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ABSTRACT 47 
 48 
Background 49 
Predicting mortality risk in patients with COVID-19 remains challenging, and accurate prognostic 50 
assays represent a persistent unmet clinical need. We aimed to identify and validate parsimonious 51 
transcriptomic signatures that accurately predict fatal outcomes within 48 hours of hospitalization. 52 
 53 
Methods 54 
We studied 894 patients hospitalized for COVID-19 across 20 US hospitals and enrolled in the 55 
prospective Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) with peripheral 56 
blood mononuclear cells (PBMC) and nasal swabs collected within 48 hours of admission. Host 57 
gene expression was assessed by RNA sequencing, nasal SARS-CoV-2 viral load was measured 58 
by RT-qPCR, and mortality was assessed at 28 days. We first defined transcriptional signatures 59 
and biological features of fatal COVID-19, which we compared against mortality signatures from 60 
an independent cohort of patients with non-COVID-19 sepsis (n=122). Using least absolute 61 
shrinkage and selection operator (LASSO) regression in 70% of the COVID-19 cohort, we trained 62 
parsimonious prognostic classifiers incorporating host gene expression, age, and viral load. The 63 
performance of single and three-gene classifiers was then determined in the remaining 30% of 64 
the cohort and subsequently externally validated in an independent, contemporary COVID-19 65 
cohort (n=137) with vaccinated patients. 66 
 67 
Results 68 
Fatal COVID-19 was characterized by 4189 differentially expressed genes in the peripheral blood, 69 
representing marked upregulation of neutrophil degranulation, erythrocyte gas exchange, and 70 
heme biosynthesis pathways, juxtaposed against downregulation of adaptive immune pathways. 71 
Only 7.6% of mortality-associated genes overlapped between COVID-19 and sepsis due to other 72 
causes. A COVID-specific three-gene peripheral blood classifier (CD83, ATP1B2, DAAM2) 73 
combined with age and SARS-CoV-2 viral load achieved an area under the receiver operating 74 
characteristic curve (AUC) of 0.88 (95% CI 0.82–0.94). A three-gene nasal classifier (SLC5A5, 75 
CD200R1, FCER1A), in comparison, yielded an AUC of 0.74 (95% CI 0.64-0.83). Notably the 76 
expression of OLAH alone, a gene recently implicated in severe viral infection pathogenesis, 77 
yielded an AUC of 0.86 (0.79–0.93). Both peripheral blood classifiers demonstrated comparable 78 
performance in vaccinated patients from an independent external validation cohort (AUCs 0.74–79 
0.80). 80 
 81 
Conclusions 82 
A three-gene peripheral blood signature, as well as OLAH alone, accurately predict COVID-19 83 
mortality early in hospitalization, including in vaccinated patients. These parsimonious blood- and 84 
nasal-based classifiers merit further study as accessible prognostic tools to guide triage, resource 85 
allocation, and early therapeutic interventions in COVID-19.  86 
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INTRODUCTION 87 

The clinical course of SARS-CoV-2 infection is highly heterogeneous, ranging from minimal 88 

symptoms to fatal disease.1,2 Despite thousands of studies since the emergence of the virus in 89 

20193 and a growing understanding of the biological features underpinning severe COVID-19,4–6 90 

clinicians still lack reliable prognostic assays to identify which patients will progress to critical 91 

illness or fatal disease. Accurate and timely severity prediction tools could improve clinical triage, 92 

optimize resource allocation, and have utility for predictive enrichment in clinical trials of novel 93 

therapeutics.7–10 94 

 95 

Host factors including age11 and individual inflammatory responses are key determinants of 96 

disease severity and progression.11–14 Broadly available clinical laboratory tests, such as ferritin, 97 

D-dimer, lactate dehydrogenase, troponin, interleukin-6 and interleukin-8 have been used to risk 98 

stratify COVID-19 patients, but each biomarker individually has limited performance.15,16 99 

Bioinformatic approaches attempted to integrate these laboratory values with clinical parameters, 100 

resulting in modest improvements in predictive ability.17–20 However, these studies have generally 101 

been single-institution studies, leveraging a small list of biomarkers, with concerns about model 102 

overfitting and lack of generalizability.21 No models have yet been implemented into an actionable, 103 

widely used prognostic tool in clinical practice. 104 

 105 

In contrast to traditional protein-based biomarkers, host transcriptomic profiling offers a more 106 

comprehensive and less biased method for characterizing the host immune response to 107 

infection.22 Transcriptomic classifiers have increasingly shown promise in accurately diagnosing 108 

infection and predicting disease severity across a wide range of pathogens.23–27 A handful of early 109 

foundational studies, based on relatively small cohorts of ≤ 100 patients, have explored using host 110 

transcriptomic classifiers to predict COVID-19 severity.28–31  111 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 19, 2025. ; https://doi.org/10.1101/2025.05.18.25327658doi: medRxiv preprint 

https://doi.org/10.1101/2025.05.18.25327658
http://creativecommons.org/licenses/by-nc-nd/4.0/


For instance, from a pre-existing panel of 29 genes, a six-gene prognostic classifier trained on 112 

blood transcriptomic data from non-SARS-CoV-2 viral infections was developed, which when 113 

tested in COVID-19 patients achieved AUCs ranging from 0.65-0.89.28,29 Similarly, another group 114 

repurposed a 10-gene sepsis mortality prediction score and found that it achieved an AUC of 0.86 115 

in COVID-19 patients,30 and a third developed a 48-gene prognostic classifier that had an overall 116 

accuracy of 81%.31  117 

 118 

While these early, important studies suggest that a transcriptomic COVID-19 severity classifier 119 

has potential, there remains an unmet need for a rigorously validated, clinically translatable 120 

mortality prediction tool, deployable at the time of hospitalization, with generalizability to diverse 121 

populations that include COVID-19-vaccinated individuals. Notably, all previously published 122 

classifiers rely on sizeable multi-gene combinations, while highly parsimonious (≤3 gene) 123 

classifiers have not yet been identified. Minimal gene expression models could enhance feasibility 124 

for clinical translation, reduce assay costs, and improve accessibility in resource-limited settings. 125 

Furthermore, compact gene signatures could be more readily incorporated into existing SARS-126 

CoV-2 diagnostic platforms, facilitating rapid risk stratification at the time of diagnosis.  127 

 128 

Here, we address this need by studying over 1000 COVID-19 patients enrolled in two cohorts 129 

across 20 hospitals in the United States. We identify single and three-gene signatures from 130 

peripheral blood and nasal swabs collected within 48 hours of hospital admission that accurately 131 

predict future COVID-19 mortality, including in vaccinated patients. We further demonstrate that 132 

incorporating patient age and SARS-CoV-2 viral load enhances prognostic ability of transcriptomic 133 

classifiers, offering a novel, translatable approach for early risk stratification in hospitalized 134 

COVID-19 patients.   135 
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RESULTS 136 

Clinical and demographic features associated with fatal COVID-19 137 

We analyzed 894 subjects enrolled in the Immunophenotyping Assessment in a COVID-19 cohort 138 

(IMPACC) who had peripheral blood and/or nasal swab samples collected at early timepoints in 139 

their hospitalization, as well as SARS-CoV-2 viral load measured in the upper airway (Fig. 1). We 140 

began by first evaluating the demographic and clinical features of fatal SARS-CoV-2 infection 141 

(Table 1). The overall mortality rate was 9.5%, and the survival group encompassed a wide range 142 

of illness severity based on maximal NIH respiratory ordinal score. Consistent with many prior 143 

studies, older age strongly correlated with mortality in COVID-19 patients from the IMPACC cohort 144 

(median 70.0 in mortality versus 58.0 in survival, P<0.001), as did higher viral load (median 145 

reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) cycle threshold (CT) 146 

value of 25.5 in mortality vs 27.6 in survival, P=0.002). Most comorbidities that were evaluated 147 

were associated with mortality, including hypertension, diabetes, chronic lung disease, 148 

cardiovascular disease, chronic kidney disease, and malignancy. Therapeutically, steroid use was 149 

higher in patients who did not survive (81% vs 66%, P=0.005), though remdesivir use was similar 150 

(61% vs 63%, P=0.735). As subjects were enrolled between May 2020 and March 2021, this 151 

cohort was unvaccinated. 152 

 153 

Early host transcriptional signatures of fatal COVID-19 exist in the blood and upper 154 

respiratory tract 155 

We next evaluated the relationship between peripheral blood mononuclear cell (PBMC) gene 156 

expression profiles within 48 hours of hospital admission and COVID-19 mortality within 28 days 157 

(n=785). We identified 4189 differentially expressed genes (adjusted P value (Padj) <0.05), 158 

adjusting for sex and race (Fig. 2A, Supp. Data 1A). To explore their functions, we performed 159 

gene-set enrichment analysis (GSEA). Patients who died exhibited upregulation in genes related 160 

to erythrocyte gas exchange (e.g., CA1 and CA4), heme biosynthesis (e.g., HBA1, HBA2, and 161 
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FECH), neutrophil degranulation (e.g., MPO and TNF), among other pathways (Fig. 2B, Supp. 162 

Data 1B). This was juxtaposed against downregulated expression of genes important for adaptive 163 

immunity, including B and T lymphocyte signaling (e.g., CD22, CD79, CD96, and CD4). 164 

 165 

We performed a similar analysis of transcriptomic data derived from nasal swabs collected within 166 

48 hours of hospital admission (n=842). A host signature of mortality was also present in the upper 167 

respiratory tract, although differential gene expression was more subtle, with only 53 genes 168 

significantly associated with mortality (Supp. Fig. 1A, Supp. Data 2A). Of these, seven were 169 

consistently differentially expressed across both the peripheral blood and the upper airway, with 170 

OLAH, which encodes oleoyl-ACP hydrolase, most strongly upregulated with mortality in both 171 

nasal swab and PBMC samples (Fig. 2C). In the upper airway, mortality was associated with 172 

nucleic acid repair, cellular senescence and IL-10 signaling pathways (Fig 2D, Supp. Data 2B). 173 

 174 

The transcriptional signature of fatal COVID-19 has unique features compared to fatal 175 

sepsis 176 

Understanding whether the host response leading to death in COVID-19 is distinct from or shared 177 

from other forms of sepsis could provide insights into disease-specific mechanisms or risk 178 

stratification strategies. We therefore sought to determine whether host transcriptional signatures 179 

of mortality early in hospital admission were similar or different between patients hospitalized for 180 

COVID-19 versus sepsis due to other causes. To address this question, we analyzed peripheral 181 

blood RNA-seq data from 122 patients hospitalized for microbiologically confirmed sepsis prior to 182 

the COVID-19 pandemic, a cohort which had a 34.4% mortality rate and a predominance of 183 

bacterial infections (Figure 3A, Table S1).32,33 We identified a distinct host signature of sepsis 184 

mortality characterized by 1246 differentially expressed genes (Supp. Data 3A). 185 

 186 
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At the biological pathway level, GSEA demonstrated that fatal COVID-19 and non-COVID sepsis 187 

were both characterized by increased expression of neutrophil degranulation genes and 188 

downregulation of T cell signaling genes (Fig. 3B, Supp. Data 3B). Fatal COVID-19, however, 189 

was uniquely characterized by impaired expression of genes related to B cell signaling and 190 

translation, and increased expression of genes functioning in heme biosynthesis. Differences 191 

between fatal COVID-19 and non-COVID sepsis were even more apparent at the individual gene 192 

level (Fig. 3C), with only 360 (7.6%) of mortality-associated genes shared between groups (Fig. 193 

3D). Taken together, these results demonstrated that fatal SARS-CoV-2 infection has unique 194 

transcriptional changes compared to sepsis caused by other pathogens, suggesting that accurate 195 

prognostic assessment for COVID-19 warrants a classifier specifically trained on these distinctive 196 

COVID-19 mortality signatures rather than relying on classifiers developed for other critical 197 

illnesses. 198 

  199 

Parsimonious host-viral classifiers accurately predict COVID-19 mortality 200 

Given the striking transcriptomic signature of COVID-19 mortality, we next sought to build 201 

prognostic classifiers based on gene expression measured within the first 48 hours of 202 

hospitalization. To maximize potential for future clinical translation, we sought to identify 203 

parsimonious feature sets of ≤ 10 genes. For derivation of the classifiers, we divided the cohort 204 

into training (70% of patients) and test sets (30%) (Fig. 1). Given that age and SARS-CoV-2 viral 205 

load (RT-qPCR CT value) are well-established risk factors for fatal COVID-19 and readily 206 

obtainable from all hospitalized patients, we included both as additional parameters in the models.  207 

 208 

We first used least absolute shrinkage and selection operator (LASSO) regression to build 2-10 209 

gene peripheral blood classifiers within the training set (Table S2). These gene sets were 210 

combined in a logistic regression model with age and SARS-CoV-2 CT value, and performance 211 

distribution was assessed using a three-fold repeated random partitioning approach (Fig. 4A). 212 
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We found that classifier performance plateaued at a classifier size of three genes, with the 213 

combination of CD83, ATP1B2, and DAAM2 performing as well as the larger gene sets (Fig. 4B). 214 

CD83 plays a role in the activation of B cells and dendritic cells;34,35 ATP1B2, a component of 215 

sodium-potassium pumps that are important for maintaining endothelial integrity;36 DAAM2 216 

regulates the Wnt signaling pathway, thereby influencing cell fate.37 When tested in the held-out 217 

30% validation set, this three-gene classifier achieved an AUC of 0.88 (95% CI 0.82-0.94) (Fig. 218 

4C). 219 

 220 

Using the same methodology, we derived classifiers using nasal swab transcriptomic data in the 221 

training set (Fig. S1B, Table S3). However, the best performing three-gene set (SLC5A5, 222 

CD200R1, FCER1A, Fig. S1C) only achieved an AUC of 0.74 (95% CI 0.64-0.83) when evaluated 223 

on the held-out test set (Fig. S1D). Given that OLAH expression was conspicuously amplified in 224 

fatal COVID-19 both in the upper respiratory tract and blood (Fig. 3C, Fig 4D), and because 225 

OLAH was recently implicated in the pathogenesis of severe viral pneumonia,38 we also evaluated 226 

its performance in a single-gene classifier. When assayed in the blood, in combination with age 227 

and SARS-CoV-2 CT value, OLAH remarkably achieved an AUC of 0.86 (0.79-0.93) (Fig 4E). 228 

When assessed in the upper airway, an OLAH prognostic classifier achieved an AUC of 0.78 229 

(0.69-0.86) (Fig 4E). Taken together, these findings demonstrated that 1-3 gene parsimonious 230 

classifiers from either blood or nasal swab samples can accurately predict future COVID-19 231 

mortality.  232 

 233 

Validation in an independent cohort with vaccinated COVID-19 patients 234 

We next explored the extent to which our findings were generalizable. To that end, we leveraged 235 

the COVID-19 Multi-Immunophenotyping Projects for Effective Therapies (COMET) cohort, which 236 

enrolled COVID-19 positive patients (PBMC, n=137) at two hospitals through 2023 and notably 237 

included 55 (40.1%) vaccinated patients (Table S4).39 Differential expression analysis yielded 769 238 
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DE genes, confirming a robust peripheral blood signature of mortality in this validation cohort (Fig. 239 

5A, Supp. Data 4A). GSEA demonstrated that neutrophil degranulation and erythrocyte transport 240 

of oxygen and carbon dioxide remained two of the most significantly upregulated pathways with 241 

mortality, but showed a notable absence of significantly downregulated adaptive immunity 242 

pathways (Fig. S2, Supp. Data 4B). 243 

 244 

Despite some minor differences at the biological pathway level, the expression of OLAH as well 245 

as CD83, ATP1B2, and DAAM2 differed significantly (P<0.05) based on mortality in the validation 246 

cohort (Fig. 5B). Because SARS-CoV-2 CT value was not available on COMET patients, we 247 

tested the genes in combination with just age. Using five-fold cross validation followed by out-of-248 

fold AUC calculation, OLAH achieved an AUC of 0.79 (0.67 - 0.88), and the three-gene classifier 249 

an AUC of 0.72 (0.60 - 0.82) (Fig. 5C). When repeating this for vaccinated patients, the three-250 

gene and OLAH classifiers performed equally well, if not better, at predicting mortality in the 251 

vaccinated subset (Fig. 5D). Collectively, these findings demonstrated that these transcriptomic 252 

classifiers remained capable of predicting mortality in an independent cohort inclusive of 253 

vaccinated individuals.  254 

 255 

Parsimonious single and three-gene prognostic classifiers perform comparably to a larger 256 

multi-gene classifier 257 

Finally, we sought to compare the results of our single-gene OLAH classifier and our three-gene 258 

classifier to a previously published six-gene classifier (HK3, LY86, TGFB1, DEFA4, BATF, and 259 

HLA-DPB1) that was developed in non-COVID-19 viral infections and previously tested in COVID-260 

19 patients.28 These six genes trained and tested in the IMPACC cohort yielded an AUC of 0.75, 261 

which improved to 0.88 after including age and CT value (Fig. S3). Notably, the AUCs and 262 

confidence intervals of the published six-gene was comparable to our integrated three-gene and 263 

single-gene OLAH classifier, indicating that one and three-gene classifiers can perform 264 
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comparably to larger size classifiers, and that adding age and viral load can boost the 265 

performance of existing classifiers for COVID-19 risk stratification. 266 

 267 

DISCUSSION 268 

In a large, prospective, multi-center cohort, we find that either a single gene, OLAH, or a 269 

combination of three genes, CD83, ATP1B2, and DAAM2, accurately predicts 28-day mortality in 270 

hospitalized COVID-19 patients, including those who have been vaccinated. We build on 271 

extensive foundational studies establishing clinical and biological risk factors for severe COVID-272 

1912,40–42 by characterizing early host transcriptional determinants of survival versus death in 273 

comparison to hospitalized patients with non-COVID-19 sepsis. We then leverage these findings 274 

to build parsimonious host-based classifiers from both blood and nasal swab samples that can be 275 

readily adapted to existing nucleic acid amplification platforms for clinical deployment. 276 

 277 

The three-gene classifier achieved an AUC of 0.88 (0.82-0.94) and remarkably, the single-gene 278 

OLAH classifier achieved an AUC of 0.86 (0.79-0.93) in the blood and 0.78 (0.69-0.86) in nasal 279 

swab samples. Similar performance was observed in an independent validation cohort, which 280 

included vaccinated patients, and mortality prediction was similar when stratifying by vaccinated 281 

status. Several prior studies, representing important early contributions, developed severity or 282 

mortality prediction classifiers for COVID-1928–31,43. Each, however, was limited by small sample 283 

sizes, single-institution cohorts, development in non-COVID-19 populations, and testing in 284 

unvaccinated patients. Additionally, these classifiers incorporated anywhere from six to 48 genes, 285 

whereas we identified single and three-gene classifiers that achieved equivalent performance in 286 

head-to-head comparisons.  287 

 288 
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While severe COVID-19 is less common now than in the beginning of the pandemic, there is still 289 

considerable mortality with each wave.44 Simple, rapid prognostic tests for COVID-19 could not 290 

only aid in clinical triage and resource allocation during surges but could also identify high-risk 291 

patients who may benefit from early targeted interventions.8,24 Reducing the number of targets 292 

substantially decreases the technical and computational complexity of host gene expression tests, 293 

as well as their cost, making clinical implementation more feasible, especially in resource limited 294 

settings where risk stratification may be disproportionately needed.45 The strong performance of 295 

OLAH in both blood and nasal swabs samples makes it particularly attractive for translation, as 296 

this gene could be readily incorporated into existing nasal swab SARS-CoV-2 diagnostic assays 297 

to additionally enable prognostication.  298 

 299 

Beyond their prognostic potential, each of the classifier genes we report may contribute to the 300 

pathophysiology of severe COVID-19, as each has been previously linked to COVID-19 in the 301 

literature.46–48 CD83, a well-established regulator of immune responses that promotes T and B 302 

cell maturation, was downregulated in fatal COVID-19,49 consistent with impaired adaptive 303 

immunity. ATP1B2 encodes a regulatory subunit of the sodium/potassium-transporting ATPase 304 

pump, and its dysregulation may disrupt vascular endothelial36,50 and alveolar epithelial integrity51, 305 

promoting capillary leak and acute respiratory distress syndrome. DAAM2 negatively regulates 306 

Wnt signaling,52 a pathway implicated in the activation of inflammatory macrophages,53 307 

angiogenesis,54 endothelial integrity,55 and fibrosis56. Elevated DAAM2 has been linked with 308 

vascular disorders of pregnancy,37,57 suggesting it may also contribute to the widespread vascular 309 

dysfunction observed in fatal COVID-19.58  310 

 311 

OLAH (oleoyl-acyl-carrier-protein hydrolase), an enzyme involved in fatty acid biosynthesis, was 312 

recently implicated in the pathogenesis of life-threatening respiratory viral infections.38 OLAH-313 

knockout mice demonstrate protection against severe influenza infection, reduced inflammatory 314 
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damage, and improved control of viral replication, outcomes attributed to modulating lipid 315 

mediators of inflammation.38 Importantly, OLAH expression was found to be increased across 316 

patients with severe influenza virus, RSV and SARS-CoV-2 infection,38 suggesting that an OLAH 317 

prognostic classifier may be generalizable across a diversity of respiratory viral infections. Here, 318 

we independently validate the association of both airway and peripheral blood OLAH expression 319 

with COVID-19 severity, and provide the first assessment of its performance as a prognostic 320 

biomarker in two large cohorts of hospitalized patients. 321 

 322 

A growing body of literature demonstrates that severe COVID-19 is driven by a profoundly 323 

dysregulated host immune response to the virus, characterized by excessive innate inflammation 324 

and impaired adaptive immunity.5,59 Hyperactive neutrophils and macrophages contribute to 325 

cytokine release, complement activation, endothelial damage, and vascular thrombosis, while 326 

impaired lymphocyte responses delay viral clearance and increase vulnerability to secondary 327 

infections.60–66 In our study, the systemic host signature of fatal COVID-19 mirrored many of the 328 

same pathways described previously, including increased neutrophil degranulation, decreased 329 

production of the anti-inflammatory cytokine IL-10, and downregulated T-cell and B-cell signaling 330 

– highlighting that this aberrant immune signaling begins early in the course of illness. In addition, 331 

we noted increased systemic expression of erythrocyte gas exchange and heme biosynthesis 332 

genes in fatal cases, likely a compensatory mechanism for severe hypoxemia.67,68  333 

 334 

The host signature of mortality in the upper respiratory tract, in contrast, was dominated by 335 

upregulation of DNA repair and senescence pathways, potentially reflecting heightened cellular 336 

stress and direct damage at the site of viral entry.69,70 Intriguingly, IL-10 signaling was upregulated 337 

in the upper respiratory tract but downregulated systemically, suggesting a localized attempt to 338 

control inflammation that fails to extend to the systemic immune response.71,72 339 

 340 
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Many of the pathways enriched in fatal COVID-19 have also been described in fatal sepsis.73,74 341 

Prior studies have suggested that critically ill patients may follow a common mortality trajectory, 342 

with one study reporting that COVID-19 and non-COVID-19 patients admitted to the ICU for 343 

greater than seven days were almost transcriptionally indistinguishable.75 While we did find 344 

overlapping mortality-associated signaling pathways when comparing our GSEA results against 345 

those from a cohort of primarily bacterial sepsis patients (e.g., upregulated neutrophil 346 

degranulation, downregulated T cell signaling), more than 90% of mortality-associated genes 347 

differed between COVID-19 and sepsis. Fatal COVID-19 was uniquely characterized by 348 

decreased expression of B-cell signaling genes and enrichment of heme biosynthesis pathways. 349 

These findings suggest that while mortality pathways may eventually converge, pathogen-specific 350 

mortality signatures are prominent early in the course of severe disease – an important 351 

consideration for developing accurate early mortality prediction tools.  352 

 353 

Strengths of our study include a large sample size, a multi-center design, incorporation of multiple 354 

different sample types, and a rigorous informatics approach for classifier development. However, 355 

our study also has limitations. The primary cohort was recruited before COVID-19 vaccines 356 

became widely available; however, we found that our classifiers performed equally well in a cohort 357 

inclusive of vaccinated patients. Additionally, our cohorts consisted solely of symptomatic 358 

hospitalized patients, leaving uncertainty about whether the classifiers would maintain their 359 

performance in outpatient settings.  360 

 361 

Taken together, we present a comprehensive transcriptomic characterization of fatal COVID-19, 362 

illuminating key pathways driving severe outcomes and developing parsimonious blood- and 363 

nasal swab-based classifiers accurately predict mortality COVID-19 early in illness. Moving 364 

forward, next steps involve further validation of classifiers across a broader spectrum of disease 365 
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severity, translation onto a point-of-care clinical platform, and real-world assessment of their 366 

impact on patient management and outcomes.    367 
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METHODS 368 

Sex as a biological variable 369 

Sex as a biological variable. Our study examined male and female participants. 370 

Classifiers were designed to predict 28-day mortality, an outcome that did not differ by 371 

sex in our study.  372 

 373 

Study cohorts and design 374 

This study primarily leveraged the Immunophenotyping Assessment in a COVID-19 Cohort 375 

(IMPACC) observational cohort, which enrolled a total of 1164 patients hospitalized for COVID-376 

19 from 20 different US hospitals76,77. Biological sample collection, processing, and multi-modal 377 

immune profiling followed a standard protocol utilized at core laboratories and by every 378 

participating academic institution76,77. The Department of Health and Human Services Office for 379 

Human Research Protections determined that the IMPACC study protocol met criteria for a public 380 

health surveillance exception [45CFR46.102(l)(2)], and the study was approved by each 381 

institutional review board (IRB) through this exception (12 sites) or by pre-approved biobanking 382 

protocols (3 sites). 383 

 384 

For our primary analyses, we included all IMPACC participants who met the following inclusion 385 

criteria: 1) had at least one nasal swab or peripheral blood mononuclear cells (PBMC) collected 386 

within the first 48 hours of hospital admission for RNA-seq, and 2) had an admission SARS-CoV-387 

2 viral load measured by either RT-qPCR or RNA-seq. Samples that failed RNA-seq quality 388 

control standards (described below) were removed, ultimately leaving 894 total patients included. 389 

For subjects with multiple available samples that met these criteria, only the earliest nasal swab 390 

and PBMC sample were retained. Both PBMC transcriptomic data and SARS-CoV-2 viral load 391 
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measurements were available for 785 IMPACC participants. Nasal transcriptomic data and SARS-392 

CoV-2 viral load measurements were available for 842 IMPACC participants.  393 

 394 

Two external cohorts were also studied. We validated our classifiers in the COVID-19 Multi-395 

immunophenotyping projects for Effective Therapies (COMET) cohort of patients hospitalized for 396 

COVID-19 at UCSF and Zuckerberg San Francisco General (ZSFG) hospitals between 2020 and 397 

2023 (n=137, UCSF IRB Protocol #20-30497).39 In addition, we compared our findings against 398 

critically ill adults with sepsis due to causes other than COVID-19 who were enrolled in the Early 399 

Assessment of Renal and Lung Injury (EARLI) cohort between 2013 and 2018 at UCSF and 400 

Zuckerberg San Francisco General (ZSFG) hospitals in San Francisco, CA, USA (n=122, UCSF 401 

IRB Protocol #10-02852).78  402 

 403 

Standardization of SARS-CoV-2 viral load measurements 404 

Viral load was measured from nasal swab samples either using either SARS-CoV-2 RT-qPCR 405 

(CT) or RNA-seq (reads-per-million, rPM), which were highly correlated (P < 2e-16, Fig. S4). 406 

Because some subjects did not RT-qPCR performed, we imputed CT values from rPM using a 407 

regression model generated on subjects who had both samples available. Specifically, we fit a 408 

robust regression model using the lmrob function from the R package robustbase79 on the log-409 

transformed rpM values and CT data using the formula CT ~ ln(rpM+1) (Fig. S4). If subjects had 410 

both viral load measurement types available, the CT measurement was used.  411 

 412 

Host gene expression analysis 413 

RNA-seq and alignment against the host transcriptome was performed as previously 414 

described,76,77 and the deidentified, quality-controlled raw gene count files and metadata were 415 

obtained from the IMPACC study. We retained samples with at least 10,000 genes and retained 416 

protein-coding genes that had a minimum of 10 counts in at least 20% of the samples. Differential 417 
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expression analyses were performed comparing mortality and survival using the R package limma 418 

using quantile normalization and the voom method,80,81 and age and sex were included as 419 

covariates. The eBayes function with default parameters was employed to compute empirical 420 

Bayes statistics and calculate the P values, correcting for multiple testing with Benjamini-421 

Hochberg method. Adjusted P values <0.05 were considered significant.  422 

 423 

Gene set enrichment analysis (GSEA) was performed using the R package fgsea,82 applying 424 

REACTOME pathways with a minimum size of 5 genes and a maximum size of 500 genes.83 All 425 

genes from the limma differential expression analyses were included as input, pre-ranked in 426 

descending order using the equation -log10(adjusted P value) * sign(log2(fold change)). Pathways 427 

with adjusted p values <0.05 were considered significant. 428 

 429 

Identical differential expression and pathway analyses were performed on PBMC and nasal swab 430 

RNA-seq data from IMPACC. 431 

 432 

Comparison of COVID-19 and sepsis mortality 433 

We compared the biological pathways enriched in COVID-19 mortality to those enriched in sepsis 434 

mortality, leveraging whole blood RNA-seq data from patients with sepsis enrolled in the EARLI 435 

cohort.78 Differential expression and pathway analyses comparing survival and mortality in EARLI 436 

were performed in the exact same manner as with IMPACC. The top six up- and down-regulated 437 

pathways for COVID-19 and sepsis were selected for visualization.  If a pathway did not have 438 

GSEA results, the enrichment score was set to zero. 439 

 440 

Development of parsimonious mortality prediction classifiers 441 

PBMC and nasal swab mortality prediction classifiers were generated separately. For each, 442 

subjects were first randomly divided into a train set (70%) and test set (30%). Input features for 443 
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the classifier models included gene expression data, age, and SARS-CoV-2 viral load data. For 444 

the train set, we filtered for protein-coding genes with log2(fold change) >1 or <-1 and adjusted P 445 

value <0.05 based on the differential expression analysis described previously, in addition to 446 

employing standard filtering for protein-coding genes with at least 10 counts in at least 20% of the 447 

samples. This gene filter was subsequently applied to the test set. We performed variance-448 

stabilizing transformation on the train set using the R package DESeq2.84 These dispersion 449 

estimates were then applied to the test set. We standardized gene expression, age, and SARS-450 

CoV-2 viral load features in the train set using the caret R package85 and applied these 451 

standardization parameters to the test set.  452 

 453 

The train set was used to identify the optimal classifier, and the test set was used to evaluate 454 

performance of this classifier. First, the train set was divided into five folds for the feature selection 455 

step, maintaining a relatively even distribution of mortality across each fold. We methodically 456 

iterated through multiple candidate gene sets of varying classifier lengths (ranging from n=2 genes 457 

to n=10 genes for PBMC and n=2 genes to n=4 genes for nasal swab, as the latter had far fewer 458 

genes that passed filtering). Specifically, for each n, we employed the Least Absolute Shrinkage 459 

and Selection Operator (LASSO) model in the glmnet R package,86,87 performing five-fold cross 460 

validation by training the model on four of the five folds and testing on the remaining fold, 461 

ultimately yielding five gene lists for each n length. Age and SARS-CoV-2 viral load which were 462 

included as additional features in each of the classifiers.  463 

 464 

We next tested the performance of each candidate classifier (five classifiers for each gene length 465 

n) by using repeated random partitioning. Specifically, we performed 50 iterations of randomly 466 

splitting the data into three folds using the createFolds() function from the caret package85 and 467 

used logistic regression with the classifier features to obtain a distribution of 150 area under the 468 

curve (AUC) values for each feature set using the pROC R package.88 The AUC distribution was 469 
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plotted for each of the best performing classifiers of length n (i.e., those with the highest average 470 

AUC), as well as for classifiers only incorporating viral load, age, and viral load + age. From these, 471 

the classifier with the fewest genes where the average AUC plateaued was chosen as the final 472 

classifier.  473 

 474 

Finally, we evaluated the performance of these classifiers and a classifier consisting of OLAH 475 

expression, viral load, and age, on the held out test set. We fit a logistic regression model on the 476 

full train set and made predictions on the test set. We generated a ROC curve and calculated 477 

AUC and confidence intervals using the pROC package, as described above. We computed a 95% 478 

confidence interval for our AUC value using the ci.auc (method = “bootstrap”, boot.n = 5000, 479 

boot.stratified = TRUE) function.  480 

 481 

External validation of mortality classifiers 482 

We externally validated our peripheral blood COVID-19 mortality prediction classifiers in the 483 

COMET cohort, which included vaccinated patients. We included all COMET subjects that were 484 

not co-enrolled in IMPACC and had PBMC available on the day of study enrollment (n=137). Gene 485 

expression quality control, filtering, normalization, and transformation were done with identical 486 

methods as in IMPACC. Differential expression and GSEA were conducted similarly, controlling 487 

for an additional covariate of batch. We evaluated two classifiers with different model features: 488 

three classifier genes and age, and OLAH and age. SARS-CoV-2 viral load information was not 489 

available in COMET. We re-trained five logistic regression models using these input features in 490 

COMET by employing the same five-fold cross validation as described previously to generate 491 

ROC curves and AUC metrics. We then computed the AUC values on the out-of-fold predictions 492 

and bootstrapped as described previously.  493 

  494 
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Comparison to an existing mortality classifier 495 

We compared our peripheral blood OLAH classifier and three-gene classifier to a previously 496 

reported six-gene mortality classifier originally developed in patients with sepsis28. In the IMPACC 497 

train set, we trained a logistic regression model using the six genes (HK3, LY86, TGFBI, DEFA4, 498 

BATF, and HLA-DPB1), with and without the addition of age and SARS-CoV-2 viral load as input 499 

parameters. We evaluated our models in the test set and generated ROC curves, using the same 500 

methodology described above for three-gene signature and OLAH classifiers.  501 

 502 

Data and code availability 503 

Data used in this study is available at ImmPort Shared Data under the accession number 504 

SDY1760 and in the NLM’s Database of Genotypes and Phenotypes (dbGaP) under the 505 

accession number phs002686.v2.p2. All code is deposited in the following Bitbucket repository: 506 

https://bitbucket.org/kleinstein/impacc-public-code/src/master/mortality_prediction_manuscript/ . 507 
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Tables 928 

 929 
 

Survival 
(n=809) 

Mortality 
(n=85) p-value 

Age, median (IQR) 58.0 (20.0) 70.0 (16.0) <0.001 
Female sex, n (%) 311 (38%) 24 (28%) 0.064 
Race, n (%) 

  
0.124 

      White 387 (48%) 55 (65%) 
 

      Black/African American 188 (23%) 12 (14%) 
 

      Asian 33 (4%) 4 (5%) 
 

      Other/Declined/Unknown 201 (25%) 14 (16%) 
 

Ethnicity, n (%) 
  

0.013 
      Non-Hispanic 533 (66%) 56 (66%) 

 

      Hispanic 250 (31%) 21 (25%) 
 

      Unknown 26 (3%) 8 (9%) 
 

Comorbidities, n (%) 
   

      None 56 (7%) 3 (4%) <0.001 
      Hypertension 448 (55%) 62 (73%) 0.002 
      Diabetes 286 (35%) 41 (48%) 0.019 
      BMI > 30 449 (56%) 43 (50.6%) 0.949 
      Chronic lung disease 146 (18%) 35 (41%) <0.001 
      Asthma 126 (16%) 9 (11%) 0.222 
      Chronic cardiac disease 201 (25%) 36 (42%) <0.001 
      Chronic kidney disease 103 (13%) 23 (27%) <0.001 
      Chronic liver disease 42 (5%) 4 (5%) 0.847 
      Organ Transplantation 46 (6%) 4 (5%) 0.708 
      HIV/AIDS 9 (1%) 1 (1%) 0.957 
      Malignancy 68 (8%) 13 (15%) 0.035 
Maximal O2 requirement n (%) 

  
<0.001 

      Mechanical ventilated/ECMO 65 (8%) 29 (34%) 
 

      Non-invasive ventilation/HFNC 128 (16%) 29 (34%) 
 

      Supplemental O2 421 (52%) 20 (24%) 
 

      None 194 (24%) 7 (8%) 
 

      Missing data 1 (0%) 0 (0%) 
 

Steroid use, n (%) 535 (66%) 69 (81%) 0.005 
Remdesivir use, n (%) 510 (63%) 52 (61%) 0.735 
Median SARS-CoV-2 PCR CT value (IQR) 27.6 (8.1) 25.5 (6.7) 0.002 

 930 
Table 1: Demographics of COVID-19 patients studied from the IMPACC cohort. Demographics are stratified by 931 
survival status. Mann-Whitney test was used for all continuous variables, and Fisher’s exact test was used for all 932 
categorical values. IQR, interquartile range; BMI, body mass index; ECMO, extracorporeal membrane oxygenation; 933 
HFNC, high-flow nasal cannula; CT, cycle threshold. 934 
  935 
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Figures 936 

 937 

 938 

 939 

Figure 1. Overview schematic of study. This study evaluated 894 patients hospitalized with COVID-19 from the multi-940 
center IMPACC cohort. Peripheral blood and nasal swab samples collected within 48 hours of hospitalization were 941 
utilized to evaluate host transcriptional signatures of mortality, which were then compared to sepsis mortality signatures. 942 
Parsimonious mortality prediction classifiers of varying lengths were then developed in train cohort (70%) and 943 
performance characteristics were assessed in the held-out test cohort (30%). Classifiers were then validated in an 944 
external cohort with vaccinated patients, and performance was compared to other larger classifiers published in the 945 
literature. IMPACC, ImmunoPhenotyping Assessment in a COVID-19 Cohort; COMET, COVID-19 Multi-946 
Immunophenotyping Projects for Effective Therapies; QC, quality control; LASSO, least absolute shrinkage and 947 
selection operator; logFC = log gene expression fold change.  948 
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 949 

Figure 2: Early host gene expression signatures of mortality in the peripheral blood and upper airway.  950 
A. Volcano plot displaying the 4189 genes that were differentially expressed (DE) between survival and mortality in the 951 
peripheral blood of COVID-19 patients, using a Benjamini-Hochberg adjusted p value of 0.05. B. Gene set enrichment 952 
analysis (GSEA) demonstrating statistically significant pathways associated with mortality based on Benjamini-953 
Hochberg adjusted p-value in the peripheral blood (red = upregulated with mortality, blue = downregulated with 954 
mortality). C. Log-log plot demonstrating the 7 genes that were DE in both peripheral blood and nasal swab samples. 955 
log2FC = base 2 logarithm of fold change. D. GSEA demonstrating the differentially expressed mortality pathways in 956 
nasal samples (red = upregulated pathways, blue = downregulated pathways). 957 
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 958 

Figure 3: Comparison of mortality signatures between COVID and non-COVID sepsis. A. Microbiology of the non-959 
COVID sepsis cohort (n=122), stratified by sampling site and pathogen category. The total bar on the left shows the 960 
summation of the right sided bars, and the number of detections exceeds the number of patients as some patients had 961 
multiple pathogen classes detected. B. Gene set enrichment analysis (GSEA) of COVID-19 mortality (blue circles) 962 
overlaid that of sepsis mortality (green circles). Circles outlined in black are statistically significant based on Benjamini-963 
Hochberg adjusted P values (Padj).  C. Log-log plot of differentially expressed genes in COVID-19 and sepsis mortality, 964 
with genes statistically significant in both (based on Padj) highlighted in red. D. Venn-diagram highlighting the limited 965 
overlap (7.6%) between DE genes in COVID-19 and sepsis.  966 
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 967 

  968 

Figure 4. Parsimonious host-viral classifiers predict COVID-19 mortality. A. Violin plots showing the area under 969 
the curve (AUC) distribution for each of the peripheral blood candidate classifiers, evaluated in the training cohort. 970 
Violin plots showing the performance of SARS-CoV-2 cycle threshold (CT), age, and age + CT are displayed to the 971 
left. B. Boxplots comparing the log2 counts per million normalized gene expression of the three genes in the optimally 972 
performing classifier between survival (blue) and mortality (red) in the full cohort. C. Receiver operating characteristic 973 
(ROC) curves for the three-gene classifier, alone and with the addition of age + CT, as evaluated in the test set (AUC 974 
+/- 95% confidence interval). D. Boxplots comparing the log2 counts per million normalized gene expression for OLAH 975 
in blood (left) and nasal swab (right) between survival (blue) and mortality (red) for the full cohort. E. ROC curves for 976 
OLAH classifiers with the addition of age and CT value in the test set (AUC +/- 95% confidence interval). All P-values 977 
(Padj) shown were adjusted for multiple comparisons using the Benjamini-Hochberg method.  978 

979 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 19, 2025. ; https://doi.org/10.1101/2025.05.18.25327658doi: medRxiv preprint 

https://doi.org/10.1101/2025.05.18.25327658
http://creativecommons.org/licenses/by-nc-nd/4.0/


 980 
Figure 5. Validation of COVID-19 mortality signature and host-viral classifiers in an independent cohort 981 
including vaccinated patients. A Volcano plot demonstrating the 769 differentially expressed genes between 982 
mortality and survival in the validation cohort (red = upregulated with mortality, blue = downregulated with mortality), 983 
using a Benjamini-Hochberg adjusted p-value of 0.05. B.  Boxplots comparing the log2 counts per million normalized 984 
gene expression of the three-gene classifier genes (CD83, ATP1B2, DAAM2) and single-gene OLAH classifier 985 
between survival (blue) and mortality (red) in the external validation data set. C. Performance of three-gene classifier 986 
(purple) and single-gene classifier (green) with the added feature of age in the validation cohort. Area under the curve 987 
(AUC) listed as value +/- 95% confidence interval. D. Performance of three-gene classifier (orange) and single-gene 988 
classifier (teal) with the added feature of age in the validation cohort in vaccinated patients only. 989 
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