risk for disability, institutionalization, and death [1].

Critically, there is growing recognition that clinical gait abnor-

malities and falls are early biomarkers of cognitive impairment and

dementia [2]. For example, in the Health, Aging and Body

Composition Study [3], slower gait speed at baseline was

predictive of subsequent cognitive decline. Gait speed was also

reported to slow at 0.023 meters/second/year approximately one

decade before the diagnosis of mild cognitive impairment [4].

Conversely, baseline lower executive functions predicted subse-

quent decline in gait speed [5]. These results suggest cognitive

decline and impaired mobility share common neurobiological

mechanisms.

Neuroimaging studies highlight the role of white matter

integrity in the association between cognitive function and

mobility [6–9]. Both leukoaraiosis, or white matter lesions, and

degeneration in white matter microstructure (i.e., myelodegenera-

tion) are associated with cognitive decline and impaired mobility

[10–15]. Functionally, white matter deterioration results in

alterations in the coordination of brain networks that span

multiple association cortices [16–18]. Functional connectivity

analysis examines such disruptions; it aims to quantify the

temporal coherence between spatially remote brain regions [19].

Regions with a positive correlation in blood-oxygen-level-depen-

dent (BOLD) signal over time are said to have high functional

connectivity, and regions uncorrelated or negatively correlated are

thought to be in separate, or possibly competing, brain networks

[20]. Current evidence suggests that a comprehensive examination

of brain networks should include both task-free (‘‘resting state’’)

and task-based conditions [21]. Mennes and colleagues [21]

recently showed resting state connectivity patterns only correspond

partially with on-task patterns. The authors found this is

particularly true for sub-cortical regions, limbic regions, primary

sensory cortex, and primary motor cortex.

A comprehensive examination of large-scale brain networks

should also include both within-network and between-network
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functional connectivity [21]. To date, most studies have focused

exclusively on within-network connectivity, particularly within the

default mode network (DMN) [22–24]. Using neuroimaging data

acquired from the ‘‘1000 Functional Connectomes Project’’

(http://www.nitrc.org/projects/fcon_1000/), Tomasi and col-

leagues [23] investigated the effect of aging on functional

connectivity patterns within resting-state networks. They found

that long range connections in the DMN and dorsal attention

network were susceptible to aging-related deterioration. In a

similar attempt to examine age-associated changes to intrinsic

resting-state networks, Spreng and colleagues [25] demonstrated

that older adults showed inability to suppress the DMN during

cognitively active state, which was subsequently explained as

reduced cognitive flexibility. However, recent evidence demon-

strates that disruptions in both within-network and between-

network connectivity can be observed during resting state [26,27].

Specifically, using resting-state magnetic resonance imaging

(MRI), Brier and colleagues [27] demonstrated that Alzheimer’s

disease is associated with widespread loss of both within-network

and between-network connectivity. Specifically, compared with

non-demented older adults, individuals with very mild or mild

Alzheimer’s disease exhibited less connectivity within the DMN

and between five functionally defined networks.

Aging and neurodegeneration are characterized by disruptions

in the coordination of brain networks that support cognitive

function and motor control [16,28–31] [32–34]. These networks

include the DMN, fronto-executive network (FEN), fronto-parietal

network (FPN), and the primary motor sensory network (SMN)

[16,35]. The DMN is highly metabolically active when there is a

lack of external stimulus (i.e., during rest) and deactivates during

goal-oriented activity [36,37]. Broadly, the DMN is involved in

self-referential thoughts (i.e., accessing and processing of past

events for the purpose of problem solving or future planning),

memory consolidation, and autobiographical memory [16,37].

The FEN is primarily involved in executive functions, error

monitoring of top-down control, and maintaining an extended

task-dependent cognitive state [38,39]. The FPN is primarily

involved in attentional control and contributes to cognitive abilities

such as response anticipation and conflict processing [39–41]. The

FPN and the SMN overlap in their anatomy (Figure 1) and both

are involved in top-down control of motor planning and execution

[32,42,43]. Critically, several studies revealed the FPN actively

participate in the parcellation of long motor sequences into smaller

motor segments [44,45]– a process that improves motor perfor-

mance accuracy and efficiency by reducing required overall

cognitive load [46]. Older adults are less capable of performing

motor sequence segmentation and researchers proposed this may

be due to aging-related structural alteration in the FPN among the

elderly [45]. Thus, examining the functional connectivity between

these two networks may be of particular relevance to understand-

ing the neural mechanisms underlying the association between

cognitive function and mobility.

Given that impaired mobility precedes cognitive impairment

and dementia [2,4], and is significantly associated with white

matter lesions [10,11,14,47], we hypothesize that disrupted

functional connectivity may be observed among older adults with

impaired mobility without dementia and may be a neural

mechanism underlying the association between reduced cognitive

function and impaired mobility. Thus, the objectives of this

exploratory study were: 1) to compare functional connectivity

(within-network and between-network) of four brain networks,

DMN, FEN, FPN, and SMN, using task-free and task-based

conditions between community-dwelling older adults with a

history of $2 falls in the last 12 months [48] (i.e., fallers) and

their non-falling counterparts; and 2) to determine if differences in

functional connectivity between fallers and non-fallers are

associated with changes in cognitive function and mobility over

a 12-month period. Specifically, we hypothesize that compared

with non-fallers, fallers will demonstrate disrupted functional

connectivity: 1) between the SMN and FPN during both task-free

and task-based conditions; 2) between the SMN and FEN during

task-based condition; and 3) within the DMN during task-free

condition. Furthermore, we hypothesize that these differences in

functional connectivity will be significantly associated with changes

in cognitive function and mobility over 12 months. If our

hypothesis is supported, a recent history of multiple falls among

older adults without a diagnosis of dementia may be a biomarker

of sub-clinical changes in brain function and increased risk for

subsequent decline.

Materials and Methods

2.1 Study Design and Participants
We conducted a 12-month prospective exploratory study with

44 older adults. Participants were recruited from metropolitan

Vancouver via newspaper advertisements. Individuals were

eligible if they: 1) were aged 70 to 80 years; 2) scored $24/30

on the Mini-Mental State Examination (MMSE) [49]; 3) were

right hand dominant as measured by the Edinburgh Handedness

Inventory [50]; 4) were living independently in their own homes;

5) had visual acuity of at least 20/40, with or without corrective

lenses; and 6) provided informed consent. We excluded those who:

1) had a neurodegenerative disease, stroke, dementia (of any type),

or psychiatric condition; 2) had clinically significant peripheral

neuropathy or severe musculoskeletal or joint disease; 3) were

taking psychotropic medication; 4) had a history indicative of

carotid sinus sensitivity; 5) were living in a nursing home, extended

Figure 1. Group Functional Connectivity Map.
doi:10.1371/journal.pone.0093673.g001
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care facility, or assisted-care facility; or 6) did not meet MRI

scanning requirements.

Based on their falls history in the 12 months prior to study entry,

participants were classified as a faller or non-faller (see 2.1.1 and

2.1.2). Ethics approval was obtained from the Vancouver Coastal

Research Health Institute and University of British Columbia’s

Clinical Research Ethics Board. All participants provided written

consent.

2.1.1 Specific inclusion criterion for fallers. An individual

must have experienced $2 minimal displacement non-syncopal

falls in the previous 12 months, with one of the falls occurring in

the last 6 months [51]. This was determined from two sources: 1)

participant recall; and 2) participant’s immediate family member

or friend recall. Falls were defined as ‘‘unintentionally coming to rest on

the ground, floor, or lower level’’ [52].

2.1.2 Specific inclusion criterion for non-fallers. An

individual must not have experienced .1 displacement falls (with

or without syncope) in the previous 12 months. This was

determined based on two sources: 1) participant recall; and 2)

participant’s immediate family member or friend recall. Individ-

uals with one fall (non-injurious) in the previous 12 months

resemble the physiological profile of non-fallers [48,53]. Specifi-

cally, a prospective study found that while multiple falls (i.e., $2

falls) over 12 months were significantly associated with musculo-

skeletal and neurological deficits, single falls were not [48].

Importantly, older adults with a single fall were very similar to

non-fallers in their physical and mental status.

2.2 Measurement
All measures, with the exception of neuroimaging, were assessed

at baseline and 12 months. All assessors were trained and

standardized protocols were used.

2.2.1 Global cognition and current physical activity

level. Global cognition was assessed using the MMSE [49]

and the Montreal Cognitive Assessment (MoCA) [54]. The MoCA

is a 30-point test that covers multiple cognitive domains. The

MoCA has been found to have good internal consistency and test-

retest reliability and was able to correctly identify 90% of a large

sample of individuals with mild cognitive impairment from two

different clinics with a cut-off scores of ,26/30 [54]. Current level

of physical activity (i.e., last 7 days) was determined by the Physical

Activities Scale for the Elderly (PASE) self-report questionnaire

[55].

2.2.2 Comorbidity and depression. Comorbidities were

assessed with the Functional Comorbidity Index (FCI) [56], a 21-

item questionnaire that calculates the total number of comorbid-

ities associated with physical functioning [56]. We used the 15-

item Geriatric Depression Scale (GDS) [57,58] to indicate the

presence of depression; a score of $5 indicates depression [59].

2.2.3 Falls-related self-efficacy. Self-efficacy is associated

with cognitive function [60,61], mobility [62–64], and brain

volume [65]. In this study, we assessed falls-related self-efficacy on

mobility-related tasks using the 16-item Activities-specific Balance

Confidence (ABC) Scale [57]. Each item is rated from 0% (no

confidence) to 100% (complete confidence) and a score out of 100

is calculated.

2.2.4 Physiological falls risk. Physiological falls risk was

assessed using the short form of the Physiological Profile

Assessment (PPA). The PPA is a valid [58,59] and reliable [60]

measure of falls risk. Based on a participant’s performance in five

physiological domains – postural sway, reaction time, strength,

proprioception, and vision – the PPA computes a falls risk score

(standardized score) that has a 75% predictive accuracy for falls

among older people [53,66]. A PPA Z-score of $0.60 indicates

high physiological falls risk [67].

2.2.5 Mobility and balance. Mobility and balance were

assessed using the Short Physical Performance Battery (SPPB) [68]

and the Timed-Up-and-Go Test (TUG) [69]. For the Short

Physical Performance Battery, participants were assessed on

performances of standing balance, walking, and sit-to-stand. Each

component is rated out of four points, for a maximum of 12 points;

a score ,9/12 predicts subsequent disability [70]. For the TUG,

participants rose from a standard chair, walked a distance of three

meters, turned, walked back to the chair and sat down [69]. We

recorded the time (s) to complete the TUG, based on the average

of two separate trials.

2.2.6 Executive functions. We used: 1) the Stroop Test [71]

to assess selective attention and conflict resolution; 2) the Trail

Making Tests (Part A & B) to assess set shifting [72]; and 3) the

verbal digits forward and backward tests to index working memory

[73]. For the Stroop Test [71], participants first read out words

printed in black ink (e.g., BLUE). Second, they named the display

colour of coloured-X’s. Finally, they were shown a page with

colour-words printed in incongruent coloured inks (e.g., the word

‘‘BLUE’’ printed in red ink). Participants were asked to name the

ink colour in which the words were printed (while ignoring the

word itself). We recorded the time participants took to read the

items in each condition and calculated the time difference between

the third condition (Stroop 3) and the second condition (Stroop 2).

Smaller time differences indicate better selective attention and

conflict resolution performance.

For the Trail Making Tests (Part A & B) [74], participants were

required to draw lines connecting encircled numbers sequentially

(Part A) or alternating between numbers and letters (Part B). The

difference in time to complete Part B and Part A was calculated,

with smaller difference scores indicating better set shifting

performance.

For the Verbal Digits Forward and Backward Tests [75],

participants repeated progressively longer random number

sequences in the same order as presented (forward) and the

reversed order (backward). Successful performance on the verbal

digits span backward test represents a measure of central executive

function due to the additional requirement of manipulation of

information within temporary storage [76]. Thus, we subtracted

the verbal digits backward test score from the verbal digits forward

test score to provide an index of working memory with smaller

difference scores indicating better working memory.

2.3 Functional MRI (fMRI)
All fMRI was performed at the UBC MRI Research Center

located at the UBC Hospital on a 3.0 Tesla Intera Achieva MRI

Scanner (Phillips Medical Systems Canada, Markham, Ontario)

using an 8-channel SENSE neurovascular coil. The fMRI

consisted of 166 dynamic images of 36 slices (3 mm thick) with

the following parameters: repetition time (TR) of 2000 millisec-

onds (ms), echo time (TE) of 30 ms, flip angle (FA) of 90 degrees,

field of view (FoV) of 240 mm, acquisition matrix 80680. The

high resolution T1 images were acquired using the following

parameters: 170 slices (1 mm thick), TR of 7.7 ms, TE of 3.6 ms,

FA of 8 degrees, FoV of 256 mm, acquisition matrix of 2566200.

2.3.1 Motor task. During the fMRI scan, participants

performed a simple finger tapping motor test that allows the

examination of functional connectivity of networks both during

rest and on task. This type of motor task is sensitive in

differentiating older adults with Alzheimer’s disease from those

with other types of dementia [77].

Falls and Disrupted Functional Connectivity
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Our motor task consisted of three conditions: left finger tapping,

right finger tapping, and rest. The participants performed finger

tapping with the respective hands as indicated, starting with index

finger and progressing outward to the little (pinky) finger. This

finger tapping motion was continuously performed until the next

condition was displayed. For the rest condition, the participants

were asked to rest with their eyes open.

The specific order of the motor task blocks, which was not

disclosed to the study participants, was counter-balanced over

three runs as followed:

Run 1: Rest, Left, Rest, Right, Rest, Left, Rest, Right, Rest

Run 2: Rest, Right, Rest, Left, Rest, Right, Rest, Left, Rest

Run 3: Rest, Left, Rest, Left, Rest, Right, Rest, Right, Rest

Each run contained nine short blocks of 34 seconds, and the

duration of each run was 330.897 seconds.

2.4 Data Analysis
2.4.1 Functional MRI data preprocessing. Image prepro-

cessing was carried out using tools from FSL (FMRIB’s Software

Library) [78], MATLAB (Matrix Laboratory), and toolboxes from

SPM (Statistical Parametric Mapping). Excess unwanted structures

(i.e., bones, skull, etc.) in high resolution T1 images were removed

via Brain Extraction Tool (BET); rigid body motion correction was

completed using MCFLIRT (absolute and relative mean displace-

ment were subsequently extracted and included in the statistical

analysis as covariates); spatial smoothing was carried out using

Gaussian kernel of Full-Width-Half-Maximum (FWHM) 6.0 mm;

temporal filtering was applied with high pass frequency cut-off of

120 seconds. In addition, a low pass temporal filtering was also

included to ensure the fMRI signal fluctuated between 0.008,f,

0.080 Hz, the ideal bandwidth to examine functional connectivity.

Furthermore, the application of a low pass filter eliminated high

frequency signals that could be confounds. Participants’ low-

resolution functional data were registered to personal high

resolution T1 anatomical images, which were subsequently

registered to standardized 152 T1 Montreal Neurological Institute

(MNI) space.

Noise generated from both physiological and non-physiological

sources were removed through regression of the cerebral-spinal

fluid (CSF) signal, white matter signal, and global brain signal. In

addition, excess movement of the study participant was corrected

by regression of motion parameters.

2.4.2 Functional connectivity analysis. Previous studies

guided our choice of seeds in the whole brain analysis of the

DMN, FEN, FPN, and SMN [16,32,35]. The DMN included the

posterior cingulate cortex (PCC), ventral and superior frontal

medial cortices (FMC), middle temporal gyrus (MTG), para-

hippocampal gyrus (PHG), middle frontal gyrus (MFG), and

lateral occipital cortex (LOC) [20,37]. The FEN included the

anterior lateral prefrontal cortex (RALPFC), insular sulcus (INS),

prefrontal cortex (PFC), inferior frontal gyrus (IFG), and anterior

cingulate gyrus (CING) [38]. The FPN included the inferior

parietal sulcus (IPS), ventral visual cortex (VV), supramarginal

gyrus (SMG), superior lateral occipital cortex (SLOC), frontal eye

field (FEF), as well as overlapping areas in the temporal-parietal

junction [38]. The SMN included the primary motor cortex

(PCG), cerebellum (CB), premotor area (PM), and supplementary

motor area (SMA) [32]. We examined the left and right SMN

individually because the use of dominant or non-dominant hand

evokes different neural activity between the hemispheres [79].

Thus, examining each hemispheric SMN separately provides a

better understanding of their temporal coherence with other

networks during finger tapping. The respective MNI space

coordinates for each region of interest (ROI) are provided in

Table 1.

From each ROI, preprocessed time-series data were extracted

with 14 mm spherical regions of interest drawn around their

respective MNI coordinates in standard space. The different

conditions (i.e., left, right, and rest) within each block of the motor

task were extracted and compiled together [80]. To concatenate

the time-series data, the stimulus onset time for each task condition

was acquired from the task program. Each volume of the data was

then sorted according to their respective condition. Once the data

were properly categorized, the task-specific volumes (e.g. all the

‘‘left’’ volumes) were merged using a bash script provided in the

FSL program. The first three volumes of any condition were

discarded to account for delay of the hemodynamic response. To

ensure our results were not affected by small number of time

points in the fMRI data, we performed an addition analysis in

which all task conditions were combined (please see Text S1 and

Table S1 in Supplementary S1).

Region of interest time-series data were subsequently cross-

correlated with every voxel within the brain to establish functional

connectivity maps of their associated neural networks. Individual-

level within-subject results were generated via ordinary least

squares (OLS) in FSL by congregating the voxel-wise functional

connectivity maps from each condition. Similarly, for group

results, a mixed-level OLS analysis was conducted. The statistical

map thresholding was set at Z = 2.33, with cluster correction of p,

0.05. Pearson’s correlation coefficients were subsequently calcu-

lated between the ROI listed in Table 1.

2.4.3 Statistical analysis. To normalize our data, the

Pearson’s correlation coefficients (between the time-series of the

seeded region and other voxels in the brain) were converted into

Fisher’s z correlation coefficients via Fisher’s r-to-z transformation

[81] in MATLAB. Fisher’s transformation generates normally

distributed sample distribution and ensures the variance of the

correlation coefficient remain constant for all values in the sample

population correlation [81].

To reduce Type I error and potentially produce a more robust

signal, we reduced the number of comparisons by averaging all the

ROI-pairs within each of the four networks as well as all ROI-

pairs between the networks. For example, the DMN contains the

following 6 ROIs: PCC, FMC, RMTG, RPHG, LMFG, and

RLOC. Six ROIs result in 15 ROI-pairs. To calculate the mean

network correlation for the DMN, we totalled the 15 Fisher’s z

correlation coefficients and then divided the total value by 15.

Data were analyzed using the IBM SPSS Statistic 19 for

Windows (SPSS Inc., Chicago, IL). Descriptive data are reported

for variables of interest. Comparisons of group characteristics at

baseline were undertaken using a Chi Square test for differences in

proportions and ANOVAs for differences in means. Analysis of

covariance (ANCOVA) was performed to statistically test for

significant between-group differences in mean network functional

connectivity. In the model, baseline FCI, baseline mean ABC

Scale score [62–64], and mean relative head motion (extracted

from McFLIRT) [82,83] were included as covariates. The overall

alpha value was set at p#0.05. Overall, 18 within-network and 27

between-network group comparisons in functional connectivity

were performed.

Finally, Pearson correlations were computed to determine

whether significant differences in mean network functional

connectivity observed at baseline between fallers and non-fallers

were significantly associated with changes in cognitive function

and mobility over a 12-month period. Change for all measures of

cognitive function and mobility was calculated as: 12-month value

minus baseline value. For example, change in Stroop Test

Falls and Disrupted Functional Connectivity
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performance was calculated as: (12-month Stroop 3 completion

time –12-month Stroop 2 completion time) – (baseline Stroop 3

completion time – baseline Stroop 2 completion time). Hence, for

the Stroop Test, negative change values reflect improvement.

Conversely, positive change values for SPPB reflect improvement.

Overall, 36 correlation comparisons were conducted.

Results

3.1 Participant
Of the 44 participants, 23 were classified as fallers and 21 were

classified as non-fallers. Among the 21 non-fallers, six participants

had 1 falls in the prior 12 months. Number of falls 12-month prior

to the study ranged from 2–20 in the fallers group; 0–1 in the non-

fallers group. Other than the number of falls reported in the

previous 12 months, fallers and non-fallers were not significantly

different at baseline, including falls risk as measured by the PPA

(Table 2). Based on the mean MoCA scores, our participants had

mild cognitive impairment. Notably, the proportion of individuals

with MoCA scores ,26/30 was not significantly different between

the two groups. No differences between the two groups were

detected 12 months later (Table 3).

3.2 Functional Connectivity of Fallers versus Non-fallers
3.2.1 Mean within-network connectivity. There were no

significant differences in within-network connectivity between

Table 1. Neural Networks and Regions of Interests Included in the Analysis.

Neural Networks{ Region of Interest MNI Coordinates (mm)

X Y Z

DMN PCC 8 256 30

FMC 22 54 212

RMTG 58 210 218

LMTG 252 214 220

RPHG 24 226 220

LPHG 226 224 220

LMFG 230 20 50

RLOC 54 262 32

LLOC 244 272 30

FEN RALPFC 32 40 28

RINS 38 4 22

LINS 238 8 24

RPFC 32 42 36

LPFC 236 34 28

RIFG 34 48 26

LIFG 238 48 8

CING 4 28 26

FPN RIPS 25 262 53

RVV 36 262 0

LVV 244 260 26

RSMG 32 238 38

RSLOC 26 264 54

LSLOC 226 260 52

RFEF 28 24 58

LFEF 226 28 54

SMN LPCG 239 221 55

RPCG 34 225 53

LCB 224 266 219

RCB 25 271 223

LPM 216 0 57

RPM 20 217 61

SMA 25 21 52

{PCC = posterior cingulate cortex; FMC = frontal medial cortex; RMTG/LMTG = right/left middle temporal gyrus; RPHG/LPHG = right/left parahippocampal gyrus; LMFG =
left middle frontal gyrus; RLOC/LLOC = right/left parietal cortex; RALPFC = right anterior lateral prefrontal cortex; RINS/LINS = right/left insular sulcus; RPFC/LPFC = right/
left prefrontal cortex; RIFG/LIFG = right/left inferior frontal gyrus; CING = cingulate; RIPS = right inferior parietal sulcus; RVV/LVV = right/left ventral visual; RSMG = right
supramarginal gyrus; RSLOC/LSLOC = right/left occipital cortex; RFEF/LFEF = right/left frontal eye field; LPCG = left precentral gyrus; RPCG = right precentral gyrus;
LCB = left cerebellum; RCB = right cerebellum; LPM = left premotor; RPM = right premotor; SMA = supplementary motor area.
doi:10.1371/journal.pone.0093673.t001
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fallers and non-fallers (Table 4). Overall, compared with non-

fallers, fallers exhibit a non-significant trend for less functional

connectivity within each network across all conditions (p$0.12).

3.2.2 Mean between-network connectivity. Figure 2 re-

ports the between-network connectivity correlation coefficients.

Compared with non-fallers, fallers showed greater connectivity

between the DMN and FPN during right hand finger tapping

(p = 0.04) (Figure 2a; Table 5). Furthermore, Compared with non-

fallers, fallers demonstrated significantly less connectivity between

the left hemispheric SMN and FPN (p = 0.02) during rest

(Figure 2b; Table 5), and between the right hemispheric SMN

and FPN during rest (p = 0.05) and left hand finger tapping

(p = 0.03) (Figure 2c; Table 5).

3.2.3 Correlation results. We found connectivity between

the right hemispheric SMN and FPN during rest was significantly

associated with change in Stroop Test performance (Pearson’s

r = 20.32, p = 0.04; Spearman’s r = 20.21, p = 0.18) Table 6;

Figure 3a) and SPPB performance (Pearson’s r = 0.33, p = 0.03;

Spearman’s r = 20.27, p = 0.09; Table 6; Figure 3b). Specifically,

less connectivity between the right hemispheric SMN and FPN

during rest, as demonstrated by fallers at baseline, was associated

with greater reductions in Stroop Test and SPPB performance

over the 12-month study period. As indicated in Figure 3a, the

association between the right hemispheric SMN and FPN during

rest and change in Stroop Test performance may be influenced by

an extreme (positive) score. Hence, we also calculated the

Spearman correlation, which was r = 20.21 (p = 0.18).

Discussion

Findings from our exploratory study suggest that community-

dwelling older fallers without dementia may have disrupted

functional connectivity between large neural networks. Specifical-

ly, compared with non-fallers, fallers demonstrated greater

connectivity between the DMN and FPN during right hand finger

tapping and less connectivity between the SMN and FPN during

rest and left hand finger tapping. Importantly, less connectivity

between the right hemispheric SMN and FPN during rest was

significantly associated with greater decline in mobility over the

12-month period. There was also suggestion that less connectivity

between the right hemispheric SMN and FPN during rest was

associated with greater decline in cognitive function as measured

by the Stroop Test. Thus, a recent history of multiple falls among

older adults without a diagnosis of dementia may indicate sub-

clinical changes in brain function and increased risk for subsequent

decline.

The finding of increased connectivity between the DMN and

FPN among older fallers during right hand finger tapping

condition provides novel insight into the neural risk factors for

falls. It is widely recognized that the DMN deactivates during goal-

oriented activity [36,37]. In accord with this concept, evidence in

the literature found an association between reduced cognitive

performance and aging-related increase in functional connectivity

between the DMN and FPN [84]. Thus, our results suggest that

fallers may have reduced ability to disengage from internally-

generated thoughts when performing a task. In particular, our

participants were right hand dominant and thus, right finger

tapping was less cognitively demanding than left finger tapping

[85]. According to the capacity model of attention, during a less

cognitively-demanding task, more resources are available to

distribute to task-irrelevant stimuli or thoughts [86]. Hence, we

speculate that the reduced ability to attend externally by

disengaging from thoughts focused internally, or increased

propensity for mind-wandering, may contribute to falls risk among

older adults. Certainly there is emerging evidence to suggest that

mind-wandering negatively impacts motor control [87,88].

Majority of the differences we found in functional connectivity

were between the SMN and FPN. This supports our original

hypothesis that these two functionally- and anatomically-overlap-

ping networks (Figure 1) are of specific interest in understanding

the neural basis for the association between cognitive function and

mobility. Our observation that connectivity between the SMN and

Table 4. Within-Network Functional Connectivity Results.

Network{ Task Condition Fallers Non-fallers p-value*

Mean SD Mean SD

DMN Rest 0.22 0.14 0.24 0.17 0.61

Right 0.24 0.17 0.30 0.16 0.32

Left 0.26 0.16 0.25 0.20 0.83

FEN Rest 0.20 0.10 0.19 0.11 0.58

Right 0.17 0.07 0.15 0.13 0.49

Left 0.15 0.11 0.16 0.16 0.95

FPN Rest 0.28 0.14 0.32 0.17 0.31

Right 0.28 0.19 0.35 0.22 0.15

Left 0.31 0.16 0.33 0.22 0.48

Left Hemispheric SMN Rest 0.23 0.17 0.28 0.19 0.39

Right 0.22 0.21 0.29 0.14 0.16

Left 0.22 0.21 0.23 0.19 0.42

Right Hemispheric SMN Rest 0.20 0.15 0.23 0.17 0.44

Right 0.21 0.22 0.21 0.17 0.88

Left 0.20 0.18 0.27 0.19 0.12

{DMN = default mode network; FEN = fronto-executive network; FPN = fronto-parietal network; SMN = motor network.
*Controlled for FCI, mean ABC scale score, and relative head motion.
doi:10.1371/journal.pone.0093673.t004
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Figure 2. Graphical Representations of Between-Network Connectivity Significantly Different Between Fallers and Non-Fallers.
doi:10.1371/journal.pone.0093673.g002
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FPN during rest was less among fallers than non-fallers concurs

and extends previous findings. Inman and colleagues [89] also

found less connectivity between the SMN and FPN during rest in

stroke survivors – a population that is also at significant risk for

falls and dementia [90–92]. Less connectivity between these two

networks during rest may suggest reduced motor preparatory

inputs, in anticipation of motor performance, from FPN to the

SMN. This, in turn, may increase falls risk. Our fMRI design may

have been particularly sensitive to evoking anticipation because

the rest periods were interspersed among the finger tapping blocks.

Using event related potentials, Berchicci and colleagues [93]

recently demonstrated that older adults require greater motor

preparation (as indexed by earlier onset latency onset and greater

prefrontal cortex activation) than young adults to obtain the same

level of motor performance.

Compared with non-fallers, fallers also demonstrated less

connectivity between the right hemispheric SMN and FPN during

left finger tapping. Evidence suggests that compared with

dominant hand use, non-dominant hand use requires greater

neural resources (bilateral recruitment of the brain) to maintain

stable motion [79,85]. Given our participants were right hand

dominant, one would expect greater connectivity between the

right hemispheric SMN and FPN during left finger tapping than

right finger tapping. Importantly, we did observe the mean

network connectivity between right hemispheric SMN and FPN

during left finger tapping (i.e., 0.19) was greater than the mean

network connectivity left hemispheric SMN and FPN right finger

tapping (i.e., 0.17). However, these connectivity values were not

significantly different (p = 0.78). Thus, this finding suggests that

reduced temporal coherence between the SMN and FPN during

novel or challenging motor tasks may increase falls risk among

older adults.

Furthermore, we found that less functional connectivity between

the right hemispheric SMN and FPN during rest was significantly

associated with greater decline in both cognitive function and

mobility over the 12-month period. This finding further supports

Table 5. Between-Network Functional Connectivity Results.

Network Pairs{ Task Condition Fallers Non-fallers p-value *

Mean SD Mean SD

DMN-FEN Rest 20.02 0.08 20.02 0.08 0.88

Right 20.04 0.11 20.03 0.08 0.36

Left 20.04 0.11 20.05 0.09 0.70

DMN-FPN Rest 20.15 0.11 20.18 0.14 0.38

Right 20.14 0.14 20.24 0.18 0.04{

Left 20.16 0.13 20.18 0.14 0.64

FEN-FPN Rest 20.02 0.08 20.01 0.10 0.88

Right ,20.01 0.11 ,20.01 0.14 0.71

Left 20.01 0.10 0.01 0.10 0.60

Left Hemispheric SMN-DMN Rest 20.14 0.10 20.17 0.14 0.41

Right 20.14 0.10 20.18 0.13 0.19

Left 20.18 0.11 20.16 0.13 0.62

Left Hemispheric SMN-FEN Rest 0.02 0.09 0.02 0.08 0.96

Right 0.04 0.10 0.01 0.15 0.50

Left ,0.01 0.11 0.05 0.09 0.14

Left Hemispheric SMN-FPN Rest 0.15 0.09 0.22 0.12 0.02{

Right 0.17 0.13 0.23 0.14 0.09

Left 0.18 0.10 0.22 0.17 0.24

Right Hemispheric SMN-DMN Rest 20.15 0.12 20.17 0.13 0.78

Right 20.14 0.13 20.16 0.13 0.49

Left 20.16 0.11 20.18 0.13 0.55

Right Hemispheric SMN-FEN Rest 0.02 0.09 ,20.01 0.08 0.28

Right 0.02 0.11 20.03 0.15 0.18

Left 0.01 0.08 ,20.01 0.13 0.84

Right Hemispheric SMN-FPN Rest 0.18 0.11 0.23 0.10 0.05 {

Right 0.17 0.15 0.25 0.12 0.07

Left 0.18 0.12 0.26 0.16 0.02 {

Right-Left Hemispheric Mot Rest 0.16 0.18 0.16 0.25 0.82

Right 0.15 0.19 0.15 0.19 0.71

Left 0.12 0.21 0.07 0.20 0.36

{DMN = default mode network; FEN = fronto-executive network; FPN = fronto-parietal network; SMN = motor network.
*p#0.05; controlled for FCI, mean ABC scale score, and relative head motion.
doi:10.1371/journal.pone.0093673.t005
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the hypothesis that both cognitive decline and impaired mobility

may share common neurobiological mechanisms.

We did not observe any significant group differences in the

functional connectivity between the SMN and FEN. This null

finding could be because the motor task does not specifically

engage executive processes, such as working memory or mainte-

nance of a complex task set. We also did not observe any

significant group differences within the DMN. Changes within the

DMN have been observed in healthy aging [22,94,95], Alzhei-

mer’s disease [34,95,96], individuals with amnestic mild cognitive

impairment [97], and in APOE-e4 carriers [98,99]. Hence, the

lack of significant differences between fallers and non-fallers in age,

MoCA score, MMSE score, and executive functions, may explain

our null finding within the DMN. Our findings may also suggest

that between-network functional connectivity disruptions may

precede within-network connectivity disruptions in older adults

without a diagnosis of dementia. However, future studies are

needed to confirm the temporal order of functional connectivity

disruptions with both healthy aging and neurodegeneration.

It is noteworthy that despite observing significant differences in

functional connectivity between fallers and non-fallers, we found

no differences in measures of falls risk, mobility and balance, and

cognitive function. Importantly, based on the performance on the

MoCA, the number of mild cognitively impaired individuals was

equally distributed between fallers and non-fallers (Table 2). The

only clinical characteristic that significantly distinguished the two

groups was the number of falls in the 12 months prior to

enrollment in the study. A previous prospective study also

demonstrated that falls occur prior to cognitive changes among

community-dwelling older adults [100]. This prior observation

and our current findings support our hypothesis that a recent

history of multiple falls may be a biomarker of sub-clinical changes

in brain function and increased risk for subsequent decline among

community-dwelling older adults without dementia.

We recognize the limitations of our study. The validity of our

findings depends on accurate identification of recurrent fallers and

non-fallers and previous research has demonstrated that falls recall

in older adults is subject to retrospective recall bias [101].

However, we corroborated falls history with immediate family

members or close friends. Moreover, fallers had a mean baseline

PPA score of 0.60, indicating high physiological falls risk [67]. Our

classification scheme separated fallers and non-fallers by 1 fall in

the last 12 months (i.e., $2 falls versus #1 fall) and thus, we may

have underestimated the association between falls and disrupted

functional connectivity. Future research may wish to classify fallers

as those with 3 or more falls in the last 12 months.

Figure 3. Correlations of Behavioural Performances and Functional Connectivity.
doi:10.1371/journal.pone.0093673.g003
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Differences in functional connectivity between fallers and non-

fallers may be dependent on the specific task imposed. Thus, the

generalizability of our findings to other task states will be an

important direction of future research. Our functional connectivity

analysis was completed with a relatively low number of data points

(i.e., 51 per condition) and therefore, may not reflect an ideal

signal-to-noise ratio. Potential confounders not accounted for in

this study include APOE e4 genotype; recent evidence report that

functional connectivity of large neural networks is influenced by

the presence of APOE e4 allele. We also did not quantify white

matter lesions and this should be an important consideration for

future functional connectivity research. While we substantially

reduced the number of comparison by averaging the ROI-pairs,

multiple comparisons were still performed, rendering the results

susceptible to Type I error. Notably, results of this exploratory

study would no longer be statistically significant if Bonferroni

correction (i.e., divide the alpha by the total number of

comparisons being made) was applied to our data. Finally, seed-

based functional connectivity analysis restricted our results within

the scope of the identified regions of interest. Therefore, to extend

our results beyond the list of regions and networks presented in this

paper, future research should consider data-driven methods of

analysis (e.g., Independent Component Analysis).

Our study sample consisted exclusively of independent com-

munity-dwelling older adults specifically between the age-range of

70–80 who were without significant physical or cognitive

impairment. Thus, our results may not generalize beyond this

population of older adults.

In summary, the results of our exploratory study suggest that

community-dwelling older adults with a recent history of multiple

falls may have disrupted functional connectivity between large

neural networks. Importantly, these disruptions may be associated

with greater decline in both cognitive function and mobility over a

12-month period. Thus, health care professionals working with

older adults should consider falls history in their assessment to

potentially identify those who are at greater risk for subsequent

decline. Lastly, future studies with larger samples will need to be

conducted in order to confirm our exploratory findings.
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