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Abstract

From cyanobacteria to human, sustained oscillations coordinate important biological func-

tions. Although much has been learned concerning the sophisticated molecular mecha-

nisms underlying biological oscillators, design principles linking structure and functional

behavior are not yet fully understood. Here we explore design principles of biological oscilla-

tors from a multiobjective optimization perspective, taking into account the trade-offs

between conflicting performance goals or demands. We develop a comprehensive tool for

automated design of oscillators, based on multicriteria global optimization that allows two

modes: (i) the automatic design (forward problem) and (ii) the inference of design principles

(reverse analysis problem). From the perspective of synthetic biology, the forward mode

allows the solution of design problems that mimic some of the desirable properties appear-

ing in natural oscillators. The reverse analysis mode facilitates a systematic exploration of

the design space based on Pareto optimality concepts. The method is illustrated with two

case studies: the automatic design of synthetic oscillators from a library of biological parts,

and the exploration of design principles in 3-gene oscillatory systems.

Introduction

Sustained oscillatory behavior can be generated by a simple negative feedback loop in combi-

nation with a time delay [1]. Biological oscillators, however, usually show a more complex

structure. Mammalian circadian rhythms, for example, include multiple (negative and posi-

tive) feedback and feedforward loops in their underlying transcriptional networks [2]. Other

significant oscillators like the sino-atrial node (mammalian heart’s natural pacemaker) and the

cell cycle oscillator rely on circuits containing both positive and negative feedback loops [3].

The reasons for this complexity are in many cases not fully understood, and many efforts are

devoted to identify design principles underlying the complex architectures selected through

evolution (either organism- or function-specific properties or design principles shared by dif-

ferent organisms and functions).

Quoting Goldbeter [4]: “In view of the large number of variables involved and of the complex-
ity of feedback processes that generate oscillations, mathematical models and numerical
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simulations are needed to fully grasp the molecular mechanisms and functions of biological
rhythms.” In fact, mathematical models and computational approaches have already helped to

build synthetic oscillators [5–8] (we will refer here to this design problem as forward analysis).

Similarly, they have been used to identify underlying design principles [3, 4, 9–18] (we will

refer here to this problem as reverse analysis).

By means of quantitative modeling, Tyson and Novak [14] demonstrated four general

requirements (structural and parametric) in biological oscillators: negative feedback, time

delay, sufficient ‘nonlinearity’ of the reaction kinetics and proper balancing of the timescales

of opposing chemical reactions.

In a computational study, Tsai et al [3] found that, in circuits with both negative and posi-

tive feedbacks, a higher positive feedback strength led to a better capacity to adapt the period

to cell demands. This property, referred to as period tunability, is found advantageous in a

wide range of biological oscillators including the cell cycle.

In this work, we propose a multiobjective optimization-based design approach to the analy-

sis of biological oscillators, suitable for both forward and reverse analysis.

Why optimization-based design? Optimization provides a systematic and efficient manner

to explore the potential selective pressure over a particular feature of a biological oscillator (by

considering the circuit realization as the outcome of an optimization-based design procedure).

In this way, it is possible for example to investigate what environmental conditions drive spe-

cific oscillatory network architectures [19, 20], or to find core oscillatory modules with specific

properties, for example minimal numbers of nonlinearities and components [15, 21]. In a

more broader context, optimization strategies are being successfully applied to gene regulatory

circuit design [22, 23].

Why a multiobjective approach? We assume that certain structural and parametric charac-

teristics of biological oscillators could be explained by the fact that they are subject to trade-

offs between conflicting goals or demands. Rand et al [24] explored the relationships between

various desirable properties of circadian rhythms, postulated as evolutionary aims, and sug-

gested a relation between complexity of the circuit and degree of flexibility (understood as the

number of desirable properties that can be tuned simultaneously). While some of the evolu-

tionary aims for circadian clocks are independent, other properties were found to be in a

trade-off, as it is the case for entrainability to synchronize with external stimuli and regularity

to oscillate with a precise period [1]. Multicriteria (Pareto) optimality concepts are being

increasingly used to analyze/design complex systems in different contexts [25–27], including

RNA design [28], bacterial adaptability [29, 30], metabolic networks [31–35], gene regulation

[23, 36] and biosystems engineering [37].

Following the analysis of Tsai et al [3] of a model of the cell cycle, in which the period tun-

ability (improved by increasing the positive feedback strength) was postulated as an evolution-

ary aim, we try to mimic the evolutionary process by an optimization procedure, in which the

tunability of the period is an objective to maximize. A single optimization problem (without

any further constraint) can lead to unrealistic values of the positive feedback strength. Intui-

tively, the stability of the oscillator appears as a biologically meaningful opposing objective to

take into account. In this work we find that period tunability and stability of the oscillation are

in a trade-off, and considering both as opposing objectives to maximize in a multiobjective

problem gives as a result realistic values of the feedback strength.

Our optimization-based design approach relies on Mixed-Integer Nonlinear Programming

(MINLP) methods, which provide computational efficiency to handle the required levels of

complexity [38, 39]. The approach is described in the Methods section, addressing in detail (i)

how to formulate the design of an (oscillatory) gene regulatory network as a multiobjective
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mixed-integer dynamic optimization problem, including potential objective functions to be

selected, and (ii) how to solve efficiently the multiobjective problem to obtain the Pareto front.

In the Results section, we apply our methodology for both forward and reverse analysis of

oscillators.

Within the above mentioned optimization-based framework, the forward analysis problem

(left branch in the workflow in Fig 1) consists of systematically finding circuits capable of sus-

tained oscillations (and also optimizing additional performance goals) among all the circuits

that can be obtained by combining components of a given database (or library) of biological

parts. Additional design criteria taking into account implementation issues can also be added.

Also within the optimization-based framework, the reverse analysis problem (right branch

in the workflow in Fig 1) consists of finding structural/parametric patterns which allow us to

infer design principles of biological oscillators. First we perform an optimization-based search

through the topology-parameter spaces, aiming to find circuits (topology and parameters)

leading to oscillations. Second, we proceed to extract innovative design principles through

analysis of the optimization results, similarly to what have been recently called innovization

procedures in engineering [40]. In other words, reverse analysis allows us to systematically

uncover design principles from sets of optimal trade-off (Pareto) solutions.

Methods

Multiobjective Mixed-Integer Design Framework

Optimization-based design aims to find the design (or designs) with the best overall perfor-

mance (in this case sustained oscillations) among the set of all possible circuits (search space).

In this work we focus on oscillations at the transcriptional-translational level, and our

approach is based on dynamic models of gene regulatory networks.

We employ a Mixed-Integer description of the gene regulatory network dynamics that is

not constrained to a particular kinetics or model granularity. On the contrary, the description

is generic and relies on the following assumptions:

1. A circuit in the search space is completely characterized by a vector of integer (and/or

binary) variables (accounting for the topology or configuration) and a vector of real vari-

ables (accounting for parameter values).

2. the dynamics of the gene regulatory network can be encoded in a system of Ordinary Dif-

ferential Equations (ODEs) of the form:

_zðtÞ ¼ f ðz; y; x; kÞ; zð0Þ ¼ z0 ð1Þ

where:

• z 2 RN is the vector of dynamic state variables coding for the levels of all the species involved

in the circuit (we will denote its time derivative by _z);

• x 2 RR is the vector of continuous decision variables containing the tunable parameters;

• y 2 ZM is the vector of integer (or binary) decision variables determining the circuit model

structure;

• k 2 RK is a vector of fixed parameters.

In what follows N refers to the number of states (levels of the species involved) of the

model, R is the number of tunable continuous parameters, M is the number of integer or

binary variables defining the circuit structure and K is the number of fixed parameters. A
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Fig 1. Workflow scheme of the Mixed-Integer multiobjective oscillator automated design process.

doi:10.1371/journal.pone.0166867.g001
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number of gene regulatory network examples (with different kinetics and levels of detail) are

included in the S1 Appendix.

Within this framework, a design goal can be encoded in an objective function of the form

Jð _z; z; x; y; kÞ such that the predefined behavior (design target) is achieved when J reaches its

minimal value. Multiple design criteria are defined through a vector of objective functions

J ¼ ðJ1; J2; . . . ; JSÞ.
We formulate the automated design of a gene regulatory network as finding a vector x 2

RR of continuous variables and a vector y 2 ZM of integer variables which minimize the vector

J ¼ ðJ1; J2; . . . ; JSÞ of objective functions:

min
x;y

J1ð _z; z; x; y; kÞ; J2ð _z; z; x; y; kÞ; . . . ; JSð _z; z; x; y; kÞ ð2aÞ

subject to:

1. the circuit dynamics in the form of ODEs or Differential Algebraic Equations (DAEs) with

the state variables z and additional parameters k:

xð _z; z; x; y; kÞ ¼ 0; zðt0Þ ¼ z0; ð2bÞ

2. additional requirements (performance specifications and/or physicochemical limitations)

in the form of equality and inequality constraints:

hðz; x; y; kÞ ¼ 0; ð2cÞ

gðz; x; y; kÞ � 0; ð2dÞ

3. upper and lower bounds for the real and integer decision variables:

xL � x � xU ; ð2eÞ

yL � y � yU : ð2fÞ

The solution of the Multiobjective Optimization (MOO) problem consists of a set of points

denoted as Pareto optimal [41, 42], and the set of all Pareto optimal solutions is known as

Pareto front. A feasible circuit defined by (x�, y�) is a Pareto optimal solution of the multiob-

jective optimization problem if it is not dominated by other feasible circuits. Given two pairs

(x�, y�), (x��, y��), we say that J(x�, y�) dominates J(x��, y��) if J(x�, y�)� J(x��, y��) for all Ji
(i ¼ 1; . . . ; S) with at least one strict inequality.

For those readers not familiar with multiobjective optimization note that the above is a vec-

tor optimization problem [41]. In a multiobjective optimization problem, the utopia (or ideal)

point is the one that optimizes all objective functions simultaneously as if they were considered

in isolation (see the S1 Appendix). The utopia point is unattainable if at least two objectives are

in contrast with each other, since optimizing one of the objectives will damage the others.

In terms of theoretical optimality all the solutions in the Pareto front are equivalent. In

engineering design, the so called decision maker needs to define posterior preferences and

evaluate them along the Pareto frontier in order to choose the best solution for implementa-

tion. In absence of posterior preferences, a common practice is to select the solution closest to

the utopia point (this compromise solution is usually called the knee point). In this work, we

Design Principles of Biological Oscillators through Optimization

PLOS ONE | DOI:10.1371/journal.pone.0166867 December 15, 2016 5 / 26



adopt this additional selection criterion, and in what follows, we refer to the circuit with mini-

mum distance to the utopia point as the circuit with best performance (in the context of multi-

objective optimization).

Design objectives for sustained oscillations in gene regulation

The single-objective optimization-based design of an oscillator requires to define an objective

function whose minimization results in the desired oscillatory response. We introduce an

objective function based on the autocorrelation of time series, which we prove to be well suited

and effective for the search of sustained oscillators.

For a multiobjective design approach, we consider the sustained oscillatory behavior as

requirement (constraint), and propose the tunability of the period and the stability of the limit

cycle stability as criteria to be optimized. After introducing the autocorrelation function, we

will provide mathematic definitions for both performance objectives and justify their selection

as design targets.

Autocorrelation Function. A number of objective functions for oscillatory behavior can

be found in the literature, based on fits to oscillatory dynamics or Fourier transforms [15].

Here we make use of the autocorrelation function.

Let st be a time series corresponding to a process which is ergodic and stationary. The auto-

correlation function of st is defined as:

GðtÞ ¼ hsðtÞsð0Þi ¼ lim
T!1

1

T

Z T

0

dtsðt þ tÞsðtÞ ð3Þ

We normalize this function to get Γnorm(t) = Γ(t)/Γ(0) such that the maximum value is

Γnorm(0) = 1.

For st being the output of a deterministic simulation with sustained oscillatory behavior, the

autocorrelation function Eq (3) oscillates in a sustained manner, and the first peak in the nor-

malized autocorrelation function, in what follows denoted by PnormΓ, takes its maximum value

1.

If st describes a realization of a stochastic oscillatory process, i.e., it corresponds to the num-

ber of molecules Zi(t) of a species i, the autocorrelation Γ(t) shows a damped oscillation, due to

the fact that stochastic fluctuations induce the phase diffusion of the oscillator and affect its

periodicity [10]. The height of the first peak of the autocorrelation gives a measure of the preci-

sion of the stochastic oscillator [43]. The precision of the oscillators is usually quantified

through the so-called quality factor, defined as Q = 2πγ/Twhere γ is the inverse of the damping

rate or characteristic time of the decay of the autocorrelation function [16] and T is the period

of the oscillation [10]. The quality factor Q is an estimation of the number of oscillations over

which the periodicity is maintained [44] (note that higher PnormΓ results in better Q). The qual-

ity factor is directly related also to the so called dissipation constant of the oscillator [45].

Therefore, we select −PnormΓ as the objective to minimize in searching for oscillatory cir-

cuits. By minimizing this function we maximize the oscillator’s precision in case of stochastic

time series and ensure a perfect (non damped) oscillation in case of deterministic dynamics

when the objective function reaches its minimum value (-1).

In addition to its efficacy in the search for oscillators, the objective function chosen has

additional advantages in terms of biological insight.

Taking s(t) = Zi(t) in Eq (3), the time average is equal (in stationary processes) to an average

over the stationary probability distribution for the initial molecular number Zi(0), and we can

establish a relation with the solution of the Chemical Master Equation (CME) as it has been

derived by [10].
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On the other hand, a relation between the dissipation constant of the oscillator (directly

computable from the envelope of the autocorrelation function) and the free energy dissipated

in one cycle of the oscillator has been found in a recent work by [45], leading to the conclusion

that cells consume energy to improve the precision of the oscillator (robustness against intrin-

sic molecular noise). This result supports our selection of the first peak of the autocorrelation

function as a biologically meaningful objective to optimize.

Tunability of the period. A wide range of biological oscillators, from the cell cycle to the

sino-atrial node oscillator, require to adjust their frequency to the organism’s demands with-

out compromising the amplitude of the oscillations. Starting from a model of the mitotic oscil-

lator, Tsai et al [3] found that the tunability of the period (understood as the variability of the

period without compromising the amplitude of the oscillations) increased with the positive

feedback strength, indicating that circuits containing positive feedback might have been

selected through evolution in cases where tunable frequency is desired. The period of the oscil-

lator was changed by varying the rate constant for cyclin B synthesis, ksynth (see Fig 2b).

Here, we define the period tunability PTun with respect to an input or manipulable variable

range θ as follows:

PTun ¼ TmaxðyÞ � TminðyÞ ð4Þ

Fig 2. Leading Floquet Exponent plotted versus (negative) of the Period Tunability for the model of the mitotic

oscillator. There is a trade-off between both properties for the model of the mitotic oscillator in [46] (r denotes here the

positive feedback strength).

doi:10.1371/journal.pone.0166867.g002
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where Tmax(θ) and Tmin(θ) are the maximum and minimum values of the period within the

manipulable variable interval. For convenience, we can normalize the function dividing by a

constant in order to obtain a maximum at PTun = 1. The maximum variation of the amplitude

allowed can be considered through an additional constraint.

Using the improved model for the mitotic oscillator in Xenopus by Tsai et al [46], we evalu-

ate, as in the original work by [3], the tunability of the period with respect to the cyclin B syn-

thesis rate constant ksynth. If we consider a single-criterion optimization process where the

unique objective is to maximize the period tunability, we obtain unrealistically high values of

the feedback strength. Therefore we introduce (at least) another (potential) evolutionary aim

exerting pressure in the opposing direction to obtain, as an outcome of an optimization pro-

cess, more realistic values of the feedback.

Stability of the limit cycle. In order to test a potentially conflicting design objective we

introduce here the stability of the limit cycle, evaluated through Floquet analysis. The stability

of the limit cycle is here understood as the robustness of the oscillator against perturbations of

the trajectory.

Let us consider the dynamics of an oscillator with period T to be described by Eq (1). The

Jacobian of the system, Dzf ¼
@f
@z, is a continuous T-periodic N × N matrix function. We define

a linear matrix first order initial value problem:

_F ¼ DzfF; Fð0Þ ¼ Id

where Id is the N × N identity matrix. The monodromy matrix of the system is computed as:

FðTÞ ¼
Z T

0

DzfFdt; Fð0Þ ¼ Id:

the eigenvalues of the monodromy matrix are the so-called Floquet multipliers:

Floqm ¼ eigðFðTÞÞ:

Floquet multipliers are dimensionless numbers that give the period-to-period increase/

decrease of a small perturbation away from the limit cycle. There is a multiplier equal to 1, cor-

responding to perturbations along the direction of the cycle, and the moduli of the remaining

multipliers determine the stability of the limit cycle. The Floquet exponents:

Floq ¼ ln
jFloqmj
T

;

have rate units time−1 and describe the mean contraction/expansion rate per one period of the

orbit.

If any Floquet multiplier has a modulus greater than one (equivalently a Floquet exponent

has a positive real part) the perturbation increases along the corresponding direction and the

limit cycle is unstable.

For stable limit cycles, the leading Floquet exponent (denoted in what follows as LFloq) is

an indication of how fast the system returns to its stable original periodic orbit after a pertur-

bation. This has been found to correlate with the robustness of the oscillator against molecular

noise, in the stochastic version of the model [47].

Using again the improved model for the mitotic oscillator in Xenopus by Tsai et al [46], we

evaluate the Floquet exponents, and we find that performance indices, LFloq and PTun, are in

a trade-off, as it can be deduced from the Pareto front in Fig 2. Importantly, the feedback

strength decreases as we move along the Pareto front (from lower to higher stability of the

limit cycle).
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Therefore, the selection of LFloq and PTun as objective functions is justified based on: i) the

two variables appear to be in a trade-off in the model of the mitotic cell cycle oscillator, ii) the

corresponding multiobjective problem leads to realistic values of the positive feedback strength

(similar to those found in nature).

A direct relation between the leading Floquet exponent and the envelop of the autocorrela-

tion function has been established by [48], showing that the leading Floquet exponent gives a

measure of the robustness of the oscillator with respect to molecular (intrinsic) noise. In this

way, by optimizing the leading Floquet exponent, we are using a deterministic measure (com-

puted from the deterministic ODE description of the oscillator) to optimize robustness against

molecular noise without the need of stochastic simulations.

Computing the Pareto front

Computing the Pareto optimal set is a challenging task in the context of biological circuits

where search spaces can be large and combine real and integer variables, and the expected

Pareto front might be discrete and/or non-convex, due to the high nonlinearity and the pres-

ence of integer variables.

Many methods have been developed to solve MOO problems. A typical classification [41] is

based on the role of the decision maker, and includes (i) no-preference methods, (ii) a posteri-

ori methods, (iii) a priori methods and (iv) interactive methods. We select the ε-constraint

method, which belongs to the category of a posteriori methods and it is based on scalarization

techniques, i.e. conversion of the original MOO problem to a set of single-objective optimiza-

tion problems (in our case MINLP problems). In contrast to goal attainment method (which is

an a priori method) the ε-constraint method does not require the pre-definition of reference

goals [41], a major advantage in biosystems engineering applications, where in general such

references are unknown.

The proposed optimization process is composed of the following steps, considering two

objective functions J1 and J2:

1. Search for the optima of each of the individual objectives:

ðx�
1
; y�

1
Þ; ðx�

2
; y�

2
Þ:

2. Compute the individual objective bounds as:

J1 ¼ J1ðx�1; y
�
1
Þ; J1 ¼ J1ðx�2; y

�
2
Þ;

J2 ¼ J2ðx�2; y
�
2
Þ; J2 ¼ J2ðx�1; y

�
1
Þ:

3. Select the objective function to be minimized, denoted in what follows as the primary objec-

tive (without loss of generality let us take J1 as the primary objective).

4. For the non-minimized objective J2, generate a vector

ε ¼ ½ε1; . . . ; εi; . . . ; εm�

such that ε1 � J2, εm � J2 and ε1 < ε2 < . . . < εm.

5. Solve the MINLP:

min
w;y

J1ð _z; z; x; y; kÞ
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subject to:

εk � J2ð _z; z; x; y; kÞ < εkþ1

for k ¼ 1; . . . ;m � 1 by means of a MINLP solver.

6. Evaluate the solutions obtained and construct the Pareto front with the non dominated

optimal ones.

The ε-constraint methodology described has two important advantages in the context of

gene regulatory oscillators: all Pareto optimal solutions can be found (even for discrete and

non-convex Pareto fronts) and, in addition, it allows to exploit the advantages of hybrid

MINLP solvers.

Hybrid MINLP solvers combine global optimization metaheuristics with efficient local

search methods, taking elements of both stochastic and deterministic optimization

approaches. In [37], hybrid solvers have been shown to outperform pure evolutionary methods

[49] in a number of Nonlinear Programming problems (real variables), since hybrid solvers

required less function evaluations. In a previous work, we proved the efficiency of hybrid

MINLP approaches for the design of gene regulatory networks [38]. Here we make use of

three MINLP hybrid solvers that combine stochastic global search with the local Mixed-Integer

Sequential Quadratic Programming (MISQP) by [50], namely the Enhanced Scatter Search

algorithm (eSS) by [51], the Mixed-Integer Tabu Search algorithm (MITS) by [52] and the

Mixed-Integer Ant Colony Optimization (ACOmi) by [53].

Results

Forward analysis: automated design of oscillators from a library of

biological parts

In the context of forward analysis the modeling framework needs to ensure modularity and

easy translation of the model into an implementable circuit. The use of standard parts allows

to transfer experimental data to mathematical models and facilitates the design of gene regula-

tory systems [22].

We follow the formalism from the Registry of Standard Biological Parts [54] and consider

the following basic constitutive components of genetic circuits: promoters recruiting the tran-

scriptional machinery which transcribes the downstream DNA sequence, ribosome binding
sites controlling the accuracy and efficiency with which the translation of mRNA begins, pro-
tein coding regions containing the sequence information needed to create a functional protein

chain and terminators signaling the end of transcription.

The abstraction hierarchy proposed by Endy [54] classifies standard parts in three different

layers: parts, defined as sequences with basic biological functions (like for example DNA bind-

ing proteins), devices (combinations of parts with a particular function) and systems (combina-

tions of devices). This is illustrated in Fig 3 through the Repressilator regulatory system [5],

where the different devices and parts are indicated.

We start from a library of biological parts, where each part in the library is endowed with a

set of reactions. The full set of reactions for a given circuit is obtained from the reactions of its

constitutive parts. Regarding the reactions associated with each part type, we adopt the formal-

ism proposed by Pedersen and Phillips [55], where, for a device where the promoter G is

repressed by a protein P, the following reactions are considered:

1. Binding of the repressor G þ P ! GP,

2. Unbinding of the repressor GP ! G þ P,
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3. Transcription GP ! GP þ mP,

4. Translation mP ! mP þ P,

5. Protein degradation P ! ;.

All the reactions are endowed with mass action kinetics, and the dynamics of the all the spe-

cies (including mRNA) are taken into account (see the S1 Appendix for details). It is important

to remark that within this formalism, the set of reactions associated to each part is easy to

extend in order to consider e.g. hybrid promoters, different degrees of cooperativity, promot-

ers controlling multiple transcription factors, etc). Here we extend the original set of reactions

to incorporate:

6. Degradation of bound repressor GP ! G.

To accommodate the dynamics into our Mixed-Integer description, let us denote by G the

number of promoters, B the number of ribosome binding sites, P the number of protein cod-

ing regions and A the number of terminators in the library of biological parts. The number of

possible device configurations (in what follows we refer specifically to protein generator

devices) is M = G × B × P × A. We label every possible device with an integer index i ¼
1; . . . ;M and build a vector y 2 ZM of binary variables such that:

( yi ¼ 1 ; if the device i is part of the circuit structure;

yi ¼ 0 ; otherwise:

The structure of a gene regulatory circuit is completely defined by the vector y.

Fixed kinetic parameters are collected in a vector k 2 RK , whereas manipulable parameters

are contained in the vector x 2 RR. Importantly, we can select any parameter to be tuned (for

example the strength of the RBS). In some design problems, it might be of interest to select an

external inducer as a decision variable. In this case, the external inducer will be part of the

“tunable parameters” in the problem formulation.

Fig 3. Repressilator regulatory system [5]. The system consists of three genes connected in a feedback loop. The first gene in the circuit expresses some

protein A which represses the second gene, the second gene expresses a protein B which represses the third gene, and protein C expressed by the third

gene closes the feedback loop by repressing the first gene.

doi:10.1371/journal.pone.0166867.g003
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The dynamics are given by Eq (1), with:

f ðz; y; x; kÞ ¼ NðyÞvðx; y; kÞ ð5Þ

where N(y) is the stoichiometric matrix and v(x, y, k) is the vector of rates of the reaction net-

work (depending nonlinearly on the species in accordance with the mass action law).

A database of biological parts, adapted from Pedersen and Phillips [55] has been coded in

Matlab. The Matlab library contains 4 promoters: G1 ¼ Pl, G2 ¼ Ptet , G3 ¼ Pbad, G4 ¼ Plac, 1

ribosome binding site, 1 terminator and 11 protein coding regions for the proteins cIR, tetR,

araC, lacI, luxI, luxR, lasR, lasI, ccdB, ccdA, ccdA2. This makes a total of 44 possible devices,

where each device contains a pair promoter-protein coding region, 1 ribosome binding site

and 1 terminator. Labeling each of this devices with a number from 1 to 44, the structure of a

circuit is completely defined by a vector y with 44 binary entries. Note that (without additional

constraints on the number of devices) circuits can contain from 1 to 44 different devices. The

nominal values of the kinetic parameters are taken from [55].

For a given pair (y, x), the model equations of the corresponding gene network are automat-

ically generated.

We can impose a maximum number of devices (Dmax) in the solution circuit(s) by setting:

XM

i¼1

yi � Dmax

First, we solve a single objective design problem aiming to find endogenous oscillators

among the combinations of devices in the library, minimizing −PnormΓ. The number of possi-

ble different devices (binary decision variables for the optimization based design) is n = 44 and

we set a maximum of three devices Dmax = 3. We use in first instance the original version of

the library (without degradation of bound repressor).

Stochastic regime. The constraints imposed by the dynamics are obtained here by simulation

with the stochastic Gillespie algorithm [56] (the kinetic constants are adjusted accordingly). In

this way, we are taking into account the effect of intrinsic noise [57], i.e. stochastic fluctuations

associated with intracellular reactions. In order to tackle extrinsic sources of noise (due to

unequal partition of cellular material at cell division), mathematical frameworks like Stochastic

Variable Number Monte Carlo by [58] should be used.

The best oscillator found consists of the three devices Plac-rbs-araC-ter, Pbad-rbs-cIR-ter, Pλ-
rbs-LacI-ter following the Repressilator configuration. The circuit is depicted in Fig 4, together

with the dynamics obtained by the Gillespie algorithm for a single realization and the autocor-

relation function for the cIR stochastic dynamics.

Deterministic regime. In the deterministic regime, no circuit was found leading to sustained

oscillatory behavior. We initially employ a multistart strategy (20 runs of 600 seconds from dif-

ferent random initial guesses) using eSS, MITS and ACOmi, and after increasing the number

of runs and computation times arrived to the same result.

We further use the extended library including the degradation of bound repressor. With

the same multistart strategy we found six different circuits, all of them endowed with the

Repressilator topology illustrated in Fig 3 where PA represses G2, PB represses G3, and PC

represses G1. We include the solutions in Fig 5.

The six circuits perform optimally with respect to the single objective (sustained oscilla-

tions). Additional criteria are needed in order to select the best circuit for further implementa-

tion. Next, we compute the values of the leading Floquet exponent LFloq (as indicated in Eq

(1)) and the Period tunability PTun (understood here as the variation of the period with

respect to the protein degradation constant) according to Eq (4). The values obtained are
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shown in Table 1. Only three of the circuits (corresponding to structures 1, 4 and 5 in Fig 5)

are found to be Pareto optimal with respect to these two design criteria.

We evaluate now the distance to the utopia point from each of these solutions, which is

found to be minimal for the circuit 4.

In Fig 6, the dynamics of circuit 4 for low and high values of the degradation constant are

depicted.

Importantly, note also that the circuit with highest leading Floquet exponent, i.e. circuit 5,

is the one which was previously found to be more robust with respect to molecular noise in the

stochastic framework (maximizing the first peak of the autocorrelation function).

In summary:

1. Six different structures leading to sustained oscillations where found in the deterministic

regime, taking into account the degradation of the bound repressor. All the oscillatory cir-

cuits found are endowed with a Repressilator-type structure (the original Repressilator is

included among the solutions, corresponding to circuit 3 in Fig 5).

2. No deterministic oscillators were found from combinations of parts in the library, without

taking into account the degradation of the bound repressor.

Fig 4. Stochastic realization and autocorrelation function for the best oscillator found by the algorithm from the library of biological parts (Dmax =

3).

doi:10.1371/journal.pone.0166867.g004
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3. In the stochastic regime, oscillators are found without taking into account the degradation

of the bound repressor. These results are coherent with [59], where oscillatory behavior is

precluded in absence of cooperativity and without degradation of the bound repressor for

the Repressilator, and it is shown that deterministic and stochastic methods might not

agree about the existence of oscillations.

4. Using as criterion the shortest distance to the utopia point, we selected the Repressilator-

type circuit with the best performance with respect to both stability of the limit cycle and

tunability of the period.

5. The oscillator with highest limit cycle’s stability (highest leading Floquet multiplier) in the

deterministic regime is found to be the most robust with respect to molecular noise in the

stochastic regime.

Fig 5. Deterministic oscillators found by the algorithm from the augmented library of biological parts (taking into account the degradation of the

bound repressor) with Dmax = 3. Circuit 3 corresponds to the original Repressilator system by Elowitz [5].

doi:10.1371/journal.pone.0166867.g005

Table 1. Values of the period tunability (normalized) and leading Floquet exponent for the circuits in Fig 5.

Circuit 1 Circuit 2 Circuit 3 Circuit 4 Circuit 5 Circuit 6

PTun 0.9758 0.9400 0.8147 0.9560 0.9428 0.8147

LFloq −0.0017 −0.0016 −0.0018 −0.0024 −0.0025 −0.0015

doi:10.1371/journal.pone.0166867.t001
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Reverse analysis: uncovering design principles of oscillatory gene

regulatory networks

In the context of reverse analysis we use a species-based representation, biologically-verified

and extensively employed in the study of developmental gene networks [60, 61], in which a cir-

cuit is defined by the signs and strengths of the interactions. Within this framework, a N-gene

regulatory network is described by a directed graph where the nodes are genes and the edges

indicate their interactions (one arrow from gene A to gene B indicates the transcriptional reg-

ulation of B by the transcription factor encoded by A). The regulation from gene Gi to gene Gj

is characterised by two numbers:

• an integer yij 2 {−1, 0, 1}, coding for inhibition (−1), no action (0), and activation (1);

• a strictly positive weight xij 2 R>0.

The gene-gene interaction indices and the weights are contained in two matrices Y 2 ZN�N

and X 2 RN�N
>0

respectively (where N is the number of genes in the network). The effective reg-

ulating input to a gene Gi is given by:

wi ¼
XN

j¼1

ojizj þ aiI ð6Þ

where ωji = yji xji, and the term αi I reflects the effect of external inputs (in case the gene Gi is

only affected by internal gene-gene interactions, the coefficient αi = 0). The transcription rate

is proportional to the sigmoidal-filtering of the total contribution, such that the balance for the

protein zi encoded by Gi reads:

_zi ¼
1

1þ expða � bðwiÞÞ
� dzi ð7Þ

Fig 6. Dynamics of circuit 4, for low (a) and high (b) values of the degradation constant kd. It can be observed that the frequency of the oscillator is

higher for the circuit with higher kd.

doi:10.1371/journal.pone.0166867.g006
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where parameters a and b control the steepness and location of the threshold value of the regu-

lation function, and δ is the protein degradation rate constant. The formalism complies with

the requirements A.1 and A.2 in Methods section with a vector x 2 RR
>0

containing the weights

(its elements are taken column-wise from X), and a vector of binary variables y 2 ZM deter-

mining the interactions (its elements are taken column-wise from Y). Note that R = M. Param-

eters a, b, δ and other fixed parameters are included in a vector k 2 RK .

In previous studies, Tyson and Novak [62] reported two different 3-gene motifs with capac-

ity for oscillatory behavior: the negative feedback loop motif, and the amplified negative feed-

back loop motif. Besides, Kim et al [63] found that coupled negative-negative feedback loops

enforce oscillatory behavior. Exploring the dynamics of basic signalling modules, Kholodenko

[64] reported 32 different positive-negative feedback designs with capacity for oscillations (for

some of them, a degree of cooperativity of the feedback regulations is required for oscillatory

behavior).

Here, we are interested in evaluating whether feedforward loops can produce, in combina-

tion with additional connections, sustained oscillations.

We consider the 3-gene network in Fig 7 with genes A, B and C, where the net internal

interaction matrix is given by:

O ¼

0 0 0

oAB oBB oCB

oAC oBC oCC

0

@

1

A

and the gene A is induced by an external input I. The ODE system describing the dynamics of

this network, according to Eqs (6) and (7) reads:

_A ¼
1

1þ expða � bðIÞÞ
� dA

_B ¼
1

1þ expða � bðoABAþ oBBBþ oCBCÞÞ
� dB

_C ¼
1

1þ expða � bðoACAþ oBCBþ oCCCÞÞ
� dC:

ð8Þ

A, B and C denote the levels of species A, B and C. The binary variables yAB, yAC and yCB deter-

mine what we denote as underlying feedforward configuration of the circuit, whereas yBB, yBC
and yCC define additional interactions of B and C self-activation (or deactivation) and mutual

inhibition-activation from B to C. The values of the input, parameters and initial conditions

are included in the S1 Appendix.

There are eight possible underlying feedforward structures (with active AB,AC and CB con-

nections), corresponding to the four coherent (C) and four incoherent (I) feedforward (FFL)

motifs [65]. In Fig 7 the structures for C4-FFL and I3-FFL motifs are depicted.

First, we formulate a single objective design problem minimizing J1 = −PnormΓ to find oscil-

latory circuits. There are six integer variables y1 = yAB, y2 = yBB, y3 = yCB, y4 = yAC, y5 = yBC y6 =

yCC describing the sign of the connections and six real variables x1 = xAB, x2 = xBB, x3 = xCB, x4

= xAC, x5 = xBC and x6 = xCC describing the strengths. We follow a multistart strategy similar to

the previous application, finding 35 different circuit structures leading to oscillations, depicted

in Fig 8.

We can classify the obtained oscillatory topologies in ten different groups, according to the

values of the integer variables y1 = yAB, y3 = yCB and y4 = yAC which define the feedforward

loop type. Ten different underlying topologies (denoted by US1 to US10 in Fig 8) are found.

Among them, we find three coherent feedforward motifs: C1-FFL, C2-FFL and C4-FFL
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(corresponding to US10, US2 and US7 in Fig 8), three incoherent feedforward motifs: I1-FFL,

I2-FFL and I3-FFL (corresponding to US9, US1 and US4 in Fig 8) and four degenerated struc-

tures (lacking one of the principal connections), corresponding to US3, US4, US6 and US8 in

Fig 8.

In order to look for recurrent additional-connection patterns among the circuits found we

use the diagram in Fig 9a, in which the connections are represented by colors.

It can be observed that no oscillatory circuit is found without any active additional connec-

tion (y2 = yBB, y5 = yBC, y6 = yCC) (feedforward loops alone have not the capacity to create oscil-

lations). Actually, two additional connections are necessarily active (negative or positive) in all

oscillators. Importantly, we find recurrent patterns in connections (y2 = yBB, y5 = yBC, y6 = yCC)

leading to oscillators. The three combinations depicted in Fig 9b (green) appear always in

oscillatory circuits with a negative value of y3 = yCB in its underlying FFL structure, while the

combinations in Fig 9b (yellow) appear always in oscillatory circuits with a positive value of y3

= yCB in its underlying FFL structure. According to these results, a negative feedback between

B and C genes is needed for an oscillation showing that activation-repression cores embedded

within feedforward loops produce oscillations. Most of the feedforward structures require also

of B self-activation (in case of negative y3 = yCB), or C self-activation (in case of positive y3 =

yCB), except for C4-FFL and I3-FFL where oscillations appear also without this additional

requirement.

Importantly, all the structures found include a regulated feedback motif as defined by [65],

since an activation-repression negative feedback between C and B (in which the activator is

amplified by self-activation or by the upstream transcription factor) is always present. Note

that this core feedback leads to symmetries between circuits with core topologies US1-US2,

US3-US5, US4-US7, US6-US8 and US9-US10.

Next we formulate a multiobjective problem setting as design objectives the leading Floquet

exponent LFloq (as indicated in Methods section) and the Period tunability PTun (understood

here as the variation of the period with respect to the input) according to Eq (4). Here, the con-

dition for oscillations is set as an additional inequality constraint where the first peak of the

autocorrelation function is greater than a predefined threshold PnormΓ> PnormΓthr.

Fig 7. Superstructure for the 3-gene feedforward motif with additional connections (adapted from [61]). Middle

and right structures correspond to the coherent feedforward motif C4-FFL and the incoherent feedforward motif I3-FFL.

doi:10.1371/journal.pone.0166867.g007
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Using the ε-constraint strategy described in Methods section, we obtain a set of non-domi-

nated points depicted in Fig 10, where it can be observed that only two different underlying

feedforward structures appear in the Pareto front: the coherent feedforward motif 4 (C4-FFL)

and the incoherent feedforward motif (I3-FFL). The first point in the Pareto Front (maximum

value of the period tunability) corresponds to a C4-FFL circuit. There is an intermediate point

(P2) with no effect of gene A on gene C. As the value of the tunability decreases, the topology

changes to I3-FFL. We observe that the strength of the yAC connection increases as we move

along the Pareto front.

In summary:

1. Ten different (proper or degenerate) feedforward structures (all of them with an embedded

enhanced negative feedback caused by an activation-repression core) are found leading to

oscillatory behavior. Importantly, all the oscillatory structures contain a regulated negative

Fig 8. 3-gene topologies (all of them correspond to regulated feedback motifs) leading to oscillatory behavior (structures s1 to s35), grouped in

terms of the corresponding underlying feedforward loop type. Underlying feedforward topologies (US1 to US10) are defined by the values of the integer

variables y1, y3 and y4. Red, blue and white entries represent positive (+1), negative (-1) and absence of regulation (0), respectively. All of them include a

regulated feedback motif, as defined by [65].

doi:10.1371/journal.pone.0166867.g008

Fig 9. 3-gene topologies leading to oscillatory behaviour. a) Schemes for the 3-gene topologies producing sustained oscillations. Red, blue and white

entries represent positive (+1), negative (-1) and absence of regulation (0), respectively. b) Recurrent sets of additional interactions are enclosed by yellow

and green rectangles.

doi:10.1371/journal.pone.0166867.g009
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feedback motif (as defined by [65] and no feedforward circuit alone (without additional

connections) is found to be capable of sustained oscillations.

2. Activation-repression cores embedded within feedforward loops produce sustained oscilla-

tions (we find that negative feedback between B and C genes is necessary for oscillatory

behavior). Most feedforward structures require also of B self-activation (in case of negative

y3 = yCB), or C self-activation (in case of positive y3 = yCB), except for C4-FFL and I3-FFL.

Recurrent additional-connection patterns are summarized in Fig 9.

3. A set of non-dominated circuits are found to show an optimal trade-off between period

tunability and stability of the limit cycle.

4. Activation-repression cores embedded within feedforward loops C4-FFL and I3-FFL pro-

duce optimal oscillators in terms of robustness and period tunability.

5. The oscillator topology evolves in a structured manner along the Pareto Front, changing

from (activation-repression) cores embedded within a C4-FFL loop to cores embedded

within a I3-FFL structure as tunability decreases and robustness (limit cycle stability)

increases.

Fig 10. Pareto Front of 3-gene motifs with underlying feed-forward structure showing a trade-off between period tunability and stability of the limit

cycle. The structure and parameters for each circuit indicated, together with the dynamics of the oscillator for the lower and upper values of the input I. Circuit

P1 exhibit a significantly greater period tunability (oscillations at lower and upper values of the input have very different periods) than the other circuits in the

Pareto Front.

doi:10.1371/journal.pone.0166867.g010
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Conclusions

We developed a global mixed-integer optimization approach for the analysis of biological

oscillators. This approach is valid for deterministic and stochastic description of the dynamics,

makes use of the autocorrelation function to detect sustained oscillatory behavior, and allows

the incorporation of multiple design criteria. We illustrated how this approach is useful for

both forward engineering and reverse analysis of biological oscillators.

We propose the first peak of the autocorrelation function as an objective to maximize in

stochastic oscillators, which allows for effective search of oscillators with optimal robustness

with respect to molecular (intrinsic) noise. Oscillator robustness with respect to parameters

has been analyzed in a recent paper by [66]. In the deterministic regime, we propose the lead-

ing Floquet multiplier as an objective to optimize, in order to find oscillators with optimal

attractivity of the limit cycle. We have also shown through an example that, in accordance with

relations previously established between autocorrelation and Floquet multipliers [48], optimiz-

ing the leading Floquet in the deterministic regime provides optimal robustness with respect

to intrinsic noise in the stochastic regime. A recent work by [45] shows a relation between the

phase diffusion constant of an stochastic oscillator and the free-energy dissipation per cycle,

indicating that cells may consume energy (ATP) in order to maintain the coherence of oscilla-

tions. This supports the selection of both objectives (first peak of the autocorrelation in sto-

chastic regime and Floquet in deterministic regime) as meaningful potential evolutionary aims

in the context of biological oscillators. The opposing objective chosen in this work (tunability

of the period), has been already postulated as an evolutionary aim by [3] for a wide range of

oscillators including the cell cycle. We found that tunability of the oscillator and stability of the

limit cycle are in trade-off for the mitotic cell cycle oscillator [3], in which the existence of

more than one design objective was needed to obtain, as the outcome of an optimization pro-

cedure, realistic values of the feedback strength.

Forward engineering of biological oscillators (automated design): single objective design

problems can have several (possibly infinite) solutions with similar performance, where no

extra information is obtained to select the best circuit for implementation. On the contrary,

introducing multiple opposing objectives lead to well-defined design problems, where the

solution is a Pareto front of non-dominated points, ordered by increasing/decreasing values of

each of the objective functions (this aspect has been illustrated in [38]). We propose the dis-

tance to the so-called utopia point as a criterion to select the best oscillator for

implementation.

Starting from a library of biological parts, we searched for circuits capable of endogenous

sustained oscillations. Without taking into account degradation of bound repressors, oscilla-

tors where found only in the stochastic regime. After extending the library to introduce degra-

dation of the bound repressor, we found circuits capable of sustained oscillations in both

stochastic and deterministic regimes. Using the extended library, we found six different struc-

tures (of the Repressilator type) leading to sustained oscillators. Taking into account as addi-

tional design criteria the period tunability and the stability of the limit cycle, the original

Repressilator is not recovered as an optimal one in the Pareto Front. This is not strange, as the

original Repressilator design is not based on optimization (in particular, it has not been

designed to optimize any of the criteria we are taking into account). By means of a multiobjec-

tive optimization formulation, we found other Repressilator-type structures performing better

than the original Repressilator in terms of period tunability and limit cycle stability.

The multiobjective approach can be useful to implement circuits with the ability to mimic

some of the desirable properties appearing in natural oscillators. For example, in the design of

synthetic circadian clocks [67], where the oscillator needs to satisfy at least: persistence under
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constant conditions (precise period), entrainability by light/dark signals and temperature com-

pensation of the period [68].

Reverse analysis of biological oscillators (exploring design principles): the existence of trade-

offs among opposing performance goals might be important to explain the circuit complexity

found in natural oscillators.

We searched for circuits (topology and parameters) giving rise to sustained oscillators in a

3-gene feedforward superstructure, leading to interesting observations. First, all the structures

found to oscillate include a regulated negative feedback consisting in an activation-repression

core embedded within the feedforward loop. Regulated feedbacks (a two node feedback is reg-

ulated by an upstream transcription factor) are, according to [65] a family of motifs or patterns

of interconnections occur in natural transcriptional networks at frequencies much higher than

those found in randomized networks. In particular, regulated feedbacks are found to be over-

represented in developmental transcription networks.

Performing a multiobjective (tunability vs stability) design we observed that activation-

repression cores embedded within feedforward loops C4-FFL and I3-FFL produce optimal

oscillators (fulfill the trade-off relationship between period tunability and stability of the limit

cycle). Moreover, the oscillator topology evolves in a structured manner along the Pareto

Front, changing from an activator-repressor core embedded into a C4-FFL to an activator-

repressor core embedded into a I3-FFL, as tunability decreases and limit cycle stability

increases.

We propose a multiobjective iterative procedure to systematically explore design principles

of biological oscillators: starting from a vector of design objectives, compute the set of non-

dominated solutions and infer a set of patterns or design principles from the Pareto front.

Then, compare the obtained patterns with the architectures found in natural oscillators. In

case of divergence, a new set of objective functions is considered, and the Pareto front of solu-

tions updated, in an iterative process. Any property of interest in the design of oscillators, and/

or postulated as a potential evolutionary aim can be encoded as an objective in the design

problem, including protein production cost, robustness against variability in the protein levels,

period entrainability with an external signal. For the case of stochastic oscillators, the mean

period and the precision have been also suggested as evolutionary aims [16]. The selection of

the design objectives depends on a priori advantageous properties for the case under study.

These advantageous properties can be radically different, for example, between the cell cycle

oscillators and a circadian clock [1, 69, 70].
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