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Identification of small molecules is a critical task in various areas of life science. Recent

advances in mass spectrometry have enabled the collection of tandem mass spectra of small

molecules from hundreds of thousands of environments. To identify which molecules are

present in a sample, one can search mass spectra collected from the sample against millions

of molecular structures in small molecule databases. The existing approaches are based on

chemistry domain knowledge, and they fail to explain many of the peaks in mass spectra of

small molecules. Here, we present molDiscovery, a mass spectral database search method

that improves both efficiency and accuracy of small molecule identification by learning a

probabilistic model to match small molecules with their mass spectra. A search of over 8

million spectra from the Global Natural Product Social molecular networking infrastructure

shows that molDiscovery correctly identify six times more unique small molecules than

previous methods.
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A crucial problem in various areas of life science is to
determine which known small molecules are present/
absent in a specific sample. For example, physicians are

devoted to discovering small molecule biomarkers in plasma/oral/
urinal/fecal/tissue samples from a patient for disease diagnosis1

and prognosis2. Epidemiologists are interested in identifying
small molecule disease risk factors from diet3 and environment4.
Ecologists are interested in characterizing the molecules produced
by microbes in various microbial communities5. Natural product
scientists need to identify all the known molecules in their sam-
ple, clearing the path towards the discovery of novel antimicrobial
or antitumor molecules6,7.

Recent advances in high-throughput mass spectrometry have
enabled collection of billions of mass spectra from hundreds of
thousands of host-oriented/environmental samples8–11. A mass
spectrum is the fingerprint of a small molecule, which can be
represented by a set of mass peaks (Fig. 1A, B). In order to identify
small molecules in a sample with tens of thousands of spectra, one
can either (i) de novo predict small molecule structure corre-
sponding to mass spectra, (ii) search these mass spectra against
tens of thousands of reference spectra in spectral libraries, or (iii)
search these mass spectra against millions of molecular structures
in small molecule databases. De novo prediction can potentially
identify both known and novel small molecules. However, it is
rarely used in practice due to the intrinsic complexity of small
molecule structure and the low signal-to-noise ratio of mass
spectral data. Spectral library search is recognized as the most
reliable mass spectral annotation method. Nevertheless, current
reference spectral libraries are limited to tens of thousands of
molecules, and the majority of known small molecules are not
represented in any reference spectral library. Furthermore, col-
lecting mass spectra of all known small molecules individually
would be expensive and time-consuming. The most frequently
used strategy for small molecule identification is in silico search of
small molecule structure databases. This approach enables small
molecule identification in known databases, such as PubChem12

and dictionary of natural products (DNP)13. Moreover, in silico
database search also applies to discovery of novel small molecules
through genome mining14.

The majority of in silico database search methods are rule-
based models that incorporate domain knowledge to score small
molecule-spectrum pairs. EPIC uses heuristic penalties for
matching fragment ions to score molecule-spectrum pairs15.
MAGMa+ further scores for both matched and missed peaks16.
MassFrontier is a commercial software that utilizes a large
number of fragmentation mechanism rules to predict fragmen-
tation spectra17. MetFrag is based on weighted peak count and
bond dissociation energy to compute matching scores18. MIDAS
takes account of fragment-peak matching errors19. MSFinder
introduces the hydrogen rearrangement rules for fragmentation
and scoring20. Unlike the other methods, QCEIMS uses quantum
chemical simulation to predict mass spectra21. However, due to
the limitation of the rules and heuristic parameters, these meth-
ods often fail to explain many of the peaks in mass spectra.

Recently, spectral libraries with tens of thousands of annotated
mass spectra of small molecules have emerged, paving the path
for developing machine learning based methods to improve
sensitivity and specificity of in silico database search. CFM-ID
applies stochastic Markov process to predict fragmentation
spectra22. CSI:FingerID predicts a molecular fingerprint based on
mass spectra and searches the fingerprint in a molecular
database23. ChemDistiller combines both molecular fingerprint
and fragmentation information to score the molecule spectrum
matches24. However, the existing methods do not perform well
for super small molecules (<400 Da), and are computationally
insufficient for heavy small molecules (>1000 Da).

In this work, we improve the efficiency and accuracy of small
molecule identification by (i) designing an efficient algorithm to
generate mass spectrometry fragmentations and (ii) developing a
probabilistic model to identify small molecules from their mass
spectra. Our results show that molDiscovery greatly increases the
accuracy of small molecule identification, while making the
search an order of magnitude more efficient. After searching 8
million tandem mass spectra from the Global Natural Product
Social molecular networking infrastructure (GNPS)10, molDis-
covery identified 3185 unique small molecules at 0% false dis-
covery rate (FDR), a six times increase compared to existing
methods. On a subset of the GNPS repository with known gen-
omes, molDiscovery correctly links 19 known and three putative
biosynthetic gene clusters to their molecular products.

Results
Outline of molDiscovery pipeline. The molDiscovery pipeline
starts by (i) constructing metabolite graphs and (ii) generating
fragmentation graphs. For the latter, molDiscovery uses a new
efficient algorithm for finding bridges and 2-cuts in the meta-
bolite graphs. Afterward, molDiscovery proceeds with (iii)
learning a probabilistic model for matching fragmentation graphs
and mass spectra (Fig. 1a–e), (iv) scoring small molecule-
spectrum pairs (Fig. 1f–k), and (v) computing FDR.

In the past we introduced Dereplicator+25, a database search
method for identification of small molecules from their
mass spectra, that follows a similar series of steps to search mass
spectra against chemical structures. However, Dereplicator+ uses
a brute-force method for fragmentation graph construction, and
naive shared-peak-count for scoring.

Datasets. The GNPS spectral library and MassBank of North
America (MoNA) were used as training and testing data. For the
GNPS spectral library, we selected molecule-spectrum pairs from
the NIH Natural Products Library in GNPS (Oct 18, 2020) with
unique spectrum (SPLASH values26,please see Supplementary
Fig. 1), unique molecule (first 14 characters of InChIKey) and
precursor m/z that could be explained within an absolute error
tolerance of 0.02 Da. If a molecule corresponded to multiple
spectra, a random spectrum was selected. This left us with 4437
and 3964 spectra in positive and negative mode, respectively.
With similar filtering steps as above and only keeping spectra
with at least five peaks from Vaniya/Fiehn Natural Products
Library obtained on Q-Exactive HF instruments (VF NPL
QEHF), 6528 singly-charged and 163 doubly-charged spectra in
positive mode were selected. We also selected 2382 singly-charged
NIST20 spectra from Q-TOF instruments using the same
filtering steps.

The Pacific Northwest National Laboratory (PNNL) lipid
library, included as part of GNPS, was used for lipid identification
benchmarking. We selected positive mode spectra with [M+H]+
adducts for which the provided lipid names in the PNNL lipid
library could be resolved by the LIPID MAPS Structure Database
(LMSD) text search tool. This left us with 15,917 spectra
corresponding to 316 unique compounds.

We also selected multiple small molecule databases for different
benchmarking tasks. DNP contained 77,057 non-redundant com-
pounds from the dictionary of natural products13. MoNA DB
contained 10,124 compounds from MoNA. AllDB contained 719,958
compounds from DNP, UNPD27, HMDB28, LMSD29, FooDB30,
NPAtlas31, KEGG32, DrugBank33, StreptomeDB34, the GNPS
spectral library molecules, MIBiG35, PhenolDB36, Quorumpeps37,
and in-house databases. The KNApSAcK38 database contained
49,584 compounds of plant origin. Bioactive-PubChem (~1.3 million
compounds) contained all the compounds from the PubChem
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database that are less than 2000Da and have at least one reported
bioactivity.

For mass spectra datasets, we selected 46 high-resolution
GNPS spectral datasets (about 8 million spectra in total) with
paired genomic/metagenomic data available39 for large-scale
spectral searching and secondary metabolites identification.
Moreover, we selected spectral datasets from various environ-
ment, including MSV000084092 (~57,000 spectra from human
serum), MSV000086427 (~209,000 spectra from 38 plant
species) and MSV000079450 (~400,000 spectra from Pseudo-
monas isolates).

Preferential fragmentation patterns in mass spectrometry.
MolDiscovery learned a probabilistic model (see “Methods”) that
reveals the preferences in mass spectrometry fragmentation. First,
mass spectrometry fragmentation has preference for bond type
bondType. Fig. 2a shows that the breakage of bondTypes NC and
OC leads to fragments with a higher rank (i.e., logRanks closer to
1) than CC bond, indicating that they are more likely to be
broken by mass spectrometry. In addition, bridges (NC, OC and
CC) tend to generate fragments with higher logRank than 2-cuts
(for example, NC_NC, NC_OC, CC_OC), suggesting bridges are
more likely to be fragmented than 2-cuts. Note that the logRank
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distribution of fragments due to the 2-cut CC_CC is similar to the
null model distribution, defined as the distribution of log rank of
peaks in the entire spectral dataset. This implies that in practice
the fragmentation of CC_CC 2-cut rarely happens.

In addition, parent fragments with high ranks are more likely
to produce high-rank children fragments, while fragments with
low ranks are similar to random noise. For example, for
fragments produced by the breakage of OC bond (Fig. 2b), if
their parents have high ranks (1, 2, or 3), they are likely to be
higher rank than those with lower-rank parents (6, 7). Moreover,
molDiscovery automatically learns to discard fragments with low
rank parents which are not informative for predicting mass
spectrometry fragmentations. The distribution of logRank for
these fragments is similar to noise (null distribution, Fig. 2c).
Therefore, the log-likelihood scores for such fragments are close
to zero.

Benchmarking the efficiency of fragmentation graph con-
struction algorithms. We compared the performance of the
fragmentation graph construction algorithms in molDiscovery
and Dereplicator+. For both algorithms, we allowed for at most
two bridges and one 2-cut. The algorithms were benchmarked on
DNP. Supplementary Fig. 4a shows the average fragmentation
graph construction time for small molecules in different mass
ranges. The results show that the average fragmentation graph
construction time for Dereplicator+ grows exponentially as the
mass of small molecules increase, while the construction time
only grows linearly for molDiscovery. When the mass is greater
than 600 Da, molDiscovery is two orders of magnitude faster than
Dereplicator+.

Supplementary Fig. 4b compared the maximum memory
consumption of molDiscovery with Dereplicator+. For both
chemical structure databases, Dereplicator+ only works for

Fig. 1 MolDiscovery framework. a–f These show the training procedures of molDiscovery, while g–k are the scoring procedures based on the pretrained
probabilistic model. a A reference molecule R in spectral library. b The reference spectrum of R. c The fragmentation graph of R. The root node represents
the whole molecule, while the other nodes are fragments of it. The edges are annotated with the type of bonds where the fragmentation occur. Here, a
fragment will be annotated with red, blue, green or purple if it corresponds to a mass peak in reference spectrum with logRank= 1, 2, 3, 4 respectively (see
the “Methods” section). d Annotation of the reference spectrum of R. A mass peak will be annotated with a fragment if its mass is identical to the mass of
the fragment plus charge, within a tolerance. e A table counting the number of fragments observed in training data with specific bondType and logRank,
referred to as count matrix. In this example, since the number of peaks is small, all the present peaks have logRanks 1 to 4, and the absent ones are shown
with the lowest possible logRank= 7. Note that we allow logRanks between 1 and 6, corresponding to peaks with ranks between 1 and 64. The null column
corresponds to the experimental peaks which cannot be explained by the fragmentation graph. f The probabilistic model P(logRank∣bondType), which
is computed by normalizing the count matrix. g A molecule Q in a chemical structure database. h A query spectrum. i The fragmentation graph of Q.
j Annotation of the query spectrum with the fragmentation graph of Q. k Computation of the query spectrum match score, which is the sum of scores of all
the fragments in the annotated fragmentation graph. Here we represent P(logRank= i∣bondType) by P(i∣bondType). For simplicity, logRankpa, 2-cuts columns,
and rows of logRank= 5, 6 are not shown.

Fig. 2 Heatmap of P(logRank∣bondType, logRankpa). Each row represents bond type bondType and parent’s intensity rank logRankpa of a fragment. The row
"null" refers to the null distribution P(logRank∣null). Each column represents the logRank of a child fragment. When logRankpa is 0, it means the parent is the
root (precursor molecule). a logRank distribution over different bondTypes for logRankpa= 3. b logRank distribution of OC bond over different logRankpa.
Since there is only one fragment in the fragmentation graph that could have logRank= 1, the parent fragment of such fragment can not generate another
fragment with logRank= 1, hence P(1∣NC, 1)= 0. c logRank distribution over different bondTypes for logRankpa= 7. Supplementary Figs. 2 and 3 show the
complete heatmaps for charge +1 and +2, respectively.
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molecules with masses less than 1000 Da, while molDiscovery can
handle molecules with masses up to 2000 Da.

Benchmarking in silico database search on spectral libraries.
MolDiscovery is compared with five other state-of-the-art
methods, including Dereplicator+, MAGMa+, CFM-ID, CSI:
FingerID and MetFrag on the GNPS spectral library and MoNA.
The database search results show that molDiscovery on average
can correctly identify 43.3% and 64.3% of small molecules in the
testing GNPS and MoNA data, respectively, as top-ranked
identifications (Fig. 3). MolDiscovery is the best performing
method in the MoNA dataset and slightly worse than CFM-ID
(43.8%) in the GNPS dataset. Note that CSI:FingerID’s perfor-
mance significantly drops when removing its training data
(Supplementary Fig. 5). Our results indicate that CSI:FingerID is
biased towards the structures that are very similar to its training
data, while molDiscovery’s performance does not depend on the
similarity between training and testing data (Supplementary
Fig. 6).

MolDiscovery is also the fastest and one of the most memory-
efficient methods for searching GNPS against DNP. CFM-ID is
slightly slower than molDiscovery in the searching stage. In the
preprocessing stage, molDiscovery is over 300 times faster than
CFM-ID (Table 1).

We also evaluated the running time based on the mass ranges
of the correct molecule matches (Fig. 4). We found that the highly
accurate methods, CFM-ID and CSI:FingerID, have overall
running times that scale poorly with molecular weight. For

spectra of molecules with masses >1000 Da we found that CSI:
FingerID and CFM-ID take on average 5 h, 13 min, 10 s and 1 h,
55 min, 34 s, respectively. Meanwhile, molDiscovery takes only 6
min and 24 s on average for the same mass range.

The effect of various bond types. We examined a subset of
NIST20 that contains S-C, O-P, and P-C bonds, and tested how
accuracy is affected by addition of all the combinations of these
bond types on top of our default C-C, N-C, and O-C bonds.
Although adding any of these bond types increases accuracy, the
largest top 1 accuracy difference is <1% compared to the default.
The impact of removing C-C, N-C, and O-C bonds on the
accuracy is also examined, and the results show that molDis-
covery accuracy significantly drops if any of these default bond
types are removed (Supplementary Fig. 7).

Handling isobaric molecules. Since isobaric molecules have
different structures, their fragmentations generated by mol-
Discovery could be different (Supplementary Fig. 8). We sear-
ched the compounds from the GNPS spectral library that
contain leucine or isoleucine, and created isobaric species in
silico by changing leucines to isoleucines and vice versa. Among
the three molecules, in two cases molDiscovery assigned a
larger score to the correct molecule, while in the remaining case
the scores assigned were nearly identical (Supplementary
Table 1).

Fig. 3 Top K= 1, 3, 5, and 10 accuracy for all tested methods. a Searching 194 spectra from the GNPS spectral library against 77,057 molecules from DNP
and b Searching 342 spectra from MoNA against 10,124 molecules from MoNA (spectra from molecules overlapping with CSI:FingerID training data are
removed). Ties in scores were evaluated by setting the rank of the candidate compounds with tied scores to the average of all of those ranks. See
Supplementary Note 1 for detailed parameter settings of these methods.

Table 1 Running time and peak memory usage of all methods in searching GNPS against DNP.

Method Searching time (d-h:m:s) Searching peak memory (GB) Preprocessing time (d-h:m:s) Preprocessing peak memory (GB)

molDiscovery 00:29:04 0.15 10:40:25 16.38
CFM-ID 00:59:37 0.012 157-08:28:08 3.839
Dereplicator+ 04:28:10 19.98 N/A N/A
MAGMa+ 2-20:34:37 0.51 N/A N/A
MetFrag 12-08:57:24 4.01 N/A N/A
CSI:FingerID 29-09:35:05 19.68 N/A N/A

Note that CFM-ID running time and memory usage does not include filtering database candidates by precursor m/z. All running times are only for the spectra for which the method completed
successfully (exit code 0). For CSI:FingerID 423 spectra either failed with a "feasibility" error or required more than 20 GB of memory, and are not included in values in this table. Note that given a small
molecule structure database, molDiscovery and CFM-ID only need to preprocess the database for once. For searching very large spectral datasets, they are usually more efficient than other methods.
N/A not applicable.
All reported running times are on a single CPU.
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Evaluating molDiscovery sensitivity to platform variation. In
order to determine if the probabilistic scoring method described
is robust to changes in mass spectrometry platform, a subset of
annotated spectra from MoNA dataset including 1639 HCD-
fragmented and 1639 CID-fragmented spectra were used for
evaluation. Two models were trained using the GNPS spectra
augmented with either the HCD or CID fragmented MoNA
dataset, and then tested on both fragmentation modes. Searches
were run against a combined chemical structure database con-
sisting of DNP, and the corresponding MoNA and GNPS
molecules. It was shown that using training data from different
dissociation techniques, e.g., CID and HCD did not affect per-
formance of molDiscovery (Supplementary Fig. 9).

Performance on doubly-charged and negatively-charged spec-
tra. Only 163 spectra from MoNA dataset are annotated as
doubly-charged. In light of the small amount of data we reserved
the MoNA dataset as our test dataset, and used high confidence
doubly-charged Dereplicator+ identifications of the GNPS Mas-
sIVE datasets as the training data (813 spectra and 180 unique
molecules at cuttoff score of 15). Since this training data is still
small, we bootstrapped doubly-charged parameters using the
singly-charged model we previously trained. The training process
updates the model parameters according to the doubly-charged
training data. Despite the small training dataset, molDiscovery
outperformed Dereplicator+ on search of 163 doubly-charged
spectra against non-redundant DNP and GNPS chemical data-
base augmented with MoNA molecules (Supplementary Fig. 10).
Moreover, we tested molDiscovery on 3964 negatively charged
spectra of the GNPS spectral library against the unique DNP
database. Notably, without retraining on negative spectra, mol-
Discovery reached 36% accuracy (Supplementary Fig. 11).

Performance on different compound classes and mass ranges.
To evaluate how well molDiscovery performs on different com-
pound classes, we used ClassyFire40 to annotate the non-redundant

GNPS spectral library. No single tool outperformed all the other
tools in all the compound classes (Supplementary Fig. 12a). Mol-
Discovery performs better than all the other tools in two out of
seven superclasses. Moreover, we compared the database search
accuracies of these tools on polar and non-polar metabolites.
MolDiscovery is the best performing tool for searching polar
metabolites across all the polarity measures, while for non-polar
metabolites there is no tool that is consistently better than others
(Supplementary Fig. 14).

Similarly, molDiscovery performs equally or better than the
competing methods in four out of six mass ranges (Supplemen-
tary Fig. 12b). It is worth noting that in low mass ranges
(<600 Da) the prediction accuracies of all the methods are lower
than their performance in high mass ranges (>600 Da), which is
probably due to the fact that large molecules tend to generate
more fragment ions.

Lipid identification. We evaluated the performance of molDis-
covery for lipid identification in searching spectra from the PNNL
lipid library against 39,126 unique compounds from LMSD. We
found that molDiscovery achieved a top 1 accuracy of 16.9%, a
top 3 accuracy of 37.4%, a top 5 accuracy of 47.6%, and a top 10
accuracy of 63.0%. Although many lipids are extremely similar to
one another (Supplementary Fig. 15), notably for 173 of the 316
unique compounds in the PNNL library, molDiscovery was able
to find at least one spectrum where the top-scoring match cor-
responded to the correct compound. This experiment was run
without any re-training of molDiscovery on lipid spectra.

Searching human and plant spectra. To demonstrate the ability
of molDiscovery to identify plant and human metabolites, we
benchmarked the tool on two recent GNPS datasets. Plant spectra
from 38 species (MSV000086427) was searched against AllDB
complemented with the KNApSAcK database, one of the largest
specialized databases of plant metabolites. Note that AllDB also
includes the UNPD comprising many compounds with plant

Fig. 4 Running time comparison of different methods for compounds in the GNPS subset within different mass ranges. Inputs that caused any method
to crash or exceed 20 GB of memory usage were excluded from this analysis. All reported running times and memory usages are without preprocessing
(molDiscovery, Dereplicator+ and CFM-ID could be run with or without preprocessing). In the boxplot, center lines are medians. Box limits are upper and
lower quartiles. Whiskers are 1.5× interquartile range. Points are outliers.
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origin27. Human serum spectra (MSV000084092) was searched
solely against AllDB as this database has already included all
compounds from the Human Metabolome Database (HMDB),
the largest metabolomics database for H. sapiens and the LMSD,
which contains biologically relevant lipids in human serum.

Since both datasets are not annotated, it is not possible to
validate molDiscovery identifications by comparing them to
ground truth. Instead, we compared the number of identifications
in KNApSAcK/UNPD (HMDB/LMSD) to the number of
identifications in the rest of AllDB for the plant (human serum)
dataset. Supplementary Fig. 16 shows the number of matches
from the expected database (KNApSAcK/UNPD for plant and
HMDB/LMSD for human serum data) versus the number of
matches among the rest of compounds in AllDB. The ratio of the
identifications in the expected databases is proportionally higher
than the ratio of size of the expected databases to the size of
AllDB. This bias grows with the increasing cutoff score. Note that
AllDB (719,958 compounds) is an order of magnitude larger than
KNApSAcK (49,584), HMDB (41,919), and LMSD (40,358), and
three times larger than UNPD (229,358). The bias towards
compounds in the searches of plant (human serum) data
indirectly demonstrates the correctness of molDiscovery results.
Moreover, many hits in AllDB may also represent true positive
matches since this combined database includes plant- and
human-related metabolites from databases other than KNAp-
SAcK, UNPD, HMDB, and LMSD.

Searching large-scale spectral datasets. We benchmarked the
performance of molDiscovery, Dereplicator+ and spectral library
search on 46 GNPS datasets containing a total of 8 million tan-
dem mass spectra (Supplementary Table 2). In contrast to the
GNPS spectral library where all the spectra are annotated and
their molecules are known, the spectra in the GNPS datasets are
not annotated, and they could correspond to either novel or
known molecules. These spectra are searched against NIST17 by

spectral library search and against AllDB by molDiscovery and
Dereplicator+.

We compared the annotation rate (Supplementary Table 2),
number of unique compounds (Fig. 5) and most annotated
compounds (Supplementary Table 3) between spectral library
search baseline and molDiscovery. Our results show that as
expected, molDiscovery can annotate more tandem mass spectra
than spectral library search. The top 10 compounds identified by
molDiscovery at different mass ranges are shown in Supplemen-
tary Table 4.

At the strict 0% FDR level, molDiscovery annotated eight times
more spectra (56,971 versus 7684, see Supplementary Fig. 17) and
identified six times more unique compounds (3185 versus 542,
see Fig. 5b) than Dereplicator+.

MolDiscovery search took 34 days on 10 threads, which is very
close to the projected 329 days on a single thread. CSI:FingerID,
CFM-ID, Metfrag and MAGMa+ are not benchmarked, as the
searches would have taken years (see projections in Supplemen-
tary Fig. 18). It is worth noting that when searching such large-
scale spectral datasets, methods that require preprocessing
(molDiscovery and CFM-ID) are much more efficient than
others, as they only need to preprocess the molecule database
once, which can be used for searching any future spectra
efficiently. The long running times of CSI:FingerID and MetFrag
are probably due to the inefficient combinatorial algorithms.

Scalability of molDiscovery to large molecular databases. To
demonstrate molDiscovery performance in high-throughput
analysis of general metabolites, we benchmarked its ability to
identify high-resolution MoNA spectra against a combination of
1.3 million bioactive-PubChem compounds and the ground truth
compounds of MoNA spectra.

The search against a database with more than a million
compounds is prohibitively time-consuming. The projected running
times for all considered approaches on the MoNA spectra are

Fig. 5 Number of unique discoveries by spectral library search and in silico database search. a spectral library search against NIST17 and b in silico
database search against AllDB.
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shown in Supplementary Table 5. Due to resource limitations, we
analyzed this dataset only with molDiscovery and MAGMa+, the
fastest and the most memory-efficient tools among the competitors.
We ran both tools on a server with 20 CPUs Intel Xeon 2.50 GHz.
The real execution times of molDiscovery and MAGMa+ were
38min and 1988min, respectively, which are in line with the single-
thread projections in Supplementary Table 5. Fig. 6 shows results
of molDiscovery and MAGMa+ for top 1 and top 3 ranked
identifications. Supplementary Fig. 19 shows the detailed results for
multiple ranks and various score thresholds. MolDiscovery
demonstrates better or the same accuracy as MAGMa+ while
achieving the results significantly faster.

Validating molDiscovery identifications using a literature
search. We benchmarked molDiscovery against Dereplicator+ on
top 100 identifications from GNPS datasets by performing lit-
erature search. For this task, we used the extensively studied
GNPS dataset MSV000079450 (~400,000 spectra from Pseudo-
monas isolates)41,42. Out of the top 100 small molecule-spectra
matches reported by molDiscovery, 78 correspond to compounds
having Pseudomonas origin based on taxonomies reported for
molecules in the AntiMarin database. The second largest genus
among the identifications (20 out of 100) is Bacillus. The
molecule–spectrum matches from Bacillus are likely to be true
positives as the dataset is known to be contaminated with Bacillus
species42. While the top 100 identifications from Dereplicator+
also contains 20 Bacillus matches, the number of hits related to
Pseudomonas species is 62, 25% lower than molDiscovery.
Eighteen identifications of Dereplicator+ are annotated as having
fungi origin, which are likely false positives.

MolDiscovery links secondary metabolites to their biosynthetic
gene clusters (BGCs). We cross-validated molDiscovery and
genome mining by searching 46 microbial datasets (922 unique
microbial strains, 8,013,433 spectra) that contained both tandem
mass spectrometry data and genomic data. MolDiscovery suc-
cessfully identified 19 molecules of various categories in microbial
isolates that contained their known BGCs (Table 2), including 5
nonpeptidic molecules and 9 molecules <600 Da.

Moreover, molDiscovery successfully discovered novel BGCs
for three small molecule families from Streptomyces dataset
MSV00008373843,44. MolDiscovery search results for this dataset
are available at https://github.com/mohimanilab/molDiscovery.
MolDiscovery identified dinghupeptins A–D45 in multiple
Streptomyces strains, including Streptomyces sp. NRRL B-5680,

S. varsoviensis NRRL B-3589, Ampullariella violaceochromogenes
NRRL B-16710 and S. californicus NRRL B-3320. AntiSMASH46

revealed a non-ribosomal peptide (NRP) BGC in the genome of
Streptomyces sp. NRRL B-5680, with seven adenylation domains
that are highly specific to the amino acid residues of dinghupeptin
molecules47 (Fig. 7a). After a BLAST search of this BGC against
the NCBI nucleotide collection database48 and the MIBiG
database, the maximum coverages are 37% and 20% respectively,
indicating this NRP BGC is not similar to any known BGC.

MolDiscovery detected lipopeptin A–C in multiple Strepto-
myces strains, including S. hygroscopicus NRRL B-1477, S. rimosus
NRRL WC3874, S. rimosus NRRL WC3904 and S. rimosus NRRL
B-2659. Moreover, neopeptin A-C are identified in S. hygro-
scopicus NRRL B-1477, S. rimosus NRRL WC387, Streptomyces
sp. NRRL S-1824 and Streptomyces sp. NRRL WC3549. Genome
mining revealed an NRP BGC in S. hygroscopicus NRRL B-1477
with seven adenylation domains, which are highly specific to the
residues of neopeptin and lipopeptin (Fig. 7b). It has been
reported that these two families are structurally similar49. Thus,
this BGC could be responsible for the production of both families.
BLAST results show the maximum coverages of this BGC by
known sequences are only 25% and 15% in the NCBI nucleotide
collection database and the MIBiG database.

In addition, molDiscovery identified longicatenamycin family
of cyclic hexapeptides in S. rimosus NRRL WC3558, S. rimosus
NRRL WC3925, S. rimosus NRRL B-8076, S. lavendulae NRRL B-
2775, S. rimosus NRRL B-2661, S. griseus subsp. rhodochrous
NRRL B-2931 and S. rimosus NRRL WC-3930. Genome mining
of the S. rimosus NRRL B-8076 strain revealed a BGC highly
specific to longicatenamycin (Fig. 7c). Dereplicator+ and CSI:
FingerID failed to discover longicatenamycin at 1% FDR
threshold. BLAST results show neither the NCBI nucleotide
collection database nor the MIBiG database have known genes
homologous to this BGC.

Discussion
With the advent of high-throughput mass spectrometry, large-scale
tandem mass spectral datasets from various environmental/clinical
sources have become available. One of the approaches for anno-
tating these datasets is in silico database search. Currently the
existing methods for in silico database search of tandem mass
spectra can not scale to searching molecules heavier than 1000 Da
and fail to explain many of the fragment peaks in tandem mass
spectra.

MolDiscovery introduces an efficient algorithm to construct
fragmentation graphs of small molecules, enabling processing
molecules up to 2000 Da and molecular databases with large
number of molecules. MolDiscovery is one of the most efficient
methods in terms of both searching running time and memory
consumption, which make it scalable to search of large-scale
spectral datasets.

Furthermore, by training on the reference spectra from the
GNPS spectral library, molDiscovery learned a probabilistic
model that outperforms the other methods in overall accuracies,
various mass ranges and compound classes. While molDiscovery
is the best performing method in high mass range (>600 Da),
similar to other database search methods, it has lower accuracy
for molecules in low mass ranges (<600 Da). This is partially
because fewer fragments are generated for molecules in this
range. This makes it crucial to increase the accuracy of frag-
mentation models of small molecules.

Mass spectrometry fragmentation is influenced by experi-
mental factors such as instrument type, dissociation technique,
ionization mode, collision energy, etc. Currently, the default
version of molDiscovery is trained on a combination of CID and

Fig. 6 Accuracy of high-throughput identification of the MoNA mass
spectra against bioactive-PubChem. X-axis represents the number of
identifications. Y-axis shows the percentage of correct identifications
among the top identifications.
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HCD spectra. While molDiscovery also includes pretrained
models consisting of CID only and HCD only spectra, our results
show that these models do not outperform the default model on
CID or HCD datasets. Moreover, while the default parameters are
trained on positive mode spectra, molDiscovery still performs
well on negatively charged spectra. Since molDiscovery supports
training by custom spectral datasets, users can adapt the default
model to their experimental settings by training on in-house data.

Small molecule fragmentation is a complex process that
depends not only on the type of fragmented bonds but also on
local/global features of small molecules such as moiety. Currently,
molDiscovery ignores these features and only covers a limited
number of bond types and rearrangement rules, e.g., molDis-
covery naively treats benzene ring or large resonant structures as
alternate single bonds and double bonds. This could be improved
by incorporating more complex fragmentation and rearrange-
ment rules. Recent advances in graph-based machine learning
have enabled representing complex small molecule structures
with continuous vectors, making it feasible to incorporate local/
global structural information into the prediction of fragmenta-
tion, potentially leading to more accurate fragmentation models.
MolDiscovery paves the way for these more sophisticated
approaches by collecting larger training data of small molecule-
spectrum matches through the search of millions of spectra.

MolDiscovery computes the scores between molecules and
mass spectra based on the log-likelihood ratio of a probabilistic
model. The higher the score is, the more likely the spectrum is
generated by the molecule than by random chance. In addition,
molDiscovery estimates FDR using the target-decoy approach.
While a Markov Chain Monte Carlo algorithm for computing p-
value of molecule-spectrum matches in the case of peptidic
molecules has been developed, extending this approach to general
molecules is challenging as it involves generation of random
molecular structures.

Methods
Constructing fragmentation graphs of small molecules. MolDiscovery first
constructs a metabolite graph for a small molecule structure and then generates
a fragmentation graph from the metabolite graph (Fig. 8). To simplify the
modeling of small molecule fragmentation, we assume that mass spectrometry
can only break N-C, O-C, and C-C bonds. This is a reasonable assumption, as
among top nine most frequent bonds in AntiMarin, these three bonds are the
only single bonds that do not contain a hydrogen atom (Supplementary Table 9).
Currently, we naively regard benzene ring and large resonant structures as
alternate carbon-carbon single bonds (C-C) and double bonds (C=C). As
molDiscovery can only cut at C-C, C-N, and C-O bonds, it will only cut single C-
C bonds in benzene rings. The rearrangement rules associated with the bond
fragmentation are listed in Supplementary Table 10.

To construct a metabolite graph, molDiscovery first disconnects N-C, O-C, and
C-C bonds. The resulting connected components form the nodes of the metabolite
graph. Edges in the metabolite graph correspond to bonds between the connected
components (Fig. 8a, b).

The fragmentation graph of a molecule is a directed acyclic graph with a single
source (the metabolite graph) where nodes are fragments of the molecule and
directed edges between the nodes represent bridge or 2-cut fragmentations. To
construct a fragmentation graph, molDiscovery first searches for all the bridges and
2-cuts of the metabolite graph to obtain depth one fragments of the molecule using
Hopcroft and Tarjan’s algorithm for graph manipulation50. Each fragment of the
molecule can be represented by a fixed length binary vector that indicates the
presence or absence of metabolite graph nodes in the fragment (Fig. 8d). We
observe that depth two fragments can be formed by a bitwise AND operation
between their parent fragments and depth one fragments (Fig. 8e). This generalizes
to computing fragments at depth n > 1 by intersecting their parents (fragments at
depth n− 1) with fragments at depth one. The final fragmentation graph is
constructed by connecting the source node to all depth one fragment nodes, and
then iteratively connecting depth n− 1 fragment nodes to the corresponding
fragments at depth n (Supplementary Note 2).

Learning a probabilistic model to match mass spectra and small molecules.
Dereplicator+ uses a naïve scoring scheme which ignores that (i) fragmentation
probability of different bonds are different, (ii) bridges have a higher chance of
fragmentation than 2-cuts, (iii) peaks with higher intensity have higher chances ofT
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corresponding to a fragmentation than lower intensity peaks, (iv) matches are
biased towards molecules with large fragmentation graph size, and (v) matches are
biased towards spectra with a large number of peaks.

In order to solve the above shortcomings we develop a probabilistic model for
matching spectra with small molecules. Given a molecule-spectrum pair in the
training data (Fig. 1a, b), we first construct the fragmentation graph of the molecule
using our fragmentation graph construction algorithm (Fig. 1c). Each fragment in
the fragmentation graph is assigned a (bondType, logRank) label. bondType
represents the bond(s) disconnected in the parent fragment to produce the current
fragment. It can either be one bond (bridge) or two bonds (2-cut). Bridges can be
OC, NC, CC, while 2-cuts can be their pairwise combinations.

logRank represents the intensity of the mass peak corresponding to the
fragment (Fig. 1c, d). The mass spectrometry community has used intensity rank as
an abundance measure of mass peaks in a spectrum51,52. The higher the intensity
rank is (closer to rank 1), the more abundant is the corresponding fragment. To
reduce the number of parameters and avoid overfitting, we group peaks according
to their logRank instead of directly using intensity rank (Supplementary Note 3). A
fragment will be annotated with a logRank between 1 and 6 if there is a peak with
rank between 1 and 64 in the spectrum within 0.01 Da of the mass of the fragment
(Fig. 1cd). If there is no such mass peak, the fragment will be annotated with
logRank= 7.

In the annotated fragmentation graph (Fig. 1c) we assume that (i) the logRank
of each fragment depends only on its bondType and the logRank of its parent. Here,
we only consider direct parent, as considering grandparents of the fragments
increases the number of parameters by an order of magnitude, resulting in
overfitting. We further assume (ii) logRank of each mass peak is independent from
the logRank of other peaks. While this assumption is sometimes wrong, e.g., only
one peak can have logRank 1, we use this assumption to simplify our probabilistic
model. Finally, we assume (iii) the root node has logRank 0. Given a small molecule
structure Molecule and its fragmentation graph FG, the probability of generating a
spectrum Spectrum is as follows:

PðSpectrumjMoleculeÞ ¼
Y

peak2Spectrum
PðpeakjFGÞ ð1Þ

¼
Y

peak2SpectrumFG

PðpeakjFGÞ
Y

peak2Spectrumnull

PðpeakjFGÞ ð2Þ

where SpectrumFG represents all the peaks within 0.01 Da of some fragment in FG,
and Spectrumnull represents the rest of the peaks. If multiple fragments match the
same peak, we randomly pick one with lowest depth. Since we use logRank as a
measure of abundance and by definition all peaks in SpectrumFG correspond to a
fragment in FG, we can rewrite the equation as follows:

PðSpectrumjMoleculeÞ ¼
Y

frag2FG
PðlogRankfrag jFGÞ

Y

peak2Spectrumnull

PðpeakjFGÞ ð3Þ

where frag is a fragment in the fragmentation graph. Then, by assumption (i):

PðSpectrumjMoleculeÞ
¼

Y

frag2FG
PðlogRankfrag jbondTypefrag ; logRankpaðfragÞÞ

Y

peak2Spectrumnull

PðpeakjFGÞ

ð4Þ
where pa(frag) is the parent of frag. Similarly, we can obtain the probability of
generating a random spectrum (null model):

PðSpectrumjnullÞ ¼
Y

peak2Spectrum
PðpeakjnullÞ ð5Þ

In order to learn P(logRankfrag∣bondType, logRankpa(frag)), we can directly count
the number of the fragments with a particular logRank for each (bondType= b,
logRankpa= p) combination in the training data as follows:

PðlogRank ¼ ljbondType ¼ b; logRankpa ¼ pÞ
¼ ∑i jffrag2FGi jlogRankfrag¼l;bondTypefrag¼b;logRankpaðfragÞ¼pgj

∑i jffrag2FGi jbondTypefrag¼b;logRankpaðfragÞ¼pgj
ð6Þ

where FGi is the fragmentation graph of the ith molecule-spectrum pair in the
training data. Similarly, for the null model, we can compute the logRank
distribution of all the mass peaks as follows:

PðlogRank ¼ ljnullÞ ¼ ∑ijfpeak 2 SpectrumijlogRankpeak ¼ lgj
∑ijfpeak 2 Spectrumigj

ð7Þ

where Spectrumi is the spectrum of the ith molecule-spectrum pair.

Scoring a spectrum against a small molecule. Given a query tandem mass
spectrum (Fig. 1h) and a small molecule in a chemical structure database (Fig. 1g),

Fig. 7 Putative BGCs of three secondary metabolite families identified by molDiscovery. a dinghupeptin family in Streptomyces sp. NRRL B-5680,
b lipopeptin and neopeptin family in S. hygroscopicus NRRL B-1477 and c longicatenamycin family in S. rimosus NRRL B-8076. MolDiscovery identified four
dinghupeptin variants, two lipopeptin variants, neopeptin variants and two longicatenamycin variants at FDR 0%. After searching the corresponding
genomes using antiSMASH, we detected NRP BGC with adenylation domains which show high specificity to the amino acids residues of these families. We
also used DFAST (Supplementary Table 6–8) and HMMsearch to annotate the genes in the gene cluster. The post-modifications and the corresponding
putative tailoring enzymes are color coded. In the putative BGC of longicatenamycin family, it is known that hydroxylation (red) can be induced by the
Taurine catabolism dioxygenase57, and flavin reductase can involve in FAD-dependent hydroxylation58. 2-isopropylmalate synthase (blue) can function on
the isopropyl group and elongate the chain (EC 2.3.3.13).
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if the spectrum precursor mass is within 0.02 Da of the mass of the small molecule
and the user-specified adduct, they will become a candidate pair for scoring. We
then construct the fragmentation graph of the molecule and annotate the query
spectrum against the fragmentation graph (Fig. 1i, j). Based on the described
probabilistic model, we use a log-likelihood ratio model (Fig. 1k) to score the
spectrum against the small molecule:

log
PðSpectrumjMoleculeÞ
PðSpectrumjnullÞ

¼ log
Y

peak2SpectrumFG

PðpeakjFGÞ
PðpeakjnullÞ

Y

peak2Spectrumnull

PðpeakjFGÞ
PðpeakjnullÞ

ð8Þ

¼ log
Y

frag2FG

PðlogRankfrag jFGÞ
PðlogRankfrag jnullÞ ð9Þ

¼ log
Y

frag2FG

PðlogRankfrag jbondTypefrag ; logRankpaðfragÞÞ
PðlogRankfrag jnullÞ ð10Þ

¼ ∑
frag2FG

log
PðlogRankfrag jbondTypefrag ; logRankpaðfragÞÞ

PðlogRankfrag jnullÞ
ð11Þ

Note that in (9), we only need to consider the mass peaks corresponding to
fragments in the fragmentation graph since we assume all the other peaks are
generated by random chance, hence PðpeakjFGÞ

PðpeakjnullÞ ¼ 1.

Computing FDR. We use target-decoy analysis to estimate FDR53. First, we ran-
domly shuffle the fragmentation graph of target molecules to create decoy frag-
mentation graphs. Then, tandem mass spectra are searched against the target and
the decoy fragmentation graph databases respectively. At each score cutoff, there
are Ntarget matches to the target database and Ndecoy matches to the decoy database,
and the FDR is estimated as

FDR ¼ Ndecoy

Ntarget

Supplementary Fig. 20 shows an example of Ntarget and Ndecoy calculation at
different score thresholds for a search of a Streptomyces dataset.

Data availability
All the data supporting the findings of this study are available within the Article and
Supplementary Information, or are deposited in Zenodo54.

Code availability
The command-line version of molDiscovery is available at https://github.com/
mohimanilab/molDiscovery. The online web service through the GNPS infrastructure are
available at https://gnps.ucsd.edu/ProteoSAFe/index.jsp?params=%7B%22workflow%22:
%22MOLDISCOVERY%22%7D. Please also see Supplementary Note 4 for instructions
of running molDiscovery on GNPS.
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