## MK-801 attenuates lesion expansion following acute brain injury in rats: a meta-analysis

Nan-Xing Yi<sup>1, 2, 3, #</sup>, Long-Yun Zhou<sup>2, 3, 4, #</sup>, Xiao-Yun Wang<sup>1</sup>, Yong-Jia Song<sup>1, 2, 3</sup>, Hai-Hui Han<sup>2, 5</sup>, Tian-Song Zhang<sup>6</sup>, Yong-Jun Wang<sup>2, 3</sup>, Qi Shi<sup>1, 2, 3, 5</sup>, Hao Xu<sup>1, 2, 3, \*</sup>, Qian-Qian Liang<sup>1, 2, 3, \*</sup>, Ting Zhang<sup>1, 2, \*</sup> 1 Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China

2 Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China

3 Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China

4 School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China

5 Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China

6 Jing'an District Center Hospital, Fudan University, Shanghai, China

Funding: This work was supported by the National Natural Science Foundation of China, No. 81822050 (to QQL), 81873321 (to HX), 81673990 (to QQL), 81330085 (to QS), 81730107 (to YJW); the Shanghai Municipal Health and Family Planning Commission TCM Research Project of China, No. 2018JP014 (to HX); the Three-Year Action Plan to Promote Clinical Skills and Clinical Innovation in Municipal Hospitals of China, No. 16CR1017A (to YJW); the Shanghai Traditional Chinese Medicine Chronic Disease [Malignant Tumor, Bone Degenerative Disease] Clinical Medical Center of China, No. 2017ZZ01010 (to YJW); the National Ministry of Education Innovation Team of China, No. IRT1270 (to YJW); the Innovation Team of Key Fields of the Ministry of Science and Technology of China, No. 2015RA4002 (to YJW); the Outstanding Principle Investigator Project of Guanghua Hospital, Changning District, Shanghai, China, No. 2016-01 (to QS), 2016-06 (to YJW).

#### Abstract

OBJECTIVE: To evaluate the efficacy and safety of MK-801 and its effect on lesion volume in rat models of acute brain injury.

DATA SOURCES: Key terms were "stroke", "brain diseases", "brain injuries", "brain hemorrhage, traumatic", "acute brain injury", "dizocilpine maleate", "dizocilpine", "MK-801", "MK801", "rat", "rats", "rattus" and "murine". PubMed, Cochrane library, EMBASE, the China National Knowledge Infrastructure, WanFang database, the VIP Journal Integration Platform (VJIP) and SinoMed databases were searched from their inception dates to March 2018.

DATA SELECTION: Studies were selected if they reported the effects of MK-801 in experimental acute brain injury. Two investigators independently conducted literature screening, data extraction, and methodological quality assessments.

OUTCOME MEASURES: The primary outcomes included lesion volume and brain edema. The secondary outcomes included behavioral assessments with the Bederson neurological grading system and the water maze test 24 hours after brain injury.

RESULTS: A total of 52 studies with 2530 samples were included in the systematic review. Seventeen of these studies had a high methodological quality. Overall, the lesion volume (34 studies, n = 966, MD =-58.31, 95% CI: -66.55 to -50.07; P < 0.00001) and degree of cerebral edema (5 studies, n = 75, MD =-1.21, 95% CI: -1.50 to -0.91; P < 0.00001) were significantly decreased in the MK-801 group compared with the control group. MK-801 improved spatial cognition assessed with the water maze test (2 studies, n = 60, MD = -10.88, 95% CI: -20.75 to -1.00; P = 0.03) and neurological function 24 hours after brain injury (11 studies, *n* = 335, *MD* = −1.04, 95% *CI*: −1.47 to −0.60; *P* < 0.00001). Subgroup analysis suggested an association of reduction in lesion volume with various injury models (34 studies, n = 966, MD =-58.31, 95% CI: -66.55 to -50.07; P = 0.004). Further network analysis showed that 0-1 mg/kg MK-801 may be the optimal dose for treatment in the middle cerebral artery occlusion animal model.

CONCLUSION: MK-801 effectively reduces brain lesion volume and the degree of cerebral edema in rat models of experimental acute brain injury, providing a good neuroprotective effect. Additionally, MK-801 has a good safety profile, and its mechanism of action is well known. Thus, MK-801 may be suitable for future clinical trials and applications.

Key Words: nerve regeneration; acute brain injury; neurological function; spatial cognition; water maze test; lesion volume; brain edema; rat; systematic review; meta-analysis; neural regeneration

#### Chinese Library Classification No. R453; R364

#### Introduction

Acute brain injury (ABI) primarily attributed to vascular and traumatic events is one of the leading causes of mortality and disability worldwide (Jolliffe et al., 2018). Although the incidence of stroke appears to have decreased because of the increased use of antihypertensive treatments, the proportion of young patients has rapidly risen over the past few decades (Balabanski et al., 2018). According to a nationwide survey of 0.5 million adults, approximately 2.4 million new strokes and 1.1 million stroke-related deaths occur annually in China (Wang et al., 2017). Moreover, the incidence of traumatic brain injury, with the highest mortality rate among all injuries, continues to rise (Ao et al., 2017). Traumatic brain injury accounts for 30-40% of all injury-related deaths, and half the world's population is estimated to have one or more traumatic brain injuries in their lifetime (Maas et al., 2017). ABI and the associated complications are a substantial and persistent burden for individuals and society (Kunz et al., 2018). Despite our increasing understanding of the mechanisms of ABI, effective therapeutic strategies are still lacking (Ao et al., 2017).

\*Correspondence to:

Hao Xu, PhD, HOXU@163.com; Qian-Qian Liang, PhD, liangqianqiantcm@126.com; Ting Zhang, PhD, ztingdd@hotmail.com.

#These authors contributed equally to this work.

#### orcid:

0000-0002-8311-506X (Hao Xu) 0000-0001-8797-7778 (Qian-Qian Liang) 0000-0001-9399-4734 (Ting Zhang)

doi: 10.4103/1673-5374.259619

Received: January 9, 2019 Accepted: April 25, 2019



RESEARCH ARTICLE

The progression of ABI is complex. The primary physical insult triggers acute secondary injury, involving excitotoxicity, neuroinflammation, oxidative stress, neural cell death, vasogenic edema, ionic imbalance, autophagy disorder, and a range of cellular and molecular disturbances (Duris et al., 2018). Interestingly, excessive activation of the glutamate receptor underlies these varied changes (Milton and Smith, 2018). For example, hyperactivation of N-methyl-D-aspartate (NMDA) receptors, with resulting excessive influx of Na<sup>+</sup> and Ca<sup>2+</sup>, is associated with neuronal damage after stroke and traumatic injury (Song et al., 2018). The chronic NMDA receptor hyperactivity results in the loss of neurons in neurodegenerative disorders, such as Huntington's, Parkinson's and Alzheimer's disease (Song et al., 2018). Accordingly, knockout of microglial NMDAR subunits reduces neuroinflammation and neuronal cell death induced by ABI in the developing and mature brain (Kaindl et al., 2012).

MK-801, an NMDA receptor blocker, has been successfully used in experimental therapy for stroke, traumatic brain injury, Parkinson's and peripheral neuralgia (Song et al., 2018). Despite its efficacy, the adverse side effects, which probably result from its high affinity for the receptor and long dwell time, preclude its clinical application (Song et al., 2018). However, drug use in clinical practice is dependent on risk-benefit assessment, especially for diseases currently lacking effective therapies, such as ABI. Here, we perform a systematic review of available data to critically evaluate the efficacy of MK-801 in rat models of ABI, and we assess its potential for further clinical trials and applications.

#### Data and Methods

#### Literature search

PubMed, Cochrane library, EMBASE, the China National Knowledge Infrastructure, WanFang database, the VIP Journal Integration Platform (VJIP) and SinoMed databases were searched from their inception dates to March 2018. Key terms were "stroke", "brain diseases", "brain injuries", "brain hemorrhage, traumatic", "acute brain injury", "dizocilpine maleate", "dizocilpine", "MK-801", "MK801", "rat", "rats", "rattus" and "murine". Reference lists from the included articles were also searched to identify additional studies.

#### Identification of articles

Two reviewers (NXY and LYZ) selected the studies independently by screening the abstracts and full texts according to the eligibility criteria. Disagreement or ambiguities were resolved by consensus after discussion with a third reviewer (TZ).

#### Eligibility criteria

#### Types of studies

Controlled studies assessing the neurobiological effects of MK-801 on rats with brain injury were searched. All clinical case reports and solely *in vitro* studies were excluded. No language, publication date, or publication status restrictions were imposed.

#### Types of included animals

Laboratory rats of any age, gender or strain subjected to ABI by ischemia, hemorrhage or trauma were included. Studies featuring non-traumatic ischemia, genetically-modified animals, chronic brain injury models, radiation or electrical stimulation were excluded.

#### Types of treatment

All types of MK-801 treatment compared with a placebo control were included. Placebo control included dimethyl sulfoxide, saline, vehicle or no treatment. Studies with combined treatments, such as MK-801 along with memantine, were excluded.

#### Types of outcome measures

#### Primary outcomes

Lesion volume is a reliable indicator of injury severity, and is

related to neurological functional recovery. To accurately assess lesion volume, the dissected brain hemisphere usually includes all potential lesioned regions, and is cut into serial axial sections. By quantifying the lesioned area in each section, lesion volume can be calculated with software (*e.g.* Neurolucida or Stereo Investigator) or according to a specific formula. Brain edema can be used as an indicator of the brain injury process. Hours to days after the initial trauma, there is a progressive edema (swelling) of the damaged tissue. Studies reporting brain water content, as an outcome measure, using the formula [(wet weight–dry weight)/wet weight] × 100% were included in the analysis.

#### Secondary outcomes

Behavioral assessments with the Bederson neurological grading system or the water maze test were included. The Bederson neurological grading system (Bederson et al., 1986) is a well-documented and widely used scale with discrete values ranging from 0 to 3: Grade 0, no observable deficit; Grade 1, forelimb flexion; Grade 2, decreased resistance to lateral push (and forelimb flexion) without circling; Grade 3, same behavior as grade 2, with circling. Rats are held gently by the tail, suspended one meter above the floor, and observed for forelimb flexion. The water maze experiment documents the number of times that the pre-trained rat finds the platform and the swimming distance in the platform quadrant. It is a classic test used to evaluate spatial learning and spatial orientation abilities.

#### Data extraction

The data, including name of the first author, publication year, animal strain and gender, animal age and weight, number of animals, ABI model, MK-801 administration, and measured outcomes as the mean ± standard deviation (SD), were extracted from the studies. In studies with multiple intervention strategies, only data for MK-801 and negative control groups were included in the analyses. For data that were not described numerically in the text, the values from the graphs were estimated using commercial software (GetData Graph Digitizer 2.25; download from http://getdata-graph-digitizer.com). When related outcomes were reported without clearly presented data, the authors were contacted by email.

#### Methodological quality of individual studies

Stroke Therapy Academic Industry Roundtable (STAIR) guidelines (Fisher et al., 2009) were used to assess the quality and design of the studies, including the following: sample size calculation; inclusion and exclusion criteria; randomization; allocation concealment; reporting of animals excluded from analysis; blinded assessment of outcome; and potential conflicts of interest and study funding. Two investigators assessed the methodological quality. The bias was assessed as a low or high risk of bias, while "unclear" indicated that the risk of bias was not clear.

#### Statistical analysis

Pairwise meta-analyses and subgroup analyses were conducted using Review Manager 5.3 software (downloaded from https://community.cochrane.org). For all outcome measures, the significance was set at a level of 0.05 (two-tailed). Pooled data for each outcome were reported as the mean differences (*MD*) with 95% confidence intervals (*CIs*). The chi-square test and Cochrane's  $I^2$  were used to assess heterogeneity between studies and subgroups. Heterogeneity was considered significant for *P* values of Cochrane's *Q* statistic < 0.10 and  $I^2 > 50\%$ . The random effects model was used because instead of a single true effect size, the true effect sizes likely varied across the studies.

To examine the appropriate MK-801 dosage, a network meta-analysis method was conducted according to the Bayesian method using Stata software to synthesize direct and indirect treatment regimens simultaneously and compare the therapeutic effect between different doses. For every treatment dosage, we calculated the probability of its efficacy and ranked treatments by the surface under the cumulative ranking curve (SUCRA). The larger the SUCRA value for the treatment, the higher its rank among the network treatment regimens.

#### Results

#### Study selection

Our systematic search identified 1830 potentially relevant studies. After removal of duplicates and title/abstract screening, 72 papers were selected for full-text screening. Of 20 publications excluded at the full-text level, five used the newborn rat, four did not report an outcome that met the inclusion criteria, two combined MK-801 with another treatment, and the remaining were repeat publications or were excluded for other reasons. A total of 52 studies were finally included in this systematic review and meta-analysis (Park et al., 1988; Dirnagl et al., 1990; Bielenberg and Beck, 1991; Gill et al., 1991, 1992; Oh and Betz, 1991; Buchan et al., 1992; Iijima et al., 1992; Roussel et al., 1992; Hamm et al., 1993; Pschorn et al., 1993; Shapira et al., 1993; Dawson et al., 1994; Frazzini et al., 1994; Lo et al., 1994; Lyden and Lonzo, 1994; Xue et al., 1994; Green et al., 1995; Liu and Feng, 1995; Katsuta et al., 1995; Memezawa et al., 1995; Margaill et al., 1996; Relton et al., 1996; Onal et al., 1997; Bertorelli et al., 1998; Chen et al., 1998; Herz et al., 1998; Sarraf-Yazdi et al., 1998, 1999; Takamatsu et al., 1998; Ai et al., 2000; Gorgulu et al., 2000; Kawai et al., 2000; Mackensen et al., 2000; Hanon and Klitgaard, 2001; Uchida et al., 2001; Wexler et al., 2002; Pan and Li, 2003; Shen et al., 2003; Shirasaki et al., 2004; Allahtavakoli et al., 2007; Moyanova et al., 2007, 2009; Regan et al., 2007; Cam et al., 2008; Ashioti et al., 2009; Foster et al., 2009; Han et al., 2009; Nategh et al., 2010; Hu et al., 2015; Qian et al., 2016; Sommer et al., 2017; Figure 1).



Figure 1 Summary of the literature identification and selection process.

### Characteristics of the included studies in the meta-analysis

Of the 52 publications from 1988 to 2017, 48 were in English, while four were in Chinese (Liu and Feng, 1995; Wenbin et al., 2000; Pan and Li, 2003; Shen et al., 2003). The sample size (number of animals) ranged from 10 to 121. Among the studies, 41 had ABI induced by middle cerebral artery occlusion (MCAO), five used a weight-drop injury model (Hamm et al., 1993; Shapira et al., 1993; Wenbin et al., 2000; Han et al., 2009; Sommer et al., 2017), and the remaining used a hemorrhage model. Half of the studies reported the source of MK-801. The controls included saline, dimethyl sulfoxide, or no treatment. The dose of MK-801 ranged from 0.04 to 10 mg/kg, and 36 studies used intraperitoneal injection, while the remaining used intravenous injection. Pre-operation administration of MK-801 was performed in 22 studies, while the majority of the remaining studies treated ABI within 30 minutes of injury (**Additional Table 1**).

#### Risk of bias within studies

Overall, the methodological quality of the studies was relatively low. Only two of the studies reported more than 50% of the details in the STAIR list (Lyden and Lonzo, 1994; Mackensen et al., 2000). No study performed a sample size calculation. About half of the studies reported randomization, blinding to assessors and potential conflicts of interest (**Table 1**).

#### Overall analysis of the effects of MK-801

From histopathological analysis, lesion volume (mm<sup>3</sup>) expansion was notably decreased in the MK-801 group compared with the control group (34 studies, n = 966, MD = -58.31, 95% *CI*: -66.55 to -50.07, P < 0.00001; **Figure 2**). The pooled lesion volume (percentage to hemisphere volume) results revealed a protective effect of MK-801 (10 studies, n = 225, MD = -10.44, 95% *CI*: -13.60 to -7.28, P < 0.00001; **Table 2** and **Additional Figure 1**). Five studies reported brain water content as outcome. MK-801 significantly decreased brain water content compared with the control group (5 studies, n = 75, MD = -1.21, 95% *CI*: -1.50 to -0.91, P < 0.00001; **Figure 3**).

For functional evaluation, 11 studies assessed neurological scores 24 hours after brain injury. Although three trials reported that MK-801 had no beneficial effect on neurological score, our meta-analysis revealed that MK-801 significantly improved neurological function in rats with ABI (11 studies, n = 335, MD = -1.04, 95% *CI*: -1.47 to -0.60, P < 0.00001; **Figure 4** and **Table 2**). The pooled water maze test results showed a significant improvement in MK-801-treated animals compared with control (two studies, n = 60, MD = -10.88, 95% *CI*: -20.75 to -1.00, P = 0.03; **Figure 5** and **Table 2**). Substantial heterogeneity in treatment effects between the studies was observed. Given that different models and administration parameters may be associated with this heterogeneity, we conducted subgroup analyses on these factors.

#### Subgroup analysis of the effects of MK-801

MK-801 produced a notable reduction in lesion volume compared with control, in both MCAO and hemorrhage models, irrespective of administration dose, route and timing. There were no differences in the reduction in infarct volume among the different ABI models. There were also no differences among the 0–1, 1–3 and 5–10 mg/kg doses, between intraperitoneal and intravenous injection, or between pretreatment and posttreatment (**Figure 6, Table 3** and **Additional Figures 2–4**).

## Sub-subgroup analysis of the effects of MK-801 in the MCAO model

Given the large number of studies, sub-subgroup analysis for the MCAO subgroup was performed. Sub-subgroup analyses showed that controlling multiple variables produced more reliable and accurate results. Sub-subgroup analyses revealed that the reduction in lesion volume was associated with administration dose (P = 0.03), but not with administration route or timing (**Figure 7**, **Table 4** and **Additional Figures 5** and **6**).

### Network analysis of the effects of different administration doses of MK-801

To identify the optimum treatment regimen, network analysis of the effects of different administration doses of MK-801 was performed. Forest plots of studies of all injury models or MCAO models indicated that there were no differences in lesion volume between the 0-1, 1-3 and 5-10 mg/kg doses. Probability analysis of all injury models suggested that the effect of the 1-3 mg/kg dose had the highest probability of occupying the first ranking, with the 0-1 mg/kg dose occupying the second ranking. Probability analysis

#### Table 1 Risk of bias summary

| Study                                            | Sample size calculation | Inclusion and exclusion criteria | Randomization | Allocation<br>concealment | Reporting of<br>animals excluded<br>from analysis | Blinded<br>assessment of<br>outcomes | Reporting potential conflicts of interest and study funding |
|--------------------------------------------------|-------------------------|----------------------------------|---------------|---------------------------|---------------------------------------------------|--------------------------------------|-------------------------------------------------------------|
| Sommer et al. (2017)                             | U                       | U                                | L             | U                         | U                                                 | L                                    | L                                                           |
| Qian et al. (2016)                               | U                       | U                                | L             | U                         | U                                                 | L                                    | L                                                           |
| Hu et al. (2015)                                 | U                       | U                                | L             | U                         | L                                                 | L<br>U                               | L                                                           |
| Nategh et al. (2010)                             | U                       | U                                | U             | U                         | L                                                 | U                                    | L                                                           |
| Han et al. (2009)                                | U                       | U                                | L             | U                         | U                                                 | U                                    | L                                                           |
| Foster et al. (2009)                             | U                       | U                                | U             | U                         | U                                                 | L                                    | L                                                           |
| Ashioti et al. (2009)                            | U                       | U                                | L             | U                         | U                                                 | L                                    | L                                                           |
| Cam et al. (2008)                                | U                       | U                                | U             | U                         | U                                                 | U                                    | U                                                           |
| Regan et al. (2007)                              | U                       | U                                | U             | U                         | U                                                 | U                                    | U                                                           |
| Moyanova et al. (2007)                           | U                       | U                                | U             | U                         | L                                                 | U                                    | L                                                           |
| Moyanova et al. (2007)<br>Moyanova et al. (2009) | U                       | U                                | U             | U                         | L                                                 | L                                    | L<br>U                                                      |
| Allahtavakoli et al. (2009)                      | U                       | U                                | U             | U                         | L<br>U                                            | L                                    | U                                                           |
| Shirasaki et al. (2007)                          | U                       | U                                | U             | U                         | U                                                 | L<br>U                               | U                                                           |
| Shen et al. (2003)                               | U                       | U                                | L             | U                         | U                                                 | U                                    | U                                                           |
|                                                  | U                       | U                                | L             | U                         | U                                                 | U                                    | U                                                           |
| Pan and Li (2003)                                |                         |                                  |               |                           |                                                   |                                      |                                                             |
| Wexler et al. (2002)                             | U                       | U                                | U             | U                         | U                                                 | L                                    | U                                                           |
| Uchida et al. (2001)                             | U                       | U                                | L             | U                         | U                                                 | L                                    | U                                                           |
| Hanon and Klitgaard (2001)                       | U                       | U                                | U             | U                         | U                                                 | U                                    | U                                                           |
| Ai et al. (2000)                                 | U                       | U                                | L             | U                         | U                                                 | U                                    | U                                                           |
| Mackensen et al. (2000)                          | U                       | U                                | L             | U                         | L                                                 | L                                    | L                                                           |
| Kawai et al. (2000)                              | U                       | U                                | U             | U                         | U                                                 | U                                    | U                                                           |
| Gorgulu et al. (2000)                            | U                       | U                                | L             | U                         | U                                                 | L                                    | L                                                           |
| Sarraf-Yazdi et al. (1999)                       | U                       | U                                | L             | U                         | U                                                 | L                                    | L                                                           |
| Takamatsu et al. (1998)                          | U                       | U                                | U             | U                         | U                                                 | U                                    | U                                                           |
| Sarraf-Yazdi et al. (1998)                       | U                       | U                                | L             | U                         | U                                                 | L                                    | L                                                           |
| Herz et al. (1998)                               | U                       | U                                | U             | U                         | U                                                 | U                                    | U                                                           |
| Chen et al. (1998)                               | U                       | U                                | L             | U                         | U                                                 | L                                    | L                                                           |
| Bertorelli et al. (1998)                         | U                       | U                                | L             | U                         | U                                                 | U                                    | U                                                           |
| Onal et al. (1997)                               | U                       | U                                | L             | U                         | U                                                 | L                                    | L                                                           |
| Relton et al. (1996)                             | U                       | U                                | L             | U                         | U                                                 | L                                    | L                                                           |
| Margaill et al. (1996)                           | U                       | U                                | L             | U                         | U                                                 | L                                    | L                                                           |
| Liu and Feng (1995)                              | U                       | U                                | L             | U                         | U                                                 | U                                    | L                                                           |
| Memezawa et al. (1995)                           | U                       | U                                | U             | U                         | L                                                 | U                                    | L                                                           |
| Katsuta et al. (1995)                            | U                       | U                                | U             | U                         | U                                                 | U                                    | L                                                           |
| Green et al. (1995)                              | U                       | U                                | L             | U                         | L                                                 | U                                    | L                                                           |
| Xue et al. (1994)                                | U                       | U                                | L             | U                         | L                                                 | U                                    | L                                                           |
| Lyden and Lonzo (1994)                           | U                       | U                                | L             | U                         | L                                                 | L                                    | L                                                           |
| Lo et al. (1994)                                 | U                       | U                                | L             | U                         | U                                                 | U                                    | L                                                           |
| Frazzini et al. (1994)                           | U                       | U                                | U             | U                         | U                                                 | L                                    | U                                                           |
| Dawson et al. (1994)                             | U                       | U                                | U             | U                         | U                                                 | U                                    | L                                                           |
| Shapira et al. (1993)                            | U                       | U                                | L             | U                         | L                                                 | U                                    | U                                                           |
| Pschorn et al. (1993)                            | U                       | U                                | U             | U                         | U                                                 | U                                    | L                                                           |
| Hamm et al. (1993)                               | U                       | U                                | U             | U                         | U                                                 | U                                    | L                                                           |
| Roussel et al. (1992)                            | U                       | U                                | L             | U                         | L                                                 | U                                    | L                                                           |
| Iijima et al. (1992)                             | U                       | U                                | U             | U                         | U                                                 | L                                    | U                                                           |
| Gill et al. (1992)                               | U                       | U                                | U             | U                         | U                                                 | L                                    | L                                                           |
| Buchan et al. (1992)                             | U                       | U                                | U             | U                         | L                                                 | L                                    | L                                                           |
| Oh and Betz (1991)                               | U                       | U                                | U             | U                         | L                                                 | U                                    | L                                                           |
| Gill et al. (1991)                               | U                       | U                                | U             | U                         | U                                                 | L                                    | L                                                           |
| Bielenberg and Beck (1991)                       | U                       | U                                | U             | U                         | U                                                 | U                                    | U                                                           |
| Dirnagl et al. (1990)                            | U                       | U                                | U             | U                         | U                                                 | L                                    | L                                                           |
| Park et al. (1988)                               | U                       | U                                | U             | U                         | U                                                 | U                                    | L                                                           |

U: Unknown; L: low.

| Table 2 Summary of the meta-analysis of lesion volume, brain water content, brain edema, neurological scores and latency in the water maze |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| test                                                                                                                                       |

|                                     |                |                | Mean difference (MD)    | Heteroger | Heterogeneity |           |  |
|-------------------------------------|----------------|----------------|-------------------------|-----------|---------------|-----------|--|
| Outcome title                       | No. of studies | No. of animals | MD (95% CI)             | P-value   | $I^2$         | P-value   |  |
| 1. Lesion volume (mm <sup>3</sup> ) | 34             | 966            | -58.31 (-66.55, -50.07) | < 0.00001 | 94            | < 0.00001 |  |
| 2. Lesion volumes (%)               | 10             | 225            | -10.44 (-13.60, -7.28)  | < 0.00001 | 97            | < 0.00001 |  |
| 3. Brain water content (%)          | 5              | 75             | -1.21 (-1.50, -0.91)    | < 0.00001 | 56            | 0.060     |  |
| 4. 24-Hour neurological scores      | 11             | 335            | -1.04(-1.47, -0.60)     | < 0.00001 | 98            | < 0.00001 |  |
| 5. Latency in water maze (second)   | 4              | 76             | -10.15 (-16.81, -3.50)  | 0.003     | 78            | 0.003     |  |

No.: Number.

#### Table 3 Summary of subgroup analysis on lesion volume

|                                |                |                | Mean difference (MD)    |           | Heterogeneity |           | Subgroup                                          |
|--------------------------------|----------------|----------------|-------------------------|-----------|---------------|-----------|---------------------------------------------------|
| Subgroup title                 | No. of studies | No. of animals | MD (95% CI)             | P-value   | $I^2$         | P-value   | <ul> <li>difference</li> <li>(P-value)</li> </ul> |
| 1. Administration dose         | 34             | 984            | -57.38 (-65.35, -49.42) | < 0.00001 | 93            | < 0.00001 | 0.060                                             |
| 1.1 Dose (0, 1)                | 22             | 521            | -59.10 (-68.79, -49.40) | < 0.00001 | 89            | < 0.00001 |                                                   |
| 1.2 Dose (1, 3)                | 10             | 282            | -62.00 (-84.92, -39.08) | < 0.00001 | 97            | < 0.00001 |                                                   |
| 1.3 Does (5, 10)               | 6              | 181            | -43.35 (-53.33, -33.38) | < 0.00001 | 54            | 0.040     |                                                   |
| 2. Administration routes       | 33             | 974            | -56.15 (-64.06, -48.24) | < 0.00001 | 93            | < 0.00001 | 0.930                                             |
| 2.1 Intraperitoneally          | 21             | 653            | -55.81 (-67.19, -44.43) | < 0.00001 | 94            | < 0.00001 |                                                   |
| 2.2 Intravenously              | 12             | 321            | -55.15 (-66.07, -44.22) | < 0.00001 | 88            | < 0.00001 |                                                   |
| 3. Administration time         | 32             | 848            | -57.37 (-66.33, -48.40) | < 0.00001 | 94            | < 0.00001 | 0.690                                             |
| 3.1 Pretreatment               | 14             | 400            | -55.00 (-72.49, -37.50) | < 0.00001 | 94            | < 0.00001 |                                                   |
| 3.2 Posttreatment (0, 15 min)  | 9              | 230            | -53.36 (-70.77, -35.94) | < 0.00001 | 94            | < 0.00001 |                                                   |
| 3.3 Posttreatment (15, 30 min) | 9              | 191            | -64.88 (-79.24, -50.51) | < 0.00001 | 93            | < 0.00001 |                                                   |
| 3.4 Posttreatment (30, 60 min) | 2              | 27             | -42.38 (-111.17, 26.42) | 0.230     | 56            | 0.130     |                                                   |
| 4. Injury model                | 34             | 966            | -58.31 (-66.55, -50.07) | < 0.00001 | 94            | < 0.00001 | 0.004                                             |
| 4.1 MCAO                       | 31             | 888            | -60.37 (-68.98, -51.76) | < 0.00001 | 94            | < 0.00001 |                                                   |
| 4.2 Hemorrhage                 | 3              | 78             | -31.58 (-48.90, -14.26) | 0.0004    | 38            | 0.200     |                                                   |

MCAO: Middle cerebral artery occlusion; min: minutes; No.: Number.

#### Table 4 Summary of sub-subgroup analysis of the middle cerebral artery occlusion model

|                                |                   |                   | Mean difference (MD)    |           | Hetero | geneity   | Sub-subgroup                                 |
|--------------------------------|-------------------|-------------------|-------------------------|-----------|--------|-----------|----------------------------------------------|
| Sub-subgroup title             | No. of<br>studies | No. of<br>animals | MD (95% CI)             | P-value   | $I^2$  | P-value   | <ul> <li>difference<br/>(P-value)</li> </ul> |
| 1. Administration dose         | 31                | 934               | -60.74 (-69.17, -52.31) | < 0.00001 | 94     | < 0.00001 | 0.030                                        |
| 1.1 Dose (0, 1)                | 20                | 453               | -60.77 (-70.98, -50.56) | < 0.00001 | 90     | < 0.00001 |                                              |
| 1.2 Dose (1, 3)                | 9                 | 272               | -66.55 (-90.89, -42.21) | < 0.00001 | 98     | < 0.00001 |                                              |
| 1.3 Does (5, 10)               | 7                 | 181               | -43.35(-53.33, -33.38)  | < 0.00001 | 54     | 0.040     |                                              |
| 2. Administration routes       | 31                | 888               | -60.37 (-68.98, -51.76) | < 0.00001 | 94     | < 0.00001 | 0.440                                        |
| 2.1 Intraperitoneally          | 20                | 603               | -62.25 (-75.06, -49.44) | < 0.00001 | 95     | < 0.00001 |                                              |
| 2.2 Intravenously              | 11                | 285               | -55.52 (-66.55, -44.50) | < 0.00001 | 89     | < 0.00001 |                                              |
| 3. Administration time         | 30                | 786               | -59.20 (-68.26, -50.14) | < 0.00001 | 94     | < 0.00001 | 0.800                                        |
| 3.1 Pretreatment               | 14                | 406               | -57.16 (-73.32, -41.00) | < 0.00001 | 94     | < 0.00001 |                                              |
| 3.2 Posttreatment (0, 15 min)  | 8                 | 180               | -56.58 (-75.72, -37.44) | < 0.00001 | 95     | < 0.00001 |                                              |
| 3.3 Posttreatment (15, 30 min) | 8                 | 173               | -65.46 (-80.52, -50.41) | < 0.00001 | 94     | < 0.00001 |                                              |
| 3.4 Posttreatment (30, 60 min) | 2                 | 27                | -42.38 (-111.17, 26.42) | 0.23      | 56     | 0.130     |                                              |

min: Minutes; No.: Number.

of the MCAO models showed that the effect of the 0-1 mg/kg dose ranked first, followed by the 1-3 mg/kg dose (**Figure 8**).

#### Funnel plot of the effects of MK-801 on brain injury

To analyze publication bias, funnel plots of the effects of MK-801

(Figure 9A) in brain injury or MCAO models (Figure 9B) were constructed. Most of the data points in this study were located above the funnel and were evenly distributed on both sides of the red indicator line, suggesting the presence of a small publication bias. A few scattered points were located on the right side of the

Yi NX, Zhou LY, Wang XY, Song YJ, Han HH, Zhang TS, Wang YJ, Shi Q, Xu H, Liang QQ, Zhang T (2019) MK-801 attenuates lesion expansion following acute brain injury in rats: a meta-analysis. Neural Regen Res 14(11):1919-1931. doi:10.4103/1673-5374.259619

| MK-801         Control         Mean Difference         Mean Difference           Study or Subgroup         Mean         SD         Total         Mean         SD         Total         No.           Pschorn U1993         75.97         10.85         5         250.52         41.8         5         2.0%         +174.65         [21.23,-136.87]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Study or Subgroup         Mean         SD         Total         Weight         IV. Random, 95% Cl         IV. Random, 95% Cl           Pschorn U 1993         76.97         10.85         5         250.52         41.6         5         2.0%         -174.55 [-212.23, -136.87]           Memezawa H 1995         27.01         46.49         8         157.76         83.78         7         1.0%         -130.75 [-200.68, -60.82]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| Memezawa H 1995 27.01 46.49 8 157.76 83.78 7 1.0% -130.75 [-200.68, -60.82]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Bushan M 1002 41 10 0 150 42 0 23% 100 00 (120 71 70 20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Hanon E 2001 107 22.3 9 211 23.8 12 2.8% -104.00 [-123.84, -84.16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Herz RC 1998 54.23 17.46 7 154.41 20.22 7 2.8% -100.18 [-119.97, -80.39]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Mackensen GB 2000 35 35 16 125 72 16 1.9% -90.00 [-129.23, -50.77]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Foster KA 2009 112.82 20.5 41 200.71 23.88 41 3.2% -87.89 [-97.52, -78.26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| Moyanova SG 2007 85.5 5.2 13 170.5 22.7 24 3.2% -85.00 [94.51, -75.49]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Sarraf-Yazdi S 1999 81 60 18 163 36 12 2.1% -82.00 [+16.40,-47.60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Sana-razar S 1850 105 55 16 162 65 16 1.570 -62.56 [125.62]-46.16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Regan HK 2007 130 24 20 211 28 17 3.0% -81.00 [-97.96, -64.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| Shen SY 2003 60.8 7.76 18 140.6 14.81 18 3.3% -79.80 [-87.52, -72.08]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| Takamatsu H 1998 126.1 20.3 8 202.4 8.5 9 3.0% -76.30 [-91.42, -61.18]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Gorgulu A 2000 90.55 8.49 10 162.29 16.31 10 3.2% -71.74 [-83.14, -60.34]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| Margaill I 1996 169 30 9 239 30 9 2.5% -70.00 [-97.72, -42.28]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| Lo EH 1994 49 27 6 118 44 6 1.8% -69.00 [-110.31, -27.69]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| Dirnagl U 1990 165 63 15 231 22 13 2.1% -66.00 [-100.05,-31.95]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Uchida K 2001 61 38 9 119 38 9 2.1% -58.00 [-93.11, -22.89]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Katsuta K 1995 89.38 42.54 24 145.99 36.46 9 2.4% -56.61 [-85.89, -27.33]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| Relton JK 1996 26.87 6.37 8 78.88 13.06 8 3.2% -52.01 [-62.08, -41.94]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Pan DQ 2003 94.29 8.94 5 144.65 7.37 5 3.2% -50.36 [-60.52, -40.20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| lijima T 1992 58 11.5 6 108 38.5 6 2.2% -50.00 [-82.15, -17.85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Cam E 2008 23.12 21.1 5 73.12 23.2 5 2.5% -50.00 [-77.49,-22.51]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Olii R 1991 92.47 10.15 24 141.97 4.06 24 3.3% -49.50 [-50.25, -42.77]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Park CK 1988 79.71 8.49 14 127 7 6 3.3% -47.29 [54.44, -40.14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| Heiz RC 1998 45.90 3.08 0 92.83 3.68 0 3.4% -40.87 [-51.03, -42.71]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| Buchan Awi 1992 145.29 11.05 31 180.25 7.80 31 3.4% -40.94 [-45.71, -30.17]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Giirk 1992 121.32 19.62 10 159.6 20.7 10 5.1% = 36.46 [-02.52, =24.44]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Roussel's 1992 73.81 26.47 21 110.71 22.62 19 3.0% -36.90 [-52.12,-21.68]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| Bielenberg GW 1991 66.36 28.13 14 99.1 26.9 9 2.7% -32.74 [55.67.9.81]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | is  |
| Lyden PD 1994 88.54 26.09 23 118.19 39.13 27 2.9% -29.65 [-47.86, -11.44]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Ade D 1994 170 33 11 181 32 19 2.0% -11.00[50.30, 14.30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Dimagi∪1990 186 33 12 197 51 11 2.1% -11.00[46.45, 24.45] injury.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Margaill 1996 200 40 8 209 14 8 2.4% -9.00 [-38.37, 20.37]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | aat |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iat |
| Onal MZ 1997 179.1 78.5 7 175.2 89.3 8 0.7% 3.90 [81.02, 88.82] MK-801 decreases les                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | un  |
| Heterogeneity: Tau <sup>2</sup> = 520.31; Chi <sup>2</sup> = 580.86, df = 37 (P < 0.00001); I <sup>2</sup> = 94%<br>Test for overall effect: Z = 13.87 (P < 0.00001)<br>Favours during |     |
| Test for overall effect: Z = 13.87 (P < 0.00001) Favours MK-801 Favours control injury in rats.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |

|                                   | M          | K-801   |          | C        | ontrol |          |        | Mean Difference      | Mean Difference                |                                               |
|-----------------------------------|------------|---------|----------|----------|--------|----------|--------|----------------------|--------------------------------|-----------------------------------------------|
| Study or Subgroup                 | Mean       | SD      | Total    | Mean     | SD     | Total    | Weight | IV, Random, 95% CI   | IV, Random, 95% Cl             | _ Figure 3 Meta-analysis                      |
| Shapira Y 1993                    | 80.82      | 0.1     | 5        | 82.42    | 0.49   | 5        | 20.8%  | -1.60 [-2.04, -1.16] |                                | of brain water content                        |
| Shirasaki Y 2004                  | 80.38      | 1.01    | 10       | 81.86    | 0.63   | 6        | 9.8%   | -1.48 [-2.28, -0.68] |                                | in rats after brain                           |
| Oh SM 1991                        | 81.99      | 0.18    | 15       | 83.29    | 0.18   | 8        | 35.3%  | -1.30 [-1.45, -1.15] | <b>+</b>                       |                                               |
| Gorgulu A 2000                    | 84.83      | 0.71    | 8        | 85.7     | 0.2    | 8        | 17.8%  | -0.87 [-1.38, -0.36] |                                | injury.                                       |
| Kawai N 2000                      | 80.95      | 0.35    | 5        | 81.65    | 0.52   | 5        | 16.4%  | -0.70 [-1.25, -0.15] |                                | Most studies show that                        |
| Total (95% CI)                    |            |         | 43       |          |        | 32       | 100.0% | -1.21 [-1.50, -0.91] | ◆                              | MK-801 decreases brain                        |
| Heterogeneity: Tau <sup>2</sup> = | = 0.06; CI | ni² = 9 | .07, df= | = 4 (P = | 0.06); | l² = 569 | %      |                      |                                | <ul> <li>water content after acute</li> </ul> |
| Test for overall effect           | : Z = 8.10 | (P < (  | 0.00001  | )        |        |          |        |                      | Favours MK-801 Favours control | brain injury in rats.                         |

|                                   | м        | K-801   |         | с         | ontrol  |        |          | Mean Difference      | Mean Di   | fference  |                            |
|-----------------------------------|----------|---------|---------|-----------|---------|--------|----------|----------------------|-----------|-----------|----------------------------|
| Study or Subgroup                 | Mean     | SD      | Total   | Mean      | SD      | Total  | Weight   | IV, Random, 95% CI   | IV, Rando | m, 95% Cl |                            |
| Nategh M 2010                     | 1        | 0.22    | 8       | 3         | 0.38    | 8      | 9.0%     | -2.00 [-2.30, -1.70] |           |           |                            |
| Sarraf-Yazdi S 1999               | 0        | 0.5     | 18      | 2         | 1.25    | 12     | 7.4%     | -2.00 [-2.74, -1.26] |           |           |                            |
| Allahtavakoli M 2007              | 2.5      | 0.36    | 8       | 4         | 0.22    | 8      | 9.0%     | -1.50 [-1.79, -1.21] |           |           |                            |
| Nategh M 2010                     | 2        | 0.26    | 8       | 3.5       | 0.32    | 8      | 9.0%     | -1.50 [-1.79, -1.21] |           |           |                            |
| Shen SY 2003                      | 2.83     | 0.82    | 18      | 4.17      | 0.75    | 18     | 8.3%     | -1.34 [-1.85, -0.83] |           |           |                            |
| Ashioti M 2009                    | 2.86     | 1.2     | 15      | 4.07      | 1.55    | 13     | 6.1%     | -1.21 [-2.25, -0.17] |           |           |                            |
| Katsuta K 1995                    | 1.79     | 1.07    | 24      | 3         | 0.36    | 9      | 8.4%     | -1.21 [-1.70, -0.72] |           |           |                            |
| Gorgulu A 2000                    | 1.38     | 0.94    | 26      | 2.5       | 0.81    | 26     | 8.4%     | -1.12 [-1.60, -0.64] |           |           | Figure 4 Meta-analysis     |
| Hu ZC 2015                        | 2.33     | 0.73    | 10      | 2.88      | 0.83    | 10     | 7.6%     | -0.55 [-1.24, 0.14]  |           | -         | of 24-hour neurological    |
| Moyanova SG 2007                  | 2.48     | 0.14    | 13      | 2.83      | 0.13    | 24     | 9.4%     | -0.35 [-0.44, -0.26] | -         |           | scores in rats after brain |
| Sarraf-Yazdi S 1998               | 1        | 1       | 18      | 1         | 0.75    | 18     | 8.1%     | 0.00 [-0.58, 0.58]   |           |           |                            |
| Onal MZ 1997                      | 2        | 0.02    | 7       | 1.84      | 0.02    | 8      | 9.4%     | 0.16 [0.14, 0.18]    |           | •         | injury.                    |
|                                   |          |         |         |           |         |        |          |                      |           |           | Most studies show that     |
| Total (95% CI)                    |          |         | 173     |           |         | 162    | 100.0%   | -1.04 [-1.47, -0.60] | -         |           | MK-801 improves neu-       |
| Heterogeneity: Tau <sup>2</sup> = | 0.52; Ch | i² = 66 | 6.83, d | f = 11 (F | ° < 0.0 | 0001); | l² = 98% |                      |           |           | rological function after   |
| T                                 |          | -       | 00004   |           |         |        |          |                      | -2 -1     | J I Z     | rongreat randenon arter    |

ò Favours MK-801 Favours control



Figure 5 Meta-analysis of latency in the water maze test in rats after brain injury. Most studies show that MK-801 improves spatial learning and memory after acute brain injury in rats.

acute brain injury in rats.

Test for overall effect: Z = 4.70 (P < 0.00001)

|                                                                   |           | K-801       |         |             | ontrol      |         |        | Mean Difference            | Mean Difference                |
|-------------------------------------------------------------------|-----------|-------------|---------|-------------|-------------|---------|--------|----------------------------|--------------------------------|
| Study or Subgroup                                                 | Mean      | SD          | Total   | Mean        | SD          | Total   | Weight | IV, Random, 95% Cl         | IV, Random, 95% Cl             |
| 8.1.1 Dose (0, 1]                                                 |           |             |         |             |             |         |        |                            |                                |
| Pschorn U 1993                                                    |           | 10.85       | 5       | 250.52      | 41.6        | 5       |        | -174.55 [-212.23, -136.87] |                                |
| Memezawa H 1995                                                   | 27.01     |             | 8       | 157.76      | 83.78       | 7       | 0.9%   | -130.75 [-200.68, -60.82]  |                                |
| Hanon E 2001                                                      | 107       | 22.3        | 9       | 211         | 23.8        | 12      | 2.7%   | -104.00 [-123.84, -84.16]  |                                |
| Herz RC 1998                                                      |           | 17.46       | 7       | 154.41      | 20.22       | 7       | 2.7%   | -100.18 [-119.97, -80.39]  |                                |
| Mackensen GB 2000                                                 | 35        | 35          | 16      | 125         | 72          | 16      | 1.8%   | -90.00 [-129.23, -50.77]   |                                |
| Sarraf-Yazdi S 1998                                               | 100       | 65          | 18      | 182         | 63          | 18      | 1.7%   | -82.00 [-123.82, -40.18]   |                                |
| Sarraf-Yazdi S 1999                                               | 81        | 60          | 18      | 163         | 36          | 12      | 2.0%   | -82.00 [-116.40, -47.60]   |                                |
| Takamatsu H 1998                                                  | 126.1     | 20.3        | 8       | 202.4       | 8.5         | 9       | 2.9%   | -76.30 [-91.42, -61.18]    |                                |
| Gorgulu A 2000                                                    | 90.55     | 8.49        | 10      |             | 16.31       | 10      | 3.0%   | -71.74 [-83.14, -60.34]    |                                |
| Margaill   1996                                                   | 169       | 30          | 9       | 239         | 30          | 9       | 2.3%   | -70.00 [-97.72, -42.28]    |                                |
| Lo EH 1994                                                        | 49        | 27          | 6       | 118         | 44          | 6       | 1.7%   | -69.00 [-110.31, -27.69]   |                                |
| Uchida K 2001                                                     | 61        | 38          | 9       | 119         | 38          | 9       | 2.0%   | -58.00 [-93.11, -22.89]    |                                |
| Pan DQ 2003                                                       | 94.29     | 8.94        | 5       | 144.65      | 7.37        | 5       | 3.0%   | -50.36 [-60.52, -40.20]    |                                |
| Katsuta K 1995                                                    | 95.96     | 43.05       | 17      | 145.99      | 36.46       | 9       | 2.1%   | -50.03 [-81.43, -18.63]    |                                |
| Gill R 1991                                                       | 92.47     | 16.15       | 24      | 141.97      | 4.68        | 24      | 3.1%   | -49.50 [-56.23, -42.77]    | ~                              |
| Park CK 1988                                                      | 79.71     | 8.49        | 14      | 127         | 7           | 6       | 3.1%   | -47.29 [-54.44, -40.14]    | ~                              |
| Herz RC 1998                                                      | 45.96     | 3.68        | 6       | 92.83       | 3.68        | 6       | 3.2%   | -46.87 [-51.03, -42.71]    | *                              |
| Bielenberg GW 1991                                                | 58        | 23.1        | 8       | 99.1        | 26.9        | 9       | 2.5%   | -41.10 [-64.87, -17.33]    |                                |
| Roussel S 1992                                                    | 73.81     | 29.76       | 9       | 110.71      | 22.62       | 10      | 2.5%   | -36.90 [-60.87, -12.93]    |                                |
| Lyden PD 1994                                                     | 88.54     | 26.09       | 23      | 118.19      | 39.13       | 27      | 2.7%   | -29.65 [-47.86, -11.44]    |                                |
| Xue D 1994                                                        | 170       | 33          | 11      | 181         | 32          | 15      | 2.4%   | -11.00 [-36.35, 14.35]     |                                |
| Margaill   1996                                                   | 200       | 40          | 8       | 209         | 14          | 8       | 2.2%   | -9.00 [-38.37, 20.37]      |                                |
| Dawson DA 1994                                                    | 50.71     | 15.71       | 9       | 59.06       | 11.43       | 10      | 3.0%   | -8.35 [-20.82, 4.12]       | -4                             |
| Onal MZ 1997                                                      | 179.1     | 78.5        | 7       | 175.2       | 89.3        | 8       | 0.7%   | 3.90 [-81.02, 88.82]       |                                |
| Subtotal (95% CI)                                                 |           |             | 264     |             |             | 257     | 56.0%  | -59.10 [-68.79, -49.40]    | ♦                              |
| Heterogeneity: Tau <sup>2</sup> = 4<br>Test for overall effect: 2 |           |             |         | = 23 (P <   | < 0.0000    | 1);  ²= | 89%    |                            |                                |
|                                                                   |           |             | ,       |             |             |         |        |                            |                                |
| 8.1.2 Dose (1, 3]                                                 |           |             |         |             |             |         |        |                            |                                |
| Buchan AM 1992                                                    | 41        | 19          | 9       | 150         | 43          | 9       | 2.2%   | -109.00 [-139.71, -78.29]  |                                |
| Foster KA 2009                                                    | 112.82    | 20.5        | 41      | 200.71      | 23.88       | 41      | 3.0%   | -87.89 [-97.52, -78.26]    |                                |
| Moyanova SG 2007                                                  | 85.5      | 5.2         | 13      | 170.5       | 22.7        | 24      | 3.1%   | -85.00 [-94.51, -75.49]    | ~                              |
| Regan HK 2007                                                     | 130       | 24          | 20      | 211         | 28          | 17      | 2.8%   | -81.00 [-97.96, -64.04]    |                                |
| Shen SY 2003                                                      | 60.8      | 7.76        | 18      | 140.6       |             | 18      | 3.1%   | -79.80 [-87.52, -72.08]    | ~                              |
| lijima T 1992                                                     | 58        | 11.5        | 6       | 108         | 38.5        | 6       | 2.1%   | -50.00 [-82.15, -17.85]    |                                |
| Cam E 2008                                                        | 23.12     |             | 5       | 73.12       | 23.2        | 5       | 2.3%   | -50.00 [-77.49, -22.51]    |                                |
| Gill R 1992                                                       | 121.32    |             | 16      | 159.8       | 20.7        | 16      | 2.9%   | -38.48 [-52.52, -24.44]    | ~                              |
| Kawai N 2000                                                      | 66.4      | 13.02       | 5       | 86.6        | 20.7        | 5       | 2.6%   | -20.20 [-41.96, 1.56]      |                                |
| Bertorelli R 1998                                                 | 24.6      | 4           | 4       | 44.5        | 20.7        | 4       | 3.2%   | -19.90 [-24.80, -15.00]    | -                              |
| Subtotal (95% CI)                                                 | 24.0      | 4           | 137     | 44.0        | 3           | 145     | 27.2%  | -62.00 [-84.92, -39.08]    |                                |
|                                                                   | 1271 00.0 |             |         | If = 0 /P / | . 0 0000    |         |        | -02.00 [-84.92, -59.08]    | •                              |
| Heterogeneity: Tau <sup>2</sup> = 1<br>Test for overall effect: 2 |           |             |         | n – 9 (P 4  | - 0.000U    | 0,114   | 3770   |                            |                                |
| restion overall effect. 2                                         | 0.30 (F   | ~ 0.000     | ,01)    |             |             |         |        |                            |                                |
| 8.1.3 Dose [5,10]                                                 |           |             |         |             |             |         |        |                            |                                |
| Katsuta K 1995                                                    | 73 20     | 39.68       | 7       | 145.99      | 36.46       | 9       | 1.9%   | -72.60 [-110.43, -34.77]   |                                |
| Dirnagl U 1990                                                    | 165       | 39.00<br>63 | 15      | 231         | 22          | 13      | 2.0%   | -66.00 [-100.05, -31.95]   |                                |
| Relton JK 1996                                                    | 26.87     | 6.37        | 15      | 78.88       | 13.06       | 8       | 2.0%   |                            |                                |
|                                                                   |           |             |         |             |             |         | 3.0%   | -52.01 [-62.08, -41.94]    | -                              |
| Buchan AM 1992                                                    | 145.29    |             | 31      |             | 7.86        | 31      |        | -40.94 [-45.71, -36.17]    |                                |
| Roussel S 1992                                                    | 73.81     | 25.1        |         | 110.71      | 22.62       | 9       | 2.6%   | -36.90 [-57.40, -16.40]    |                                |
| Bielenberg GW 1991                                                | 77.5      | 32.4        | 6       | 99.1        | 26.9        | 9       | 2.1%   | -21.60 [-52.92, 9.72]      |                                |
| Dirnagl U 1990<br>Subtatal (05% CI)                               | 186       | 33          | 12      | 197         | 51          | 11      | 2.0%   | -11.00 [-46.45, 24.45]     |                                |
| Subtotal (95% CI)                                                 | 20 44. 05 | 2-404       | 91      |             | 41.17.      | 90      | 16.8%  | -43.35 [-53.33, -33.38]    | •                              |
| Heterogeneity: Tau <sup>2</sup> = 1<br>Test for overall effect: 2 |           |             |         | 6 (P = 0.0  | 14); I* = ( | 04%     |        |                            |                                |
|                                                                   |           |             |         |             |             | 402     | 100.0% | E7 20 [ GE 2E 40 40]       | ▲                              |
| Total (95% CI)                                                    |           | - CO        | 492     | 10 (5       |             |         | 100.0% | -57.38 [-65.35, -49.42]    |                                |
| Heterogeneity: Tau <sup>2</sup> = 5                               |           |             |         | = 40 (P 4   | .0.0000     | 0,1-=   | 93%0   |                            | -200 -100 0 100 200            |
| Test for overall effect: 2                                        |           |             |         | a (n. a)    | 00) 17      | 01.70   |        |                            | Favours MK-801 Favours control |
| Test for subaroup diffe                                           | rences: C | ni*= 5.8    | ov. df= | 2 (P = 0.)  | ບຫ). l* =   | 04.7%   |        |                            |                                |

Figure 6 Lesion volume subgroup analysis of administration dose after brain injury. Most studies show that MK-

801 at various doses reduces lesion volume after acute brain injury in rats.

funnel, indicating the presence of small sample effects. However, because of the systematic search and the large number of studies, the publication bias was relatively small.

#### Discussion

Despite the enormous funding and research into treatments for ABI, there are very few effective therapies available in the clinic. For translation to the clinic, treatments must have satisfactory efficacy, have high safety, with minor or no side effects, and have a well-defined molecular mechanism of action. Given the reported beneficial roles of MK-801 in ABI, we performed a systematic review of all available studies to critically assess its potential for clinical translation.

#### Summary of evidence

Using a sensitive and exhaustive literature search strategy, we identified 52 eligible studies. The methodological quality of these studies is relatively low. Random-effects meta-analysis suggested that MK-801 has beneficial effects in ABI. It reduced lesion volume and brain edema, and improved neurological scores. Treatment with MK-801 led to a 58.31 mm<sup>3</sup> reduction in lesion volume, a 1.21% reduction in brain water content, and better spatial cognition.

Our subgroup analysis revealed no significant difference in

reduction of lesion volume between the various injury models, administration routes, timings or doses. The sub-subgroup analysis of the MCAO model showed that reduction in lesion volume was associated with administration dose. Reduction of lesion volume was greater with the 0–1 mg/kg dose than with the 5–10 mg/kg dose. Further network meta-analysis confirmed this finding.

#### Injury type

The studies reported that MK-801 reduces lesion size, alleviates cerebral edema and improves cognition in traumatic brain injury and ischemic or hemorrhagic stroke models. Our subgroup analysis indicated that MK-801 reduces lesion size in both ischemic and hemorrhagic stroke models, and has a better effect in MCAO models. However, only three studies using this model were included in the analysis (Lyden and Lonzo, 1994; Kawai et al., 2000; Uchida et al., 2001), and therefore, further study is needed to clarify the effects of MK-801 in hemorrhagic stroke.

#### MK-801 dose

Optimal dose is critical for treating any disease. The dose of MK-801 in the studies ranged from 0.04 to 10 mg/kg, and most used a dose of 1 mg/kg. Although all doses have been reported to have positive effects on ABI, doses above 5 mg/kg were associated with high mortality with obvious side effects, while 2.5 mg/kg was associated with low mortality (Dawson et al., 1994). We found that reduction of lesion volume was not significantly different among the 0-1, 1-3 and 5-10 mg/kg doses, but a relatively low effect size was found for 5 mg/kg. Sub-subgroup analysis of the MCAO model suggested that reduction of lesion volume was more pronounced in studies using doses of 0-1 mg/kg than 5-10 mg/kg. Moreover, network analysis indicated that the 0-1 mg/kg dose is more effective in comparison with the 1-3 and 5-10 mg/kg doses. These findings suggest that a low dose with few side effects should be recommended, especially for brain ischemic disease.

#### Timing of MK-801 administration

The pathogenesis of ABI follows a distinct temporal sequence of events, and therefore, the timing of treatment is critical for effective therapy. One study reported a greater reduction in infarct volume in animals given post-occlusion treatment with MK-801 compared with animals given pretreatment (Shapira et al., 1993). In another study, pretreatment alone failed to reduce neocortical damage after focal cerebral ischemia (Dawson et al., 1994). As the occurrence of ABI is unpredictable, pre-administration is not clinically feasible, except in situations such as cardiothoracic surgery, which may induce ischemic ABI. Our subgroup and sub-subgroup analyses showed that lesion volume reduction was not significantly different among the various administration timings (i.e. pretreatment, and 0-15, 15-30 and 30-60 minutes post-injury). Early treatment of secondary damage in ABI is crucial for improving the later regeneration of injured neurons and for the recovery of neurological function. Therefore, early administration of MK-801 should be more neuroprotective.

#### Administration route

MK-801 given by intravenous injection exerted neuroprotective effects in various studies on ABI. Our subgroup analysis suggested that infarct volume was not associated with administration route (intraperitoneal or intravenous injection). In the clinic, intravenous injection may therefore be an appropriate choice if MK-801 makes it to clinical trial.

#### Safety

Although high-dose MK-801 for treating ABI is associated with certain side effects, the concept of safety takes into consideration not only adverse reactions, but also the ratio of median effective dose to median lethal dose. In animal studies, doses of 0.04-10 mg/ kg have been shown to be neuroprotective, and only minor side effects were reported with initial administration of 2.5 mg/kg MK-801 followed by 1.25 mg/kg at 6 and 14 hours (Buchan et al., 1992). Hence, there is a large separation between the effective and risk doses.

Behavioral impairment and neuronal degeneration following MK-801 administration have been reported in a large number of studies. However, most of these studies used normal animals given chronic MK-801 administration. Although hyperactivation of NMDA receptors is a key pathological event in central nervous system injury, the normal physiological function of the receptor is critical for neuronal excitability and homeostasis. The loss of physiological NMDA receptors leads to robust neuroinflammation, death of neural cells and neuronal degeneration. In ABI, MK-801 likely reduces the hyperactivation of NMDA receptors, rather than inhibiting their normal function.

In ABI, MK-801 primarily serves to reverse the acute damage, with a relatively low risk of inhibiting the normal physiological function of NMDA receptors. However, it also alleviates secondary damage in a therapeutically safe manner. The beneficial effects of MK-801 therefore seem to far outweigh the risk. Derivatives of MK-801, produced by structural modification, might further enhance safety and may be even more suitable for future clinical translation.

Excessive activation of NMDA receptors is associated with key pathological changes in ABI. Given that MK-801 is an NMDA receptor antagonist, it may act via a number of different mechanisms to protect against ABI (Kaindl et al., 2012; Olmos and Lladó, 2014; Figure 10).

#### **Reduction of neuronal loss**

Potential therapeutic mechanisms

Glutamate release in the area of primary damage and the subsequent inflammation stimulate neuronal NMDA receptors and leads to excessive cell death (Ye et al., 2013; Matute, 2007). MK-801 reduces lesion volume, neuronal cell loss and brain edema by lessening neurotoxicity induced by the intracellular accumulation of Na<sup>+</sup> and Ca<sup>2+</sup> (Bakiri et al., 2008; Han et al., 2009; Dong et al., 2017). Activation of mitogen-activated protein kinases (MAPKs), endoplasmic reticulum stress and the caspase proteins are strongly linked to cell death (Dong et al., 2017; Tran et al., 2017). MK-801 has been shown to affect c-Jun N-terminal kinase, p38 MAPK, caspase-3 and Bax signaling (Wang et al., 2011; Sanchez et al., 2016; Tran et al., 2017). Furthermore, MK-801 protects against oligodendrocyte death and demyelination by reducing Ca<sup>2+</sup> overload in the cytosol (Matute, 2007).

#### Neuroinflammation modulation

Rapid activation of microglia and astrocytes following the initial trauma induces the inflammatory response, further leading to disruption of the blood-brain barrier and the recruitment of peripheral immune cells in the lesion area (Kuhlmann et al., 2009; Kaindl et al., 2012). The NMDA receptor has been argued to play an important role in microglial activation (Li et al., 2017). Glutamate, NMDA, interleukin-1 $\beta$  and tumor necrosis factor- $\alpha$  promote microglial activation by directly or indirectly activating NMDA receptors (Matute, 2007; Ye et al., 2013; Olmos and Lladó, 2014). Blocking NMDA receptors with MK-801 prevents the inflammation triggered by microglial activation and the ensuing neurotoxicity (Streit et al., 1992; Morkuniene et al., 2015). MAPK, protein kinase C, nuclear factor-kappa B (NF-KB), Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) are important downstream effectors of the NMDA receptor that are involved in microglial M1 polarization. These signaling effectors are downregulated by MK-801 in vivo and in vitro (Kawamoto et al., 2012; Chen et al., 2017; Liu et al., 2017; Ding et al., 2018). Therefore, MK-801 may reduce neuroinflammation by inhibiting activation of the NMDA receptor and its downstream effectors (de Sá Lima et al., 2013; Li et al., 2017).

#### Antioxidant stress

Oxidative stress, primarily resulting from mitochondrial or endoplasmic reticulum dysfunction, is a key factor in various pathological and functional changes (Dong et al., 2017; Chien et al., 2018). Excessive reactive oxygen species production can lead to inflammation, perturbation of ionic homeostasis, DNA damage and cell death in the central nervous system (Kaindl et al., 2012; Milton and Smith, 2018; Nagalakshmi et al., 2018). Hyperactivation of NMDA receptors contributes to excessive Ca2+ influx, a decrease in superoxide dismutase, and an increase in oxidative stress (Zieminska et al., 2017). MK-801 protects against mitochondrial and endoplasmic reticulum dysfunction by inhibiting oxidative stress and reactive oxygen species production (Massari et al., 2016; Dong et al., 2017). Although the underlying molecular mechanisms are still unclear, MK-801 may exert neuroprotection by reducing Ca<sup>2+</sup> influx and inhibiting protein kinase C signaling (Liu et al., 2017; Zieminska et al., 2017).

Hyperactivation of NMDA receptors leads to astrogliosis and glial scarring (Ebrahimi et al., 2012). MK-801 treatment in neuropathic pain models inhibits astrocyte activation and glial fibrillary acidic protein expression (Wang et al., 2017; Jha et al., 2018). The extracellular signal-regulated kinase or JAK/STAT3 signal associated with

the NMDA receptor may be involved in the anti-astrogliotic effect of MK-801 (Sutton and Chandler, 2002; Sriram et al., 2004).

#### **Regulation of neurotrophic factors**

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of signaling molecules, plays a key role in neuroplasticity and neuroregeneration (Garraway et al., 2016). Pro-BDNF, the precursor protein, may exert some effects that are opposite to those of mature BDNF (Zhao et al., 2017). A variety of studies have reported an upregulation of BDNF mRNA associated with the activation of NMDA reporter in the cerebral cortex and hippocampus during the early stage of traumatic brain injury and ischemic stroke (Hughes et al., 1993; Felderhoff-Mueser et al., 2002; Sönmez et al., 2015; Zhao et al., 2017). Transcriptional activation of the BDNF gene increases production of pro-BDNF, leading to activation of p75NTR, which may exacerbate brain injury (Garraway et al., 2016). MK-801 administration in rats with brain injury suppresses the excessive increase in BDNF mRNA, and might therefore reduce the production of pro-BDNF to inhibit the events leading to microglial proliferation, oxidative stress and neural cell death (Dietrich et al., 2000; Zhu et al., 2015). Following the acute phase, the expression of BDNF mRNA and protein gradually decreases (Al-Amin et al., 2011). It was suggested that stroke patients in the chronic stage have lower BDNF levels compared with healthy participants (Pascotini et al., 2018). Interestingly, MK-801 administration was reported to reverse the lower expression of BDNF protein in rats with neuropathy during the subacute and chronic stages, and to be neuroprotective against neuronal loss and the associated cognitive impairment (Sönmez et al., 2015). The neuroprotective effect of MK-801 might involve BDNF-mediated CREB activation (You et al., 2019). However, the complex relationship between MK-801 and BDNF is still poorly understood.

#### Strengths and limitations

To our knowledge, our present study is the first meta-analysis to quantitatively evaluate MK-801 efficacy, in an effort to assess its potential for clinical trials and translation. An understanding of the optimal timing and route of administration, dose, efficacy, safety and mechanism of action of a drug is crucial for effective clinical translation. Here, we combined systematic review and traditional review to comprehensively analyze these parameters for MK-801.

Controlling variables is key to assessing the effects of a drug. Traditional subgroup analysis can only control for a single variable, and the remaining heterogeneity can diminish the credibility of the pooled results. Therefore, subgroup analysis is a feasible method for reducing heterogeneity and obtaining more reliable results. Given the high heterogeneity in subgroup analysis, we conducted sub-subgroup analysis for the MCAO subgroup. Despite no obvious reduction in heterogeneity, our findings show that MK-801 is effective for ischemic brain injury. Furthermore, our analyses suggest that the NMDA receptor is a promising pharmacological target for ABI treatment. Our findings should advance our understanding of the underlying pathological mechanisms and promote the development of new effective therapies for ABI.

Substantial between-study heterogeneity for treatment effect was identified in our review, which may seem a barrier to a meaningful analysis. Heterogeneity is usually a complicated problem. Complex variables likely contribute to the heterogeneity. It is difficult to reduce the heterogeneity by subgroup analysis, which can only limit one or two variables. The use of meta-analysis for heterogeneous studies is akin to comparing apples with oranges. However, a large number of studies with a consistent result can enhance reliability.

Unfortunately, studies of traumatic brain injury or hemorrhagic brain injury are limited. The pooled meta-analysis results mirrored the efficacy of MK-801 in the MCAO model. The neuroprotective effects of MK-801 in traumatic brain injury and hemorrhagic brain injury remain to be confirmed by high-quality studies. Finally, as most journals publish articles with positive results, and as some authors may selectively report the beneficial over adverse outcomes, there is a potential treatment bias in the present study.

In this study, data points in the funnel plots did not observe a fully symmetric distribution, indicating a small publication bias. The bias may occur in the original study or in the selection process for inclusion in the study. Additionally, most journals publish articles with positive results, and some authors selectively report the beneficial outcomes over adverse outcomes, which may also contribute to the publication bias. The reporting bias in studies is an important factor impacting the reliability of the pooled results. Finally, financial funding is an important source of heterogeneity, and some of the studies did not report potential conflicts of interest.

MK-801 is an old drug that has been investigated for many years, and therefore has an advantage over new drugs that are not well characterized. Our current findings suggest that MK-801 has a clear neuroprotective action in models of ABI. As a corollary, our findings also suggest that the NMDA receptor is a promising pharmacological target for ABI treatment. The beneficial effects of MK-801 appear to far outweigh its adverse effects. MK-801 is therefore likely suitable for further clinical trials and may have therapeutic efficacy in the clinical treatment of ABI. However, the results should be interpreted in light of the limitations in experimental design and methodological quality of the studies included in the meta-analysis.

Author contributions: Review conception: NXY, HX, TZ; electronic literature search: NXY, LYZ; manual literature search: YJS, XYW; study selection and data extraction: NXY, LYZ, QQL; quality implementation: QQL, TSZ; external advisers: YJW, QS; data analysis: NXY, LYZ, HX, TZ; initial draft writing: NXY, LYZ, XYW, YJS, HHH; manuscript revision: QQL, HX, TZ. All authors approved the final version of the paper.

Conflicts of interest: The authors declare no conflicts of interest.

Financial support: This work was supported by the National Natural Science Foundation of China, No. 81822050 (to QQL), 81873321 (to HX), 81673990 (to QQL), 81330085 (to QS), 81730107 (to YJW); the Shanghai Municipal Health and Family Planning Commission TCM Research Project of China, No. 2018JP014 (to HX); the Three-Year Action Plan to Promote Clinical Skills and Clinical Innovation in Municipal Hospitals of China, No. 16CR1017A (to YJW); the Shanghai Traditional Chinese Medicine Chronic Disease [Malig-nant Tumor, Bone Degenerative Disease] Clinical Medical Center of China, No. 2017ZZ01010 (to YJW); the National Ministry of Education Innovation Team of China, No. IRT1270 (to YJW); the Innovation Team of Key Fields of the Ministry of Science and Technology of China, No. 2015RA4002 (to YJW); the Outstanding Principle Investigator Project of Guanghua Hospital, Changning District, Shanghai, China, No. 2016-01 (to QS), 2016-06 (to YJW). The funding bodies played no role in the study design, in the collection, analysis and interpretation of data, in the writing of the paper, and in the decision to submit the paper for publication.

Reporting statement: This study followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement.

Ćopyright license agreement: The Copyright License Agreement has been signed by all authors before publication.

Data sharing statement: The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Plagiarism check: Checked twice by iThenticate. Peer review: Externally peer reviewed.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and

the new creations are licensed under the identical terms. Open peer reviewer: Laura Romina Caltana, Universidad de Buenos Aires, Argentina.

#### Additional files:

Additional Table 1: Characteristics of studies included in the meta-analysis.

Additional Figure 1: Lesion volume (%) meta-analysis of rats after brain injury. Additional Figure 2: Lesion volume subgroup analysis concerning administration routes after brain injury.

Additional Figure 3: Lesion volume subgroup analysis concerning administration time after brain injury.

Additional Figure 4: Lesion volume subgroup analysis concerning injury model after brain iniurv.

Additional Figure 5: MCAO sub-subgroup analysis concerning administration routes after brain injury. Additional Figure 6: MCAO sub-subgroup analysis concerning administration

time after brain injury

Additional file 1: Open peer review report 1.



#### Figure 8 Network analysis of the effects of MK-801 administration dose.

(A) Forest plot of pairwise comparison of different MK-801 doses according to subgroup. (B) Probability analysis of different sequences in studies of all injury models. (C) Forest plot of pairwise comparison of different MK-801 doses according to sub-subgroup. (D) Probability analysis of different sequences in studies of MCAO models. 1: Control; 2: 0-1 mg; 3: 1-3 mg; 4: 5-10 mg.





#### Figure 9 Funnel plot analysis.

(A) Funnel plot analysis of the effects of MK-801 on brain injury. (B) Funnel plot analysis of the effects of MK-801 in the middle cerebral artery occlusion model subgroup.



#### Figure 10 Potential molecular mechanisms underlying the neuroprotective action of MK-801 against acute brain injury.

Under pathological conditions, excessive activation of glutamate receptors or Ca2+ influx induces oxidative stress, glial cell activation, and neuronal or oligodendrocyte cell death by affecting downstream signaling pathways, such as PKC, MAPK and PI3K/AKT. MK-801, an antagonist of the NMDA receptor, downregulates PKC and MAPK to suppress neuroinflammation. It also inhibits the JNK and p38 MAPK pathways and downstream apoptosis-related molecules to alleviate neural cell loss, reduce oxidative stress and promote functional recovery. Interestingly, MK-801 seems to have opposing effects on BDNF expression. MK-801 can prevent the excessive increase in BDNF mRNA in the early stage of brain injury and increase BDNF levels in the chronic stage. These contrasting effects reduce acute injury and promote the survival and regeneration of neural cells. IL-1ß: Interleukin 1 beta; MAPK: mitogen-activated protein kinase; STAT3: signal transducer and activator of transcription 3; TNFR: tumor necrosis factor receptor; TNF-a: tumor necrosis factor a; JNK: c-Jun N-terminal kinase; Bax: Bcl-2-associated X; BDNF: brain-derived neurotrophic factor; PI3K: phosphatidylinositol 3-kinase; ERK: extracellular signal-regulated kinase; PKC: protein kinase C; ROS: reactive oxygen species.

| Yi NX, Zhou LY, Wang XY, Song YJ, Han HH, Zhang TS, Wang YJ, Shi Q, Xu H, Liang QQ, Zhang T (2019) MK-801 attenuates lesion      |
|----------------------------------------------------------------------------------------------------------------------------------|
| expansion following acute brain injury in rats: a meta-analysis. Neural Regen Res 14(11):1919-1931. doi:10.4103/1673-5374.259619 |

|                                                                      | Expe           | erimenta      | ıl       | С             | ontrol      |                                         |              | Mean Difference                                    | Mean Difference                |
|----------------------------------------------------------------------|----------------|---------------|----------|---------------|-------------|-----------------------------------------|--------------|----------------------------------------------------|--------------------------------|
| Study or Subgroup                                                    | Mean           | SD            | Total    | Mean          | SD          | Total                                   | Weight       | IV, Random, 95% Cl                                 | IV, Random, 95% Cl             |
| 12.1.1 dose (0,1]                                                    |                |               |          |               |             |                                         |              |                                                    |                                |
| Pschorn U 1993                                                       | 75.97          | 10.85         | 5        | 250.52        | 41.6        | 5                                       | 2.0%         | -174.55 [-212.23, -136.87]                         |                                |
| Memezawa H 1995                                                      | 27.01          | 46.49         | 8        | 157.76        | 83.78       | 7                                       | 1.0%         | -130.75 [-200.68, -60.82]                          |                                |
| Hanon E 2001                                                         | 107            | 22.3          | 9        | 211           | 23.8        | 12                                      | 2.9%         | -104.00 [-123.84, -84.16]                          |                                |
| Herz RC 1998                                                         |                | 17.46         | 7        | 154.41        | 20.22       | 7                                       | 2.9%         | -100.18 [-119.97, -80.39]                          |                                |
| Mackensen GB 2000                                                    | 35             | 35            | 16       | 125           | 72          | 16                                      | 1.9%         | -90.00 [-129.23, -50.77]                           |                                |
| Sarraf-Yazdi S 1998                                                  | 100            | 65            | 18       | 182           | 63          | 18                                      | 1.8%         | -82.00 [-123.82, -40.18]                           |                                |
| Sarraf-Yazdi S 1999                                                  | 81             | 60            | 18       | 163           | 36          | 12                                      | 2.2%         | -82.00 [-116.40, -47.60]                           |                                |
| Takamatsu H 1998                                                     | 126.1          | 20.3          | 8        | 202.4         | 8.5         | 9                                       | 3.1%         | -76.30 [-91.42, -61.18]                            |                                |
| Gorgulu A 2000                                                       | 90.55          | 8.49          |          | 162.29        |             | 10                                      | 3.2%         | -71.74 [-83.14, -60.34]                            |                                |
| Margaill   1996                                                      | 169            | 30            | 9        | 239           | 30          | 9                                       | 2.5%         | -70.00 [-97.72, -42.28]                            |                                |
| Lo EH 1994                                                           | 49             | 27            | 6        | 118           | 44          | 6                                       | 1.9%         | -69.00 [-110.31, -27.69]                           |                                |
| Pan DQ 2003                                                          | 94.29          | 8.94          |          | 144.65        | 7.37        | 5<br>9                                  | 3.3%         | -50.36 [-60.52, -40.20]                            |                                |
| Katsuta K 1995                                                       |                | 43.05         |          | 145.99        | 36.46       |                                         | 2.3%         | -50.03 [-81.43, -18.63]                            | +                              |
| Gill R 1991                                                          | 92.47<br>79.71 | 16.15<br>8.49 | 24<br>14 | 141.97<br>127 | 4.68        | 24<br>6                                 | 3.4%<br>3.4% | -49.50 [-56.23, -42.77]                            | -                              |
| Park CK 1988<br>Herz RC 1998                                         | 45.96          | 3.68          | 6        | 92.83         | 7<br>3.68   | 6                                       | 3.4%         | -47.29 [-54.44, -40.14]<br>-46.87 [-51.03, -42.71] | -                              |
| Bielenberg GW 1991                                                   | 40.50          | 23.1          | 8        | 99.1          | 26.9        | 9                                       | 2.7%         | -41.10 [-64.87, -17.33]                            |                                |
| Roussel S 1992                                                       | 73.81          |               | 9        | 110.71        | 22.62       | 10                                      | 2.7%         | -36.90 [-60.87, -12.93]                            |                                |
| Xue D 1994                                                           | 170            | 33            | 11       | 181           | 32          | 15                                      | 2.6%         | -11.00 [-36.35, 14.35]                             |                                |
| Margaill   1996                                                      | 200            | 40            | 8        | 209           | 14          | 8                                       | 2.4%         | -9.00 [-38.37, 20.37]                              |                                |
| Dawson DA 1994                                                       | 50.71          |               | 9        |               | 11.43       | 10                                      | 3.2%         | -8.35 [-20.82, 4.12]                               |                                |
| Onal MZ 1997                                                         | 179.1          | 78.5          | 7        | 175.2         | 89.3        | 8                                       | 0.7%         | 3.90 [-81.02, 88.82]                               |                                |
| Subtotal (95% CI)                                                    |                | 10.0          | 232      |               | 00.0        | 221                                     | 55.3%        | -60.77 [-70.98, -50.56]                            | •                              |
| Heterogeneity: Tau <sup>2</sup> = 41                                 | 5.69: CI       | hi² = 203     |          | = 21 (P <     | < 0.0000    |                                         |              |                                                    |                                |
| Test for overall effect: Z =                                         |                |               |          |               |             | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |                                                    |                                |
| 12.1.2 dose (1,3]                                                    |                |               |          |               |             |                                         |              |                                                    |                                |
| Buchan AM 1992                                                       | 41             | 19            | 9        | 150           | 43          | 9                                       | 2.3%         | -109.00 [-139.71, -78.29]                          |                                |
| Foster KA 2009                                                       | 112.82         | 20.5          | 41       | 200.71        |             | 41                                      | 3.3%         | -87.89 [-97.52, -78.26]                            | +                              |
| Moyanova SG 2007                                                     | 85.5           | 5.2           | 13       | 170.5         | 22.7        | 24                                      | 3.3%         | -85.00 [-94.51, -75.49]                            | -                              |
| Regan HK 2007                                                        | 130            | 24            | 20       | 211           | 28          | 17                                      | 3.0%         | -81.00 [-97.96, -64.04]                            |                                |
| Shen SY 2003                                                         | 60.8           | 7.76          | 18       | 140.6         | 14.81       | 18                                      | 3.3%         | -79.80 [-87.52, -72.08]                            | -                              |
| lijima T 1992                                                        | 58             | 11.5          | 6        | 108           | 38.5        | 6                                       | 2.3%         | -50.00 [-82.15, -17.85]                            |                                |
| Cam E 2008                                                           | 23.12          | 21.1          | 5        | 73.12         | 23.2        | 5                                       | 2.5%         | -50.00 [-77.49, -22.51]                            |                                |
| Gill R 1992                                                          | 121.32         | 19.82         | 16       | 159.8         | 20.7        | 16                                      | 3.1%         | -38.48 [-52.52, -24.44]                            |                                |
| Bertorelli R 1998                                                    | 24.6           | 4             | 4        | 44.5          | 3           | 4                                       | 3.4%         | -19.90 [-24.80, -15.00]                            | • •                            |
| Subtotal (95% CI)                                                    |                |               | 132      |               |             | 140                                     | 26.5%        | -66.55 [-90.89, -42.21]                            | <b>•</b>                       |
| Heterogeneity: Tau <sup>2</sup> = 12                                 |                |               |          | lf = 8 (P <   | < 0.0000    | 01); l² =                               | 98%          |                                                    |                                |
| Test for overall effect: Z =                                         | = 5.36 (P      | ' < 0.000     | 101)     |               |             |                                         |              |                                                    |                                |
| 12.1.3 dose [5,10]                                                   |                |               |          |               |             |                                         |              |                                                    |                                |
| Katsuta K 1995                                                       | 73.39          | 39.68         | 7        | 145.99        | 36.46       | 9                                       | 2.0%         | -72.60 [-110.43, -34.77]                           |                                |
| Dirnagl U 1990                                                       | 165            | 63            | 15       | 231           | 22          | 13                                      | 2.2%         | -66.00 [-100.05, -31.95]                           |                                |
| Relton JK 1996                                                       | 26.87          | 6.37          | 8        | 78.88         | 13.06       | 8                                       | 3.3%         | -52.01 [-62.08, -41.94]                            | +                              |
| Buchan AM 1992                                                       | 145.29         |               |          | 186.23        | 7.86        | 31                                      | 3.4%         | -40.94 [-45.71, -36.17]                            | -                              |
| Roussel S 1992                                                       | 73.81          | 25.1          |          | 110.71        |             | 9                                       | 2.8%         | -36.90 [-57.40, -16.40]                            |                                |
| Bielenberg GW 1991                                                   | 77.5           | 32.4          | 6        | 99.1          | 26.9        | 9                                       | 2.3%         | -21.60 [-52.92, 9.72]                              |                                |
| Dirnagl U 1990                                                       | 186            | 33            | 12       | 197           | 51          | 11                                      | 2.1%         | -11.00 [-46.45, 24.45]                             |                                |
| Subtotal (95% CI)                                                    |                |               | 91       |               |             | 90                                      | 18.1%        | -43.35 [-53.33, -33.38]                            | ▼                              |
| Heterogeneity: Tau <sup>2</sup> = 73<br>Test for overall effect: Z = |                |               |          | 6 (P = 0.0    | 14); l² = 1 | 54%                                     |              |                                                    |                                |
| rescior overall ellett. Z -                                          | - 0.02 (F      | 0.000         | ,        |               |             |                                         |              |                                                    | .                              |
| Total (95% CI)                                                       |                |               | 455      |               |             |                                         | 100.0%       | -59.23 [-67.53, -50.93]                            | •                              |
| Heterogeneity: Tau <sup>2</sup> = 52                                 |                |               |          | = 37 (P <     | 0.0000      | 01); l² =                               | 94%          |                                                    | -200 -100 0 100 200            |
| Test for overall effect: Z =                                         |                |               |          |               |             |                                         |              |                                                    | Favours MK-801 Favours control |
| Toot for outparoun difford                                           | mana: A        | hiz - 7 0     | 4 46-    | 2/D = 0       | DOX 12 -    | 74 604                                  |              |                                                    |                                |

#### Figure 7 MCAO sub-subgroup analysis of administration dose after brain injury. Most studies show that MK-

801 decreases lesion volume in the rat MCAO model. MCAO: Middle cerebral artery occlusion.

### References

Al-Amin H, Sarkis R, Atweh S, Jabbur S, Saadé N (2011) Chronic dizocilpine or apomorphine and development of neuropathy in two animal models II: effects on brain cytokines and neurotrophins. Exp Neurol 228:30-40.

Test for subgroup differences; Chi<sup>2</sup> = 7.01, df = 2 (P = 0.03), l<sup>2</sup> = 71.5%

- Allahtavakoli M, Shabanzadeh A, Roohbakhsh A, Pourshanazari A (2007) Combination therapy of rosiglitazone, a peroxisome proliferator-activated receptor-gamma ligand, and NMDA receptor antagonist (MK-801) on experimental embolic stroke in rats. Basic Clin Pharmacol Toxicol 101:309-314.
- Ao K, Ho C, Wang C, Wang J, Chio C, Kuo J (2017) The increased risk of stroke in early insomnia following traumatic brain injury: a population-based cohort study. Sleep Med 37:187-192.
- Ashioti M, Beech JS, Lowe AS, Bernanos M, McCreary A, Modo MM, Williams SC (2009) Neither in vivo MRI nor behavioural assessment indicate therapeutic efficacy for a novel 5HT1A agonist in rat models of ischaemic stroke. BMC Neurosci 10:82.
- Bakiri Y, Hamilton NB, Káradóttir R, Attwell D (2008) Testing NMDA receptor block as a therapeutic strategy for reducing ischaemic damage to CNS white matter. Glia 56:233-240.
- Balabanski AH, Newbury J, Leyden JM, Arima H, Anderson CS, Castle S, Cranefield J, Paterson T, Thrift AG, Katzenellenbogen J, Brown A, Kleinig TJ (2018) Excess stroke incidence in young Aboriginal people in South Australia: pooled results from two population-based studies. Int J Stroke 13:811-814
- Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472-476.

Bertorelli R, Adami M, Di Santo E, Ghezzi P (1998) MK 801 and dexamethasone reduce both tumor necrosis factor levels and lesion volume after focal cerebral ischemia in the rat brain. Neurosci Lett 246:41-44.

- Bielenberg GW, Beck T (1991) The effects of dizocilpine (MK-801), phencyclidine, and nimodipine on Lesion size 48 h after middle cerebral artery occlusion in the rat. Brain Res 552:338-342.
- Buchan AM, Slivka A, Xue D (1992) The effect of the NMDA receptor antagonist MK-801 on cerebral blood flow and Lesion volume in experimental focal stroke. Brain Res 574:171-177.
- Cam E, Yulug B, Ozan E (2008) MK 801: a possible neuroprotective agent by poststroke depression? J Neuropsychiatry Clin Neurosci 20:367-368.
- Chen HSV, Wang YF, Rayudu PV, Edgecomb P, Neill JC, Segal MM, Lipton SA, Jensen FE (1998) Neuroprotective concentrations of the N-methyl-D-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation. Neuroscience 86:1121-1132.
- Chen S, Dong Z, Cheng M, Zhao Y, Wang M, Sai N, Wang X, Liu H, Huang G, Zhang X (2017) Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J Neuroinflammation 14:187.
- Chien L, Liang MZ, Chang CY, Wang C, Chen L (2018) Mitochondrial therapy promotes regeneration of injured hippocampal neurons. Biochim Biophys Acta 1864:3001-3012.
- Dawson DA, Graham DI, McCulloch J, Macrae IM (1994) Anti-ischaemic efficacy of a nitric oxide synthase inhibitor and a N-methyl-d-aspartate receptor antagonist in models of transient and permanent focal cerebral ischaemia. Br J Pharmacol 113:247-253.

- de Sá Lima L, Kawamoto EM, Munhoz CD, Kinoshita PF, Orellana AMM, Curi R, Rossoni LV, Avellar MCW, Scavone C (2013) Ouabain activates NFκB through an NMDA signaling pathway in cultured cerebellar cells. Neuropharmacology 73:327-336.
- Dietrich WD, Truettner J, Prado R, Stagliano NE, Zhao W, Busto R, Ginsberg MD, Watson BD (2000) Thromboembolic events lead to cortical spreading depression and expression of c-fos, brain-derived neurotrophic factor, glial fibrillary acidic protein, and heat shock protein 70 mRNA in rats. J Cereb Blood Flow Metab 20:103-111.
- Ding Y, Qian J, Li H, Shen H, Li X, Kong Y, Xu Z, Chen G (2018) Effects of SC99 on cerebral ischemia-perfusion injury in rats: selective modulation of microglia polarization to M2 phenotype via inhibiting JAK2-STAT3 pathway. Neurosci Res doi: 10.1016/j.neures.2018.05.002.
- Dirnagl U, Tanabe J, Pulsinelli W (1990) Pre- and post-treatment with MK-801 but not pretreatment alone reduces neocortical damage after focal cerebral ischemia in the rat. Brain Res 527:62.
- Dong Y, Kalueff AV, Song C (2017) N-methyl-D-aspartate receptor-mediated calcium overload and endoplasmic reticulum stress are involved in interleukin-1beta-induced neuronal apoptosis in rat hippocampus. J Neuroimmunol 307:7-13.
- Duris K, Splichal Z, Jurajda M (2018) The role of inflammatory response in stroke associated programmed cell death. Curr Neuropharmacol 16:1365-1374.
- Ebrahimi F, Koch M, Pieroh P, Ghadban C, Hobusch C, Bechmann I, Dehghani F (2012) Time dependent neuroprotection of mycophenolate mofetil: effects on temporal dynamics in glial proliferation, apoptosis, and scar formation. J Neuroinflammation 9:89.
- Felderhoff-Mueser U, Sifringer M, Pesditschek S, Kuckuck H, Moysich A, Bittigau P, Ikonomidou C (2002) Pathways leading to apoptotic neurodegeneration following trauma to the developing rat brain. Neurobiol Dis 11:231-245.
- Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, Lo EH (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40:2244-2250.
- Foster KA, Regan HK, Danziger AP, Detwiler T, Kwon N, Rickert K, Lynch JJ, Regan CP (2009) Attenuation of edema and Lesion volume following focal cerebral ischemia by early but not delayed administration of a novel small molecule KDR kinase inhibitor. Neurosci Res 63:10-16.
- Frazzini VI, Winfree CJ, Choudhri HF, Prestigiacomo CJ, Solomon RA (1994) Mild hypothermia and MK-801 have similar but not additive degrees of cerebroprotection in the rat permanent focal ischemia model. Neurosurgery 34:1040-1045.
- Garraway SM, Huie JR (2016) Spinal plasticity and behavior: BDNF-induced neuromodulation in uninjured and injured spinal cord. Neural Plast 2016:1-19.
- Gill R, Andiné P, Hillered L, Persson L, Hagberg H (2016) The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischaemia in the rat. J Cereb Blood Flow Metab 12:371-379.
- Gill R, Brazell C, Woodruff GN, Kemp JA (1991) The neuroprotective action of dizocilpine (MK-801) in the rat middle cerebral artery occlusion model of focal ischaemia. Br J Pharmacol 103:2030-2036.
- Gorgulu A, Kins T, Cobanoglu S, Unal F, Izgi NI, Yanik B, Kucuk M (2000) Reduction of edema and Lesionion by Memantine and MK-801 after focal cerebral ischaemia and reperfusion in rat. Acta Neurochir (Wien) 142:1287-1292.
- Green EJ, Pazos AJ, Dietrich WD, McCabe PM, Schneiderman N, Lin B, Busto R, Globus MY, Ginsberg MD (1995) Combined postischemic hypothermia and delayed MK-801 treatment attenuates neurobehavioral deficits associated with transient global ischemia in rats. Brain Res 702:145-152.
- Hamm RJ, O'Dell DM, Pike BR, Lyeth BG (1993) Cognitive impairment following traumatic brain injury: the effect of pre- and post-injury administration of scopolamine and MK-801. Brain Res Cogn Brain Res 1:223-226.
- Han R, Hu J, Weng Y, Li D, Huang Y (2009) NMDA receptor antagonist MK-801 reduces neuronal damage and preserves learning and memory in a rat model of traumatic brain injury. Neurosci Bull 25:367-375.
- Hanon E, Klitgaard H (2001) Neuroprotective properties of the novel antiepileptic drug levetiracetam in the rat middle cerebral artery occlusion model of focal cerebral ischemia. Seizure 10:287-293.
- Herz RC, Kasbergen CM, Versteeg DH, De Wildt DJ (1998) The effect of the adrenocorticotropin-(4-9) analogue, ORG 2766, and of dizolcipine (MK-801) on Lesion volume in rat brain. Eur J Pharmacol 346:159-165.
- Hu Z, Ma H, Fan Q, Yin J, Wei M, Lin Y, Fan M, Sun C (2014) A new method for evaluation of motor injury after acute brain ischemic damage. Int J Neurosci 125:298-306.
- Hughes P, Beilharz E, Gluckman P, Dragunow M (1993) Brain-derived neurotrophic factor is induced as an immediate early gene following N-methyl-D-aspartate receptor activation. Neuroscience 57:319-328.

- Iijima T, Mies G, Hossmann KA (2016) Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: effect on volume of ischemic injury. J Cereb Blood Flow Metab 12:727-733.
- Jha MK, Jo M, Kim J, Suk K (2018) Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist doi: 10.1177/1073858418783959.
- Jolliffe L, Lannin NA, Cadilhac DA, Hoffmann T (2018) Systematic review of clinical practice guidelines to identify recommendations for rehabilitation after stroke and other acquired brain injuries. BMJ Open 8:e018791.
- Kaindl AM, Degos V, Peineau S, Gouadon E, Chhor V, Loron G, Le Charpentier T, Josserand J, Ali C, Vivien D, Collingridge GL, Lombet A, Issa L, Rene F, Loeffler JP, Kavelaars A, Verney C, Mantz J, Gressens P (2012) Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol 72:536-549.
- Katsuta K, Nakanishi H, Shirakawa K, Yoshida K, Takagi K, Tamura A (2016) The neuroprotective effect of the novel noncompetitive NMDA antagonist, FR115427 in focal cerebral ischemia in rats. J Cereb Blood Flow Metab 15:345-348.
- Kawai N, Nakamura T, Okauchi M, Nagao S (2000) Effects of hypothermia on intracranial hemodynamics and ischemic brain damage-studies in the rat acute subdural hematoma model. Acta Neurochir Suppl 76:529-533.
- Kawamoto EM, Lima LS, Munhoz CD, Yshii LM, Kinoshita PF, Amara FG, Pestana RRF, Orellana AMM, Cipolla-Neto J, Britto LRG, Avellar MCW, Rossoni LV, Scavone C (2012) Influence of N-methyl-D-aspartate receptors on ouabain activation of nuclear factor-κB in the rat hippocampus. J Neurosci Res 90:213-228.
- Kuhlmann CRW, Zehendner CM, Gerigk M, Closhen D, Bender B, Friedl P, Luhmann HJ (2009) MK801 blocks hypoxic blood-brain-barrier disruption and leukocyte adhesion. Neurosci Lett 449:168-172.
- Kunz WG, Hunink MG, Dimitriadis K, Huber T, Dorn F, Meinel FG, Sabel BO, Othman AE, Reiser MF, Ertl-Wagner B, Sommer WH, Thierfelder KM (2018) Cost-effectiveness of endovascular therapy for acute ischemic stroke: a systematic review of the impact of patient age. Radiology 288:518-526.
- Li L, Wu Y, Bai Z, Hu Y, Li W (2017) Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats. Neurol Res 39:271-280.
- Liu XG, Feng YP (1995) Protective effect of DL-3-N-butylphalide on ischemic neurological damage and abnormal behavior in rats subjected to focal ischemia. Acta Pharm Sin B 30:896-903.
- Liu Z, Hu S, Zhong Q, Tian C, Ma H, Yu J (2017) N-methyl-D-aspartate receptor-driven calcium influx potentiates the adverse effects of myocardial ischemia-reperfusion injury ex vivo. J Cardiovasc Pharmacol 70:329-338.
- Lo EH, Matsumoto K, Pierce AR, Garrido L, Luttinger D (2016) Pharmacologic reversal of acute changes in diffusion-weighted magnetic resonance imaging in focal cerebral ischemia. J Cereb Blood Flow Metab 14:597-603.
- Lyden PD, Lonzo L (1994) Combination therapy protects ischemic brain in rats. A glutamate antagonist plus a gamma-aminobutyric acid agonist. Stroke 25:189-196.
- Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, Bragge P, Brazinova A, Büki A, Chesnut RM, Citerio G, Coburn M, Cooper DJ, Crowder AT, Czeiter E, Czosnyka M, Diaz-Arrastia R, Dreier JP, Duhaime A, Ercole A, et al. (2017) Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol 16:987-1048.
- Mackensen GB, Nellgård B, Sarraf-Yazdi S, Franklin D, Steffen RP, Grocott HP, Warner DS (2000) Post-ischemic RSR13 amplifies the effect of dizocilpine on outcome from transient focal cerebral ischemia in the rat. Brain Res 853:15-21.
- Margaill I, Parmentier S, Callebert J, Allix M, Boulu RG, Plotkine M (2016) Short therapeutic window for MK-801 in transient focal cerebral ischemia in normotensive rats. J Cereb Blood Flow Metab 16:107-113.
- Massari CM, Castro AA, Dal-Cim T, Lanznaster D, Tasca CI (2016) In vitro 6-hydroxydopamine-induced toxicity in striatal, cerebrocortical and hippocampal slices is attenuated by atorvastatin and MK-801. Toxicol In Vitro 37:162-168.
- Matute C (2007) Interaction between glutamate signalling and immune attack in damaging oligodendrocytes. Neuron Glia Biol 3:281-285.
- Memezawa H, Zhao Q, Smith ML, Siesjo BK (1995) Hyperthermia nullifies the ameliorating effect of dizocilpine maleate (MK-801) in focal cerebral ischemia. Brain Res 670:48-52.
- Milton M, Smith PD (2018) It's all about timing: the involvement of Kir4.1 channel regulation in acute ischemic stroke pathology. Front Cell Neurosci 12:36.

- Morkuniene R, Cizas P, Jankeviciute S, Petrolis R, Arandarcikaite O, Krisciukaitis A, Borutaite V (2015) Small Aβ1-42 oligomer-induced membrane depolarization of neuronal and microglial cells: role of N-methyl-D-aspartate receptors. J Neurosci Res 93:475-486.
- Moyanova S, Kortenska L, Mitreva R (2009) Endothelin-1-induced cerebral ischemia: effects of ketanserin and MK-801 on limb placing in rats. Int J Neurosci 117:1361-1381.
- Moyanova SG, Kortenska LV, Mitreva RG, Pashova VD, Ngomba RT, Nicoletti F (2007) Multimodal assessment of neuroprotection applied to the use of MK-801 in the endothelin-1 model of transient focal brain ischemia. Brain Res 1153:58-67.
- Nagalakshmi B, Sagarkar S, Sakharkar AJ (2018) Epigenetic mechanisms of traumatic brain injuries. Prog Mol Biol Transl Sci 157:263-298.
- Nategh M, Shaveisi K, Shabanzadeh AP, Sadr SS, Parviz M, Ghabaei M (2010) Systemic hyperthermia masks the neuroprotective effects of mk-801, but not rosiglitazone in brain ischaemia. Basic Clin Pharmacol Toxicol 107:724-729.
- Oh SM, Betz AL (1991) Interaction between free radicals and excitatory amino acids in the formation of ischemic brain edema in rats. Stroke 22:915-921.
- Olmos G, Lladó J (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014:861231.
- Onal MZ, Li F, Tatlisumak T, Locke KW, Sandage BJ, Fisher M (1997) Synergistic effects of citicoline and MK-801 in temporary experimental focal ischemia in rats. Stroke 28:1060-1065.
- Pan DQ, Li CY (2003) Effects of neuroprotectant cocktails on focal cerebral ischemia in rats. Zhongguo Linchuang Kangfu 5:842-844.
- Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J (1988) The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann Neurol 24:543-551.
- Pascotini MET, Flores DAE, Kegler MA, Konzen MV, Fornari MAL, Arend MJ, Gabbi MP, Gobo MLA, Bochi DGV, Prado DALC, de Carvalho DLM, Duarte DMMM, Da Cruz DIBM, Moresco DRN, Dos Santos DARS, Royes DLFF, Fighera DMR (2018) Brain-derived neurotrophic factor levels are lower in chronic stroke patients: a relation with manganese-dependent superoxide dismutase ALA16VAL single nucleotide polymorphism through tumor necrosis factor-α and caspases pathways. J Stroke Cerebrovasc Dis 27:3020-3029.
- Pschorn U, Korperich H, Heymans L, Subramanian S, Kuhn W (1993) MRI and MRS studies on the time course of rat brain lesions and the effect of drug treatment: volume quantification and characterization of tissue heterogeneity by parameter selection. Magn Reson Med 30:174-182.
- Qian Y, Tang X, Guan T, Li Y, Sun H (2016) Neuroprotection by combined administration with maslinic acid, a natural product from olea europaea, and mk-801 in the cerebral ischemia model. Molecules 21:1093.
- Regan HK, Detwiler TJ, Huang JC, Lynch JJ, Regan CP (2007) An improved automated method to quantitate Lesion volume in triphenyltetrazolium stained rat brain sections. J Pharmacol Toxicol Methods 56:339-343.
- Relton JK, Martin D, Thompson RC, Russell DA (1996) Peripheral administration of interleukin-1 receptor antagonist inhibits brain damage after focal cerebral ischemia in the rat. Exp Neurol 138:206-213.
- Roussel S, Pinard E, Seylaz J (1992) Effect of MK-801 on focal brain infarction in normotensive and hypertensive rats. Hypertension 19:40-46.
- Sanchez AB, Medders KE, Maung R, Sánchez-Pavón P, Ojeda-Juárez D, Kaul M (2016) CXCL12-induced neurotoxicity critically depends on NMDA receptor-gated and l-type Ca<sup>2+</sup> channels upstream of p38 MAPK. J Neuroinflammation 13:252.
- Sarraf-Yazdi S, Sheng H, Grocott HP, Bart RD, Pearlstein RD, Steffen RP, Warner DS (1999) Effects of RSR13, a synthetic allosteric modifier of hemoglobin, alone and in combination with dizocilpine, on outcome from transient focal cerebral ischemia in the rat. Brain Res 826:172-180.
- Sarraf-Yazdi S, Sheng H, Miura Y, McFarlane C, Dexter F, Pearlstein R, Warner DS (1998) Relative neuroprotective effects of dizocilpine and isoflurane during focal cerebral ischemia in the rat. Anesth Analg 87:72-78.
- Shapira Y, Setton D, Artru AA, Shohami E (1993) Blood-brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats. Anesth Analg 77:141-148.
- Shen SY, Fu XD, Fei ZY (2003) The effects of MK-801 on hippocampal N-methyl-D-aspartic acid receptor of focal cerebral ischemia in rats. Zhongguo Xingwei Yixue Kexue 12:489-490, 577.
- Shirasaki Y, Edo N, Sato T (2004) Serum S-100b protein as a biomarker for the assessment of neuroprotectants. Brain Res 1021:159-166.

- Sommer JB, Bach A, Malá H, Strømgaard K, Mogensen J, Pickering DS (2017) In vitro and in vivo effects of a novel dimeric inhibitor of PSD-95 on excitotoxicity and functional recovery after experimental traumatic brain injury. Eur J Neurosc 45:238-248.
- Song X, Jensen MØ, Jogini V, Stein RA, Lee C, Mchaourab HS, Shaw DE, Gouaux E (2018) Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature 556:515-519.
- Sönmez A, Sayın O, Gürgen SG, Çalişir M (2015) Neuroprotective effects of MK-801 against traumatic brain injury in immature rats. Neurosci Lett 597:137-142.
- Sriram K, Benkovic SA, Hebert MA, Miller DB, O'Callaghan JP (2004) Induction of gp130-related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of neurodegeneration. J Biol Chem 279:19936-19947.
- Streit WJ, Morioka T, Kalehua AN (1992) MK-801 prevents microglial reaction in rat hippocampus after forebrain ischemia. Neuroreport 3:146-148.
- Sutton G, Chandler LJ (2002) Activity-dependent NMDA receptor-mediated activation of protein kinase B/Akt in cortical neuronal cultures. J Neurochem 82:1097-1105.
- Takamatsu H, Kondo K, Ikeda Y, Umemura K (1998) Neuroprotective effects depend on the model of focal ischemia following middle cerebral artery occlusion. Eur J Pharmacol 362:137-142.
- Tran H, Chung YH, Shin E, Tran T, Jeong JH, Jang C, Nah S, Yamada K, Nabeshima T, Kim H (2017) MK-801, but not naloxone, attenuates highdose dextromethorphan-induced convulsive behavior: possible involvement of the GluN2B receptor. Toxicol Appl Pharmacol 334:158-166.
- Uchida K, Nakakimura K, Kuroda Y, Haranishi Y, Matsumoto M, Sakabe T (2001) Dizocilpine but not ketamine reduces the volume of ischaemic damage after acute subdural haematoma in the rat. Eur J Anaesthesiol 18:295-302.
- Wang J, Qiao Y, Yang R, Zhang C, Wu H, Lin J, Zhang T, Chen T, Li Y, Dong Y, Li J (2017) The synergistic effect of treatment with triptolide and MK-801 in the rat neuropathic pain model. Mol Pain doi: 10.1177/1744806917746564.
- Wang W, Jiang B, Sun H, Ru X, Sun D, Wang L, Wang L, Jiang Y, Li Y, Wang Y, Chen Z, Wu S, Zhang Y, Wang D, Wang Y, Feigin VL (2017) Prevalence, incidence, and mortality of stroke in chinaclinical perspective. Circulation 135:759-771.
- Wang W, Mei X, Wei Y, Zhang M, Zhang T, Wang W, Xu L, Wu S, Li Y (2011) Neuronal NR2B-containing NMDA receptor mediates spinal astrocytic c-Jun N-terminal kinase activation in a rat model of neuropathic pain. Brain Behav Immun 25:1355-1366.
- Wenbin A, Chuanyi H, Yuhong C (2000) Effect of MK-801 on brain edema following traumatic brain injury in rats. Shiyong Yixue Jinxiu Zazhi 2:93-95.
- Wexler EJ, Peters EE, Gonzales A, Gonzales ML, Slee AM, Kerr JS (2002) An objective procedure for ischemic area evaluation of the stroke intraluminal thread model in the mouse and rat. J Neurosci Methods 113:51-58.
- Xue D, Huang Z, Barnes K, Lesiuk HJ, Smith KE, Buchan AM (2016) Delayed treatment with AMPA, but not NMDA, antagonists reduces neocortical Lesionion. J Cereb Blood Flow Metab 14:251-261.
- Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y, Qian G, Zheng JC (2013) IL-1 $\beta$  and TNF- $\alpha$  induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem 125:897-908.
- You M, Pan Y, Liu Y, Chen Y, Wu Y, Si J, Wang K, Hu F (2019) Royal jelly alleviates cognitive deficits and  $\beta$ -amyloid accumulation in APP/PS1 mouse model via activation of the CAMP/PKA/CREB/BDNF pathway and inhibition of neuronal apoptosis. Front Aging Neurosci 10:428.
- Zhao H, Alam A, San C, Eguchi S, Chen Q, Lian Q, Ma D (2017) Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: recent developments. Brain Res 1665:1-21.
- Zhu X, Dong J, Shen K, Bai Y, Zhang Y, Lv X, Chao J, Yao H (2015) NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress. Brain Res Bull 114:70-78.
- Zieminska E, Lenart J, Diamandakis D, Lazarewicz JW (2017) The role of Ca<sup>2+</sup> imbalance in the induction of acute oxidative stress and cytotoxicity in cultured rat cerebellar granule cells challenged with tetrabromobisphenol A. Neurochem Res 42:777-787.

P-Reviewer: Caltana LR; C-Editor: Zhao M; S-Editors: Wang J, Li CH; L-Editors: Patel B, Hindle A, Qiu Y, Song LP; T-Editor: Jia Y

| 1 2.26 | otal Mean<br>8 34.59                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Weight                                               | IV, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV, Random, 95% Cl                                     |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|        | 8 34.59                                                                                                                                                           | 2.01                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the comments                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
| 0 005  |                                                                                                                                                                   | 3.01                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.2%                                                 | -17.48 [-20.09, -14.87]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |
| 8 3.05 | 8 33.28                                                                                                                                                           | 5.19                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.4%                                                 | -17.10 [-21.27, -12.93]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |
| 4 1.31 | 8 32.25                                                                                                                                                           | 2.1                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.6%                                                 | -15.21 [-16.93, -13.49]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |
| 5 1    | 13 27.7                                                                                                                                                           | 3.7                                                                                                                                                                                                                                                                                                                                          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.6%                                                 | -14.20 [-15.78, -12.62]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                      |
| 9 2.46 | 14 31                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.5%                                                 | -11.71 [-13.76, -9.66]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| 3 3.12 | 16 26.78                                                                                                                                                          | 1.86                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.5%                                                 | -10.25 [-12.13, -8.37]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| 1 2.2  | 6 21                                                                                                                                                              | 7.6                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1%                                                 | -10.00 [-16.33, -3.67]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| 3 2.82 | 11 18.15                                                                                                                                                          | 3.56                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.2%                                                 | -7.92 [-10.60, -5.24]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| 3 0.96 | 10 25.88                                                                                                                                                          | 1.16                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8%                                                 | -7.85 [-8.78, -6.92]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                      |
| 7 4.19 | 8 57.94                                                                                                                                                           | 4.19                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.5%                                                 | -1.57 [-5.68, 2.54]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
| 5 1.2  | 12 30                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.7%                                                 | -1.50 [-2.86, -0.14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                      |
|        | 114                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100.0%                                               | -10.44 [-13.60, -7.28]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                      |
|        | .5       1         29       2.46         33       3.12         1       2.2         23       2.82         03       0.96         87       4.19         .5       1.2 | .5         1         13         27.7           29         2.46         14         31           33         3.12         16         26.78           1         2.2         6         21           23         2.82         11         18.15           30         0.96         10         25.88           37         4.19         8         57.94 | 55         1         13         27.7         3.7           19         2.46         14         31         2           33         3.12         16         26.78         1.86           1         2.2         6         21         7.6           23         3.62         11         18.15         3.56           33         0.96         10         25.88         1.16           37         4.19         8         57.94         4.19           5         1.2         30         2 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 55         1         13         27.7         3.7         24         9.6%           99         2.46         14         31         2         6         9.5%           53         3.12         16         26.78         1.86         11         9.5%           1         2.2         6         21         7.6         6         7.1%           13         2.82         11         18.15         3.56         11         9.2%           13         0.96         10         25.88         1.16         10         9.8%           77         4.19         8         57.94         4.19         8         8.5%           .5         1.2         12         30         2         11         9.7% | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Additional Figure 1 Lesion volume (%) meta-analysis of rats after brain injury.

Most literatures have proved that MK-801 can decrease Lesion volume (%) after acute brain injury in rats.

|                                     |             | K-801     | 10000    |           | ontrol   |                       |        | Mean Difference           | Mean Difference                |
|-------------------------------------|-------------|-----------|----------|-----------|----------|-----------------------|--------|---------------------------|--------------------------------|
| Study or Subgroup                   | Mean        | SD        | Total    | Mean      | SD       | Total                 | Weight | IV, Random, 95% Cl        | IV, Random, 95% Cl             |
| 9.1.1 i.p.                          |             |           |          |           |          |                       |        |                           |                                |
| Buchan AM 1992                      | 41          | 19        | 9        | 150       | 43       | 9                     |        | -109.00 [-139.71, -78.29] |                                |
| Hanon E 2001                        | 107         | 22.3      | 9        | 211       | 23.8     | 12                    | 2.8%   | -104.00 [-123.84, -84.16] |                                |
| Foster KA 2009                      | 112.82      | 20.5      | 41       | 200.71    | 23.88    | 41                    | 3.2%   | -87.89 [-97.52, -78.26]   | -                              |
| Moyanova SG 2007                    | 85.5        | 5.2       | 13       | 170.5     | 22.7     | 24                    | 3.2%   | -85.00 [-94.51, -75.49]   | -                              |
| Sarraf-Yazdi S 1998                 | 100         | 65        | 18       | 182       | 63       | 18                    | 1.7%   | -82.00 [-123.82, -40.18]  |                                |
| Regan HK 2007                       | 130         | 24        | 20       | 211       | 28       | 17                    | 2.9%   | -81.00 [-97.96, -64.04]   |                                |
| Shen SY 2003                        | 60.8        | 7.76      | 18       | 140.6     | 14.81    | 18                    | 3.3%   | -79.80 [-87.52, -72.08]   | -                              |
| Katsuta K 1995                      | 69.53       | 31.63     | 7        | 145.99    | 36.46    | 9                     | 2.1%   | -76.46 [-109.87, -43.05]  |                                |
| Katsuta K 1995                      | 73.39       | 39.68     |          | 145.99    | 36.46    | 9                     | 1.9%   | -72.60 [-110.43, -34.77]  |                                |
| Gorgulu A 2000                      | 90.55       | 8.49      | 10       | 162.29    | 16.31    | 10                    | 3.2%   | -71.74 [-83.14, -60.34]   | -                              |
| Dirnagl U 1990                      | 165         | 63        | 15       | 231       | 22       | 13                    | 2.1%   | -66.00 [-100.05, -31.95]  |                                |
| Relton JK 1996                      | 26.87       | 6.37      | 8        | 78.88     | 13.06    | 8                     | 3.2%   | -52.01 [-62.08, -41.94]   | -                              |
| Pan DQ 2003                         | 94.29       | 8.94      | 5        | 144.65    | 7.37     | 5                     | 3.2%   | -50.36 [-60.52, -40.20]   | +                              |
| lijima T 1992                       | 58          | 11.5      | 6        | 108       | 38.5     | 6                     | 2.2%   | -50.00 [-82.15, -17.85]   |                                |
| Cam E 2008                          | 23.12       | 21.1      | 5        | 73.12     | 23.2     | 5                     | 2.4%   | -50.00 [-77.49, -22.51]   |                                |
| Buchan AM 1992                      | 145.29      | 11.03     | 31       | 186.23    | 7.86     | 31                    | 3.3%   | -40.94 [-45.71, -36.17]   | -                              |
| Gill R 1992                         | 121.32      | 19.82     | 16       | 159.8     | 20.7     | 16                    | 3.1%   | -38.48 [-52.52, -24.44]   |                                |
| Roussel S 1992                      | 73.81       | 26.47     | 21       | 110.71    | 22.62    | 19                    | 3.0%   | -36.90 [-52.12, -21.68]   |                                |
| Bielenberg GW 1991                  | 66.36       | 28.13     | 14       | 99.1      | 26.9     | 9                     | 2.6%   | -32.74 [-55.67, -9.81]    |                                |
| Katsuta K 1995                      | 114.46      | 41.29     | 10       | 145.99    | 36.46    | 9                     | 2.0%   | -31.53 [-66.49, 3.43]     |                                |
| Kawai N 2000                        | 66.4        | 13.7      | 5        | 86.6      | 20.7     | 5                     | 2.7%   | -20.20 [-41.96, 1.56]     |                                |
| Bertorelli R 1998                   | 24.6        | 4         | 4        | 44.5      | 3        | 4                     | 3.3%   | -19.90 [-24.80, -15.00]   | -                              |
| Dirnagl U 1990                      | 186         | 33        | 12       | 197       | 51       | 11                    | 2.0%   | -11.00 [-46.45, 24.45]    |                                |
| Xue D 1994                          | 170         | 33        | 11       | 181       | 32       | 15                    | 2.5%   | -11.00 [-36.35, 14.35]    |                                |
| Onal MZ 1997                        | 179.1       | 78.5      | 7        | 175.2     | 89.3     | 8                     | 0.7%   | 3.90 [-81.02, 88.82]      |                                |
| Subtotal (95% CI)                   |             |           | 322      |           |          | 331                   | 65.0%  | -55.81 [-67.19, -44.43]   | •                              |
| Heterogeneity: Tau <sup>2</sup> =   | 687.48; CI  | ni² = 434 | 4.84, df | = 24 (P   | < 0.0000 | )1); I <sup>2</sup> = | 94%    |                           |                                |
| Test for overall effect: 2          | Z = 9.61 (P | < 0.000   | 001)     |           |          |                       |        |                           |                                |
|                                     |             |           |          |           |          |                       |        |                           |                                |
| 9.1.2 i.v.                          |             |           |          |           |          |                       |        |                           |                                |
| Memezawa H 1995                     | 27.01       | 46.49     | 8        | 157.76    |          | 7                     |        | -130.75 [-200.68, -60.82] |                                |
| Herz RC 1998                        | 54.23       | 17.46     | 7        | 154.41    | 20.22    | 7                     | 2.8%   | -100.18 [-119.97, -80.39] |                                |
| Mackensen GB 2000                   | 35          | 35        | 16       | 125       | 72       | 16                    | 1.8%   | -90.00 [-129.23, -50.77]  |                                |
| Sarraf-Yazdi S 1999                 | 81          | 60        | 18       | 163       | 36       | 12                    | 2.1%   | -82.00 [-116.40, -47.60]  |                                |
| Takamatsu H 1998                    | 126.1       | 20.3      | 8        | 202.4     | 8.5      | 9                     | 3.0%   | -76.30 [-91.42, -61.18]   |                                |
| Margaill I 1996                     | 169         | 30        | 9        | 239       | 30       | 9                     | 2.4%   | -70.00 [-97.72, -42.28]   |                                |
| Lo EH 1994                          | 49          | 27        | 6        | 118       | 44       | 6                     | 1.8%   | -69.00 [-110.31, -27.69]  | <u> </u>                       |
| Uchida K 2001                       | 61          | 38        | 9        | 119       | 38       | 9                     | 2.0%   | -58.00 [-93.11, -22.89]   |                                |
| Gill R 1991                         | 92.47       | 16.15     | 24       | 141.97    | 4.68     | 24                    | 3.3%   | -49.50 [-56.23, -42.77]   | -                              |
| Park CK 1988                        | 79.71       | 8.49      | 14       | 127       | 7        | 6                     | 3.3%   | -47.29 [-54.44, -40.14]   | -                              |
| Herz RC 1998                        | 45.96       | 3.68      | 6        | 92.83     | 3.68     | 6                     | 3.3%   | -46.87 [-51.03, -42.71]   | -                              |
| Lyden PD 1994                       | 88.54       | 26.09     | 23       | 118.19    | 39.13    | 27                    | 2.9%   | -29.65 [-47.86, -11.44]   |                                |
| Margaill   1996                     | 200         | 40        | 8        | 209       | 14       | 8                     | 2.3%   | -9.00 [-38.37, 20.37]     | -+-                            |
| Dawson DA 1994                      | 50.71       | 15.71     | 9        | 59.06     | 11.43    | 10                    | 3.1%   | -8.35 [-20.82, 4.12]      | 1                              |
| Subtotal (95% CI)                   |             |           | 165      |           |          | 156                   | 35.0%  | -55.15 [-66.07, -44.22]   | •                              |
| Heterogeneity: Tau <sup>2</sup> = 1 | 285.92; CI  | ni² = 107 | 7.42, df | = 13 (P < | < 0.0000 | )1); I <sup>2</sup> = | 88%    |                           |                                |
| Test for overall effect: 2          |             |           |          |           |          |                       |        |                           |                                |
| Total (95% CI)                      |             |           | 487      |           |          | 487                   | 100.0% | -56.15 [-64.06, -48.24]   | •                              |
| Heterogeneity: Tau <sup>2</sup> =   | 482.02; CI  | ni² = 543 | 2.93, df | = 38 (P   | < 0.0000 | )1); I <sup>2</sup> = | 93%    |                           | -200 -100 0 100 20             |
| Test for overall effect: 2          |             |           |          |           |          |                       |        |                           |                                |
| Test for subaroup diffe             | erences: C  | hi² = 0.0 | 01. df=  | 1 (P = 0. | 93),  ²= | 0%                    |        |                           | Favours MK-801 Favours control |
|                                     |             |           |          |           |          |                       |        |                           |                                |

## Additional Figure 2 Lesion volume subgroup analysis concerning administration routes after brain injury.

Under different administration routes, most literatures have proved that MK-801 can also decrease Lesion volume after acute brain injury in rats.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                              | K-801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tatel                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             | ontrol                                                                                                   | Tatal                                                                                                                                               | Maint                                                                                                                                                 | Mean Difference                                                                                                                                                                                                                                                                                                                                                                                                      | Mean Difference                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mean                                                                                                                                                                                                         | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean                                                                                                                        | SD                                                                                                       | Total                                                                                                                                               | Weight                                                                                                                                                | IV, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                   | IV, Random, 95% Cl                                                                          |
| 10.1.1 pretreatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                          | -                                                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
| Memezawa H 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                              | 46.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            | 157.76                                                                                                                      |                                                                                                          | 7                                                                                                                                                   | 1.1%                                                                                                                                                  | -130.75 [-200.68, -60.82]                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |
| Hanon E 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107                                                                                                                                                                                                          | 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                          | 211                                                                                                                         | 23.8                                                                                                     | 12                                                                                                                                                  | 3.1%                                                                                                                                                  | -104.00 [-123.84, -84.16]                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |
| Foster KA 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 112.82                                                                                                                                                                                                       | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41                                                                                                                                                                                                                                                                                                                                                                                                                         | 200.71                                                                                                                      | 23.88                                                                                                    | 41                                                                                                                                                  | 3.5%                                                                                                                                                  | -87.89 [-97.52, -78.26]                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| Sarraf-Yazdi S 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                                                                                                                                                                                          | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                         | 182                                                                                                                         | 63                                                                                                       | 18                                                                                                                                                  | 2.0%                                                                                                                                                  | -82.00 [-123.82, -40.18]                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| Sarraf-Yazdi S 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81                                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                         | 163                                                                                                                         | 36                                                                                                       | 12                                                                                                                                                  | 2.4%                                                                                                                                                  | -82.00 [-116.40, -47.60]                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| Regan HK 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 130                                                                                                                                                                                                          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                         | 211                                                                                                                         | 28                                                                                                       | 17                                                                                                                                                  | 3.2%                                                                                                                                                  | -81.00 [-97.96, -64.04]                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| Shen SY 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.8                                                                                                                                                                                                         | 7.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                                                                                                                                                                                                                                                                                                                                                                                         | 140.6                                                                                                                       | 14.81                                                                                                    | 18                                                                                                                                                  | 3.5%                                                                                                                                                  | -79.80 [-87.52, -72.08]                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| Park CK 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 86                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                          | 127                                                                                                                         | 7                                                                                                        | 6                                                                                                                                                   | 3.5%                                                                                                                                                  | -41.00 [-48.38, -33.62]                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                           |
| Roussel S 1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73.81                                                                                                                                                                                                        | 26.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.71                                                                                                                      | 22.62                                                                                                    | 19                                                                                                                                                  | 3.3%                                                                                                                                                  | -36.90 [-52.12, -21.68]                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                           |
| Bielenberg GW 1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66.36                                                                                                                                                                                                        | 28.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.1                                                                                                                        | 26.9                                                                                                     | 9                                                                                                                                                   | 2.9%                                                                                                                                                  | -32.74 [-55.67, -9.81]                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| Kawai N 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66.4                                                                                                                                                                                                         | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.6                                                                                                                        | 20.7                                                                                                     | 5                                                                                                                                                   | 3.0%                                                                                                                                                  | -20.20 [-41.96, 1.56]                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| Dirnagl U 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 186                                                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                         | 197                                                                                                                         | 51                                                                                                       | 11                                                                                                                                                  | 2.3%                                                                                                                                                  | -11.00 [-46.45, 24.45]                                                                                                                                                                                                                                                                                                                                                                                               | -+-                                                                                         |
| Margaill I 1996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200                                                                                                                                                                                                          | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                          | 209                                                                                                                         | 14                                                                                                       | 8                                                                                                                                                   | 2.6%                                                                                                                                                  | -9.00 [-38.37, 20.37]                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| Dawson DA 1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.71                                                                                                                                                                                                        | 15.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                          | 59.06                                                                                                                       | 11.43                                                                                                    | 10                                                                                                                                                  | 3.4%                                                                                                                                                  | -8.35 [-20.82, 4.12]                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 207                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                                                          | 193                                                                                                                                                 | 39.8%                                                                                                                                                 | -55.00 [-72.49, -37.50]                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                           |
| Heterogeneity: Tau <sup>2</sup> = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 942.63; CI                                                                                                                                                                                                   | hi² = 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.95, df                                                                                                                                                                                                                                                                                                                                                                                                                   | = 13 (P <                                                                                                                   | < 0.0000                                                                                                 | ));  ² =                                                                                                                                            | 94%                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
| Test for overall effect: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z = 6.16 (P                                                                                                                                                                                                  | < 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 001)                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                                          |                                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
| 10.1.2 posttreatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [0,15min]                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                          |                                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
| Mackensen GB 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35                                                                                                                                                                                                           | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16                                                                                                                                                                                                                                                                                                                                                                                                                         | 125                                                                                                                         | 72                                                                                                       | 16                                                                                                                                                  | 2.1%                                                                                                                                                  | -90.00 [-129.23, -50.77]                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| Takamatsu H 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 126.1                                                                                                                                                                                                        | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                          | 202.4                                                                                                                       | 8.5                                                                                                      | 9                                                                                                                                                   | 3.3%                                                                                                                                                  | -76.30 [-91.42, -61.18]                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| Gorgulu A 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90.55                                                                                                                                                                                                        | 8.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                            | 162.29                                                                                                                      | 16.31                                                                                                    | 10                                                                                                                                                  | 3.4%                                                                                                                                                  | -71.74 [-83.14, -60.34]                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                           |
| Katsuta K 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              | 42.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            | 145.99                                                                                                                      | 36.46                                                                                                    | 9                                                                                                                                                   | 2.6%                                                                                                                                                  | -56.61 [-85.89, -27.33]                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| Cam E 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.12                                                                                                                                                                                                        | 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                          | 73.12                                                                                                                       | 23.2                                                                                                     | 5                                                                                                                                                   | 2.7%                                                                                                                                                  | -50.00 [-77.49, -22.51]                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| lijima T 1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.12                                                                                                                                                                                                        | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                          | 108                                                                                                                         | 38.5                                                                                                     | 6                                                                                                                                                   | 2.5%                                                                                                                                                  | -50.00 [-82.15, -17.85]                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| Gill R 1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                              | 16.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            | 141.97                                                                                                                      | 4.68                                                                                                     | 24                                                                                                                                                  | 3.5%                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                            | 118.19                                                                                                                      |                                                                                                          | 24                                                                                                                                                  | 3.1%                                                                                                                                                  | -49.50 [-56.23, -42.77]                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| Lyden PD 1994<br>Bertorelli R 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88.54                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                          | 4                                                                                                                                                   | 3.6%                                                                                                                                                  | -29.65 [-47.86, -11.44]                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                          |                                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.6                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.5                                                                                                                        | 3                                                                                                        |                                                                                                                                                     |                                                                                                                                                       | -19.90 [-24.80, -15.00]<br>-53 36 [-70 77 -35 94]                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                           |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                                                          | 110                                                                                                                                                 | 26.9%                                                                                                                                                 | -19.90 [-24.80, -15.00]<br>-53.36 [-70.77, -35.94]                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                           |
| Subtotal (95% Cl)<br>Heterogeneity: Tau² = :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 588.06; CI                                                                                                                                                                                                   | hi² = 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120<br>2.32, df                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                          | 110                                                                                                                                                 | 26.9%                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                           |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 588.06; CI                                                                                                                                                                                                   | hi² = 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120<br>2.32, df                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                          | 110                                                                                                                                                 | 26.9%                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                           |
| Subtotal (95% Cl)<br>Heterogeneity: Tau² = :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 588.06; Cł<br>Z = 6.01 (P                                                                                                                                                                                    | hi² = 132<br>' < 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>2.32, df                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                          | 110                                                                                                                                                 | 26.9%                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                           |
| Subtotal (95% Cl)<br>Heterogeneity: Tau² =<br>Test for overall effect: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 588.06; CI<br>Z = 6.01 (P<br>(15,30min                                                                                                                                                                       | hi² = 132<br>' < 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>2.32, df<br>001)                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                          | 110                                                                                                                                                 | 26.9%                                                                                                                                                 | -53.36 [-70.77, -35.94]                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                           |
| Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: 2<br>10.1.3 posttreatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 588.06; Cl<br>Z = 6.01 (P<br>(15,30min<br>75.97                                                                                                                                                              | hi² = 132<br>' < 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>2.32, df<br>001)                                                                                                                                                                                                                                                                                                                                                                                                    | = 8 (P <                                                                                                                    | 0.00001<br>41.6                                                                                          | 110<br>); I² = 9                                                                                                                                    | 26.9%<br>14%                                                                                                                                          | -53.36 [-70.77, -35.94]                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                           |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: 2<br>10.1.3 posttreatment<br>Pschorn U 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 588.06; Cl<br>Z = 6.01 (P<br>(15,30min<br>75.97                                                                                                                                                              | hi² = 132<br>' < 0.000<br>I<br>10.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120<br>2.32, df<br>001)<br>5                                                                                                                                                                                                                                                                                                                                                                                               | = 8 (P <<br>250.52                                                                                                          | 0.00001<br>41.6                                                                                          | 110<br>); I² = 9<br>5                                                                                                                               | 26.9%<br>14%<br>2.2%                                                                                                                                  | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]                                                                                                                                                                                                                                                                                                                                                                | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: 2<br>10.1.3 posttreatment<br>Pschorn U 1993<br>Herz RC 1998                                                                                                                                                                                                                                                                                                                                                                                                                                  | 588.06; Cl<br>Z = 6.01 (P<br>(15,30min<br>75.97<br>54.23                                                                                                                                                     | hi <sup>2</sup> = 132<br>< 0.000<br>]<br>10.85<br>17.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br>2.32, df<br>001)<br>5<br>7                                                                                                                                                                                                                                                                                                                                                                                          | <sup>2</sup> = 8 (P <<br>250.52<br>154.41                                                                                   | 0.00001<br>41.6<br>20.22                                                                                 | 110<br>); I <sup>2</sup> = 9<br>5<br>7                                                                                                              | 26.9%<br>14%<br>2.2%<br>3.1%                                                                                                                          | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]                                                                                                                                                                                                                                                                                                        | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: 2<br>10.1.3 posttreatment<br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996                                                                                                                                                                                                                                                                                                                                                                                           | 588.06; Cl<br>Z = 6.01 (P<br>( <b>15,30min</b><br>75.97<br>54.23<br>85.5                                                                                                                                     | hi <sup>2</sup> = 132<br>< 0.000<br>10.85<br>17.46<br>5.2<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>2.32, df<br>001)<br>5<br>7<br>13                                                                                                                                                                                                                                                                                                                                                                                    | 250.52<br>154.41<br>170.5                                                                                                   | 41.6<br>20.22<br>22.7<br>30                                                                              | 110<br>); I <sup>2</sup> = 9<br>5<br>7<br>24                                                                                                        | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>2.7%                                                                                                          | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]                                                                                                                                                                                                                                                                             | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: 2<br>10.1.3 posttreatment<br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill 1996<br>Uchida K 2001                                                                                                                                                                                                                                                                                                                                                                            | 588.06; CI<br>Z = 6.01 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169<br>61                                                                                                                                | hi <sup>z</sup> = 132<br>< 0.000<br>10.85<br>17.46<br>5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120<br>2.32, df<br>001)<br>5<br>7<br>13<br>9                                                                                                                                                                                                                                                                                                                                                                               | 250.52<br>154.41<br>170.5<br>239                                                                                            | 0.00001<br>41.6<br>20.22<br>22.7                                                                         | 110<br>);  ² = 9<br>5<br>7<br>24<br>9                                                                                                               | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>2.7%<br>2.3%                                                                                                  | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-58.00 [-93.11, -22.89]                                                                                                                                                                                                                                                  | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: <i>2</i><br><b>10.1.3 postreatment</b><br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988                                                                                                                                                                                                                                                                                                                                           | 588.06; CI<br>Z = 6.01 (P<br>( <b>15,30min</b><br>75.97<br>54.23<br>85.5<br>169<br>61<br>75                                                                                                                  | hi <sup>2</sup> = 132<br>< 0.000<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120<br>2.32, df<br>001)<br>5<br>7<br>13<br>9<br>9<br>8                                                                                                                                                                                                                                                                                                                                                                     | 250.52<br>154.41<br>170.5<br>239<br>119<br>127                                                                              | 41.6<br>20.22<br>22.7<br>30<br>38<br>7                                                                   | 110<br>);  ² = 9<br>5<br>7<br>24<br>9<br>9<br>6                                                                                                     | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>2.7%<br>2.3%<br>3.5%                                                                                          | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-58.00 [-93.11, -22.89]<br>-52.00 [-59.41, -44.59]                                                                                                                                                                                                                       | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: <i>J</i><br><b>10.1.3 posttreatment</b><br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Pan DQ 2003                                                                                                                                                                                                                                                                                                                           | 588.06; CI<br>Z = 6.01 (P<br>( <b>15,30min</b><br>75.97<br>54.23<br>85.5<br>169<br>61<br>75<br>94.29                                                                                                         | hi <sup>2</sup> = 132<br>< 0.000<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7<br>8.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120<br>2.32, df<br>001)<br>5<br>7<br>13<br>9<br>9<br>8<br>5                                                                                                                                                                                                                                                                                                                                                                | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65                                                                    | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37                                                           | 110<br>);   <sup>2</sup> = 9<br>5<br>7<br>24<br>9<br>9<br>6<br>5                                                                                    | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>2.7%<br>2.3%<br>3.5%<br>3.5%                                                                                  | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-58.00 [-93.11, -22.89]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]                                                                                                                                                                                            | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: 2<br>10.1.3 posttreatment<br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Pan DQ 2003<br>Herz RC 1998                                                                                                                                                                                                                                                                                                                           | 588.06; CI<br>Z = 6.01 (P<br>( <b>15,30min</b><br>75.97<br>54.23<br>85.5<br>169<br>61<br>75<br>94.29<br>45.96                                                                                                | hi <sup>2</sup> = 132<br>< 0.000<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7<br>8.94<br>3.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120<br>2.32, df<br>001)<br>5<br>7<br>13<br>9<br>9<br>8<br>5<br>5<br>6                                                                                                                                                                                                                                                                                                                                                      | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65<br>92.83                                                           | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37<br>3.68                                                   | 110<br>);   <sup>2</sup> = 9<br>5<br>7<br>24<br>9<br>9<br>6<br>5<br>6                                                                               | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>2.7%<br>2.3%<br>3.5%<br>3.5%<br>3.6%                                                                          | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-58.00 [-93.11, -22.89]<br>-50.36 [-50.52, -40.20]<br>-60.36 [-50.52, -40.20]<br>-46.87 [-51.03, -42.71]                                                                                                                                                                 | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: 2<br>10.1.3 postreatment<br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Pan DQ 2003<br>Herz RC 1998<br>Gill R 1992                                                                                                                                                                                                                                                                                                           | 588.06; Cl<br>Z = 6.01 (P<br>75.97<br>54.23<br>85.5<br>61<br>75<br>94.29<br>45.96<br>121.32                                                                                                                  | hi <sup>2</sup> = 132<br>< 0.000<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7<br>8.94<br>3.68<br>19.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120<br>2.32, df<br>001)<br>5<br>7<br>13<br>9<br>9<br>8<br>5<br>6<br>16                                                                                                                                                                                                                                                                                                                                                     | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65<br>92.83<br>159.8                                                  | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37<br>3.68<br>20.7                                           | 110<br>); I <sup>2</sup> = 9<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>5<br>6<br>16                                                                    | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>2.7%<br>2.3%<br>3.5%<br>3.5%<br>3.5%<br>3.6%<br>3.3%                                                          | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.61, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]                                                                                                                                                                 | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: <i>J</i><br><b>10.1.3 postfreatment</b><br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Pan DQ 2003<br>Herz RC 1998<br>Gill R 1992<br>Xue D 1994                                                                                                                                                                                                                                                                              | 588.06; CI<br>Z = 6.01 (P<br>( <b>15,30min</b><br>75.97<br>54.23<br>85.5<br>169<br>61<br>75<br>94.29<br>45.96                                                                                                | hi <sup>2</sup> = 132<br>< 0.000<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7<br>8.94<br>3.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120<br>2.32, df<br>001)<br>5<br>7<br>13<br>9<br>9<br>8<br>5<br>6<br>16<br>16                                                                                                                                                                                                                                                                                                                                               | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65<br>92.83                                                           | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37<br>3.68                                                   | 110<br>);   <sup>2</sup> = 9<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>5<br>6<br>16<br>15                                                              | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>2.7%<br>2.3%<br>3.5%<br>3.5%<br>3.6%<br>3.8%<br>3.3%<br>2.8%                                                  | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-58.00 [-93.11, -22.89]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]                                                                                                            | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: 2<br>10.1.3 posttreatment<br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Pan DQ 2003<br>Herz RC 1998<br>Gill R 1992<br>Xue D 1994<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                       | 588.06; Ci<br>Z = 6.01 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169<br>61<br>75<br>94.29<br>45.96<br>121.32<br>170                                                                                       | hi <sup>2</sup> = 132<br>< 0.000<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7<br>8.94<br>3.68<br>19.82<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120<br>2.32, df<br>001)<br>5<br>7<br>13<br>9<br>9<br>8<br>5<br>6<br>16<br>16<br>11<br>89                                                                                                                                                                                                                                                                                                                                   | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65<br>92.83<br>159.8<br>181                                           | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37<br>3.68<br>20.7<br>32                                     | 110<br>);   <sup>2</sup> = 9<br>5<br>7<br>24<br>9<br>9<br>6<br>5<br>6<br>16<br>15<br>102                                                            | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>2.7%<br>2.3%<br>3.5%<br>3.5%<br>3.5%<br>3.6%<br>3.3%<br>2.8%<br>30.5%                                         | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.61, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]                                                                                                                                                                 | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: <i>J</i><br><b>10.1.3 posttreatment</b><br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Pan DQ 2003<br>Herz RC 1998<br>Gill R 1992<br>Xue D 1994<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                      | 588.06; Ci<br>Z = 6.01 (P<br>( <b>15,30min</b><br>75.97<br>54.23<br>85.5<br>169<br>61<br>75<br>94.29<br>45.96<br>121.32<br>170<br>433.79; Ci                                                                 | hi <sup>2</sup> = 132<br>< 0.000<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7<br>8.94<br>3.68<br>19.82<br>33<br>hi <sup>2</sup> = 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120<br>2.32, df<br>001)<br>5<br>7<br>13<br>9<br>9<br>8<br>5<br>6<br>16<br>11<br>89<br>0.02, df                                                                                                                                                                                                                                                                                                                             | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65<br>92.83<br>159.8<br>181                                           | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37<br>3.68<br>20.7<br>32                                     | 110<br>);   <sup>2</sup> = 9<br>5<br>7<br>24<br>9<br>9<br>6<br>5<br>6<br>16<br>15<br>102                                                            | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>2.7%<br>2.3%<br>3.5%<br>3.5%<br>3.5%<br>3.6%<br>3.3%<br>2.8%<br>30.5%                                         | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-58.00 [-93.11, -22.89]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]                                                                                                            | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: <i>J</i><br><b>10.1.3 postfreatment</b><br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Pan DQ 2003<br>Herz RC 1998<br>Gill R 1992<br>Xue D 1994<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: <i>J</i>                                                                                                                                                                               | 588.06; Ci<br>Z = 6.01 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169<br>61<br>75<br>94.29<br>45.96<br>121.32<br>170<br>433.79; Ci<br>Z = 8.85 (P                                                          | hi <sup>2</sup> = 132<br>< < 0.000<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7<br>8.94<br>3.68<br>19.82<br>33<br>hi <sup>2</sup> = 130<br>< 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>2.32, df<br>001)<br>5<br>7<br>13<br>9<br>9<br>8<br>5<br>6<br>16<br>11<br>89<br>0.02, df                                                                                                                                                                                                                                                                                                                             | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65<br>92.83<br>159.8<br>181                                           | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37<br>3.68<br>20.7<br>32                                     | 110<br>);   <sup>2</sup> = 9<br>5<br>7<br>24<br>9<br>9<br>6<br>5<br>6<br>16<br>15<br>102                                                            | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>2.7%<br>2.3%<br>3.5%<br>3.5%<br>3.5%<br>3.6%<br>3.3%<br>2.8%<br>30.5%                                         | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-58.00 [-93.11, -22.89]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]                                                                                                            | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: <i>J</i><br><b>10.1.3 posttreatment</b><br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Pan DQ 2003<br>Herz RC 1998<br>Gill R 1992<br>Xue D 1994<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: <i>J</i><br><b>10.1.4 posttreatment</b>                                                                                                                                                  | 588.06; Ci<br>Z = 6.01 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169<br>61<br>75<br>94.29<br>45.96<br>121.32<br>170<br>433.79; Ci<br>Z = 8.85 (P<br>(30,60min                                             | $hi^{2} = 132$<br>< 0.000<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7<br>8.94<br>3.68<br>19.82<br>33<br>$hi^{2} = 130$<br>< 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>2.32, df<br>001)<br>5<br>7<br>13<br>9<br>9<br>8<br>5<br>6<br>16<br>11<br>89<br>0.02, df<br>001)                                                                                                                                                                                                                                                                                                                     | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65<br>92.83<br>159.8<br>181<br>2= 9 (P <                              | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37<br>3.68<br>20.7<br>32<br>0.00001                          | 110<br>);   <sup>2</sup> = 9<br>5<br>7<br>24<br>9<br>9<br>6<br>5<br>6<br>16<br>15<br>102<br>);   <sup>2</sup> = 9                                   | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>2.7%<br>2.3%<br>3.5%<br>3.5%<br>3.5%<br>3.5%<br>3.6%<br>3.3%                                                  | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-68.00 [-93.11, -22.89]<br>-52.00 [-99.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-64.88 [-79.24, -50.51]                                                                                 | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: <i>J</i><br><b>10.1.3 posttreatment</b><br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Pan DQ 2003<br>Herz RC 1998<br>Gill R 1992<br>Xue D 1994<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: <i>J</i><br><b>10.1.4 posttreatment</b><br>Lo EH 1994                                                                                                                                  | 588.06; Ci<br>Z = 6.01 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169<br>61<br>75<br>94.29<br>45.96<br>121.32<br>170<br>433.79; Ci<br>Z = 8.85 (P<br>(30,60min<br>49                                       | $hi^2 = 132$<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7<br>8.94<br>3.68<br>19.82<br>33<br>$hi^2 = 130$<br>< 0.000<br>1<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120<br>2.32, df<br>001)<br>5<br>7<br>13<br>9<br>8<br>8<br>5<br>6<br>16<br>11<br>89<br>0.02, df<br>001)<br>6                                                                                                                                                                                                                                                                                                                | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65<br>92.83<br>159.8<br>181<br>2= 9 (P <                              | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37<br>3.68<br>20.7<br>32<br>0.00001                          | 110<br>);   <sup>2</sup> = §<br>5<br>7<br>24<br>9<br>9<br>6<br>5<br>6<br>16<br>15<br>102<br>);   <sup>2</sup> = §<br>()                             | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>3.5%<br>3.5%<br>3.5%<br>3.6%<br>3.3%<br>2.8%<br>30.5%<br>13%                                                  | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-93.11, -22.89]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-64.88 [-79.24, -50.51]<br>-69.00 [-110.31, -27.89]                                                                                | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: <i>J</i><br><b>10.1.3 postfreatment</b><br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Pan DQ 2003<br>Herz RC 1998<br>Gill R 1992<br>Xue D 1994<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: <i>J</i><br><b>10.1.4 postfreatment</b><br>Lo EH 1994<br>Onal MZ 1997                                                                                                                  | 588.06; Ci<br>Z = 6.01 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169<br>61<br>75<br>94.29<br>45.96<br>121.32<br>170<br>433.79; Ci<br>Z = 8.85 (P<br>(30,60min                                             | $hi^{2} = 132$<br>< 0.000<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7<br>8.94<br>3.68<br>19.82<br>33<br>$hi^{2} = 130$<br>< 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>2.32, df<br>001)<br>5<br>7<br>7<br>13<br>9<br>9<br>9<br>8<br>8<br>5<br>6<br>6<br>16<br>11<br>89<br>0.02, df<br>001)<br>6<br>7<br>7                                                                                                                                                                                                                                                                                  | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65<br>92.83<br>159.8<br>181<br>2= 9 (P <                              | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37<br>3.68<br>20.7<br>32<br>0.00001                          | 110<br>);   <sup>2</sup> = §<br>5<br>7<br>24<br>9<br>9<br>6<br>5<br>5<br>6<br>16<br>15<br>102<br>);   <sup>2</sup> = §<br>6<br>8                    | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>2.7%<br>2.3%<br>3.5%<br>3.5%<br>3.5%<br>3.6%<br>3.3%<br>2.8%<br>30.5%<br>30.5%<br>30.5%                       | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-58.00 [-93.11, -22.89]<br>-50.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-64.88 [-79.24, -50.51]<br>-69.00 [-110.31, -27.89]<br>3.90 [-81.02, 88.82]                             | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: J<br>10.1.3 posttreatment<br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Pan DQ 2003<br>Herz RC 1998<br>Gill R 1992<br>Xue D 1994<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: J<br>10.1.4 posttreatment<br>Lo EH 1994<br>Onal MZ 1997<br>Subtotal (95% CI)                                                                                                                       | 588.06; Ci<br>Z = 6.01 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169<br>61<br>75<br>94.29<br>45.96<br>121.32<br>170<br>433.79; Ci<br>Z = 8.85 (P<br>(30,60min<br>49<br>179.1                              | hi <sup>≠</sup> = 132<br>< 0.000<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7<br>8.94<br>3.68<br>19.82<br>33<br>hi <sup>≠</sup> = 130<br>< 0.000<br>1<br>27<br>78.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120<br>2.32, dt<br>001)<br>5<br>7<br>7<br>13<br>9<br>9<br>9<br>8<br>8<br>5<br>6<br>16<br>11<br>89<br>9<br>0.02, dt<br>001)<br>6<br>7<br>7<br>13                                                                                                                                                                                                                                                                            | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65<br>92.83<br>159.8<br>181<br>2 9 (P <<br>118<br>175.2               | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37<br>3.68<br>20.7<br>32<br>0.00001                          | 110<br>);   <sup>2</sup> = §<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>15<br>102<br>102<br>102<br>102<br>8<br>8<br>8<br>14         | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>3.5%<br>3.5%<br>3.5%<br>3.6%<br>3.3%<br>2.8%<br>30.5%<br>13%                                                  | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-93.11, -22.89]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-64.88 [-79.24, -50.51]<br>-69.00 [-110.31, -27.89]                                                                                | •<br>                                                                                       |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: <i>J</i><br><b>10.1.3 postfreatment</b><br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Pan DQ 2003<br>Herz RC 1998<br>Gill R 1992<br>Xue D 1994<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: <i>J</i><br><b>10.1.4 postfreatment</b><br>Lo EH 1994<br>Onal MZ 1997                                                                                                                  | 588.06; Ci<br>Z = 6.01 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169<br>61<br>75<br>94.29<br>45.96<br>121.32<br>170<br>433.79; Ci<br>Z = 8.85 (P<br>(30,60min<br>49<br>179.1                              | hi <sup>#</sup> = 13:<br>< 0.00(<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7<br>8.94<br>3.68<br>19.82<br>33<br>19.82<br>33<br>hi <sup>#</sup> = 13:<br>< 0.00(<br>19.27<br>78.5<br>Chi <sup>#</sup> = 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>2.32, dt<br>001)<br>5<br>7<br>7<br>13<br>9<br>9<br>9<br>8<br>8<br>5<br>6<br>16<br>16<br>11<br>11<br>89<br>9<br>0.02, dt<br>001)<br>6<br>7<br>7<br>13<br>29, dt=                                                                                                                                                                                                                                                     | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65<br>92.83<br>159.8<br>181<br>2 9 (P <<br>118<br>175.2               | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37<br>3.68<br>20.7<br>32<br>0.00001                          | 110<br>);   <sup>2</sup> = §<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>15<br>102<br>102<br>102<br>102<br>8<br>8<br>8<br>14         | 26.9%<br>14%<br>2.2%<br>3.1%<br>3.5%<br>2.7%<br>2.3%<br>3.5%<br>3.5%<br>3.5%<br>3.6%<br>3.3%<br>2.8%<br>30.5%<br>30.5%<br>30.5%                       | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-58.00 [-93.11, -22.89]<br>-50.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-64.88 [-79.24, -50.51]<br>-69.00 [-110.31, -27.89]<br>3.90 [-81.02, 88.82]                             | •<br>                                                                                       |
| Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: <i>J</i><br><b>10.1.3 postreatment</b><br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Pan DQ 2003<br>Herz RC 1998<br>Gill R 1992<br>Xue D 1994<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: <i>J</i><br><b>10.1.4 postreatment</b><br>Lo EH 1994<br>Onal MZ 1997<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: <i>J</i>                 | 588.06; Ci<br>Z = 6.01 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169<br>61<br>75<br>94.29<br>45.96<br>121.32<br>170<br>433.79; Ci<br>Z = 8.85 (P<br>(30,60min<br>49<br>179.1                              | hi <sup>#</sup> = 13:<br>< 0.00(<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7<br>8.94<br>3.68<br>19.82<br>33<br>19.82<br>33<br>hi <sup>#</sup> = 13:<br>< 0.00(<br>19.27<br>78.5<br>Chi <sup>#</sup> = 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>2.32, df<br>001)<br>5<br>7<br>7<br>3<br>3<br>9<br>9<br>8<br>8<br>5<br>5<br>6<br>16<br>11<br>89<br>9<br>0.02, df<br>001)<br>6<br>7<br>13<br>29, df=<br>)                                                                                                                                                                                                                                                             | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65<br>92.83<br>159.8<br>181<br>2 9 (P <<br>118<br>175.2               | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37<br>3.68<br>20.7<br>32<br>0.00001                          | 110<br>);   <sup>2</sup> = §<br>5<br>7<br>24<br>9<br>9<br>6<br>5<br>6<br>6<br>15<br>102<br>102<br>;   <sup>2</sup> = §<br>6<br>8<br>14<br>5<br>56%  | 26.9%<br>44%<br>2.2%<br>3.1%<br>3.5%<br>2.7%<br>2.3%<br>3.5%<br>3.6%<br>3.5%<br>3.6%<br>3.6%<br>3.6%<br>3.8%<br>3.0,5%<br>13%<br>2.0%<br>2.0%<br>2.9% | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-58.00 [-93.11, -22.89]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-36.848 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-64.88 [-79.24, -50.51]<br>-69.00 [-110.31, -27.69]<br>3.90 [-81.02, 88.82]<br>-42.38 [-111.17, 26.42] | •<br>                                                                                       |
| Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: <i>J</i><br><b>10.1.3 posttreatment</b><br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Par DQ 2003<br>Herz RC 1998<br>Gill R 1992<br>Xue D 1994<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: <i>J</i><br><b>10.1.4 posttreatment</b><br>Lo EH 1994<br>Onal MZ 1997<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: <i>J</i><br>Total (95% Cl) | 588.06; Ci<br>Z = 6.01 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169<br>61<br>75<br>94.29<br>45.96<br>121.32<br>170<br>433.79; Ci<br>Z = 8.85 (P<br>(30,60min<br>49<br>179.1<br>1496.56; (<br>Z = 1.21 (P | hi <sup>#</sup> = 132<br>< 0.000<br>10.85<br>17.46<br>5.2<br>30<br>38<br>7<br>8.94<br>3.68<br>7<br>8.94<br>3.68<br>7<br>8.94<br>3.68<br>7<br>8.94<br>3.68<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>7<br>8.94<br>3.68<br>7<br>7<br>7<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.68<br>8.94<br>3.77<br>8.94<br>3.89<br>8.94<br>3.77<br>8.94<br>3.77<br>8.94<br>3.77<br>8.94<br>3.77<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>8.94<br>3.78<br>9.78<br>3.78<br>9.78<br>5.78<br>7.78<br>5.78<br>7.78<br>5.78<br>7.79<br>7.78<br>5.78<br>7.79<br>7.79<br>7.79<br>7.79<br>7.79<br>7.79<br>7.79<br>7 | 120<br>2.32, dtf<br>001)<br>5<br>7<br>7<br>13<br>9<br>9<br>9<br>9<br>8<br>8<br>5<br>6<br>6<br>16<br>11<br>11<br>89<br>90.02, dtf<br>001)<br>6<br>7<br>13<br>29, dt=<br>)<br>429                                                                                                                                                                                                                                            | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65<br>92.83<br>159.8<br>181<br>= 9 (P <<br>118<br>175.2<br>= 1 (P = 0 | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37<br>3.68<br>20.7<br>32<br>0.00001<br>44<br>49.3<br>13); ₱= | 110<br>);   <sup>2</sup> = \$<br>5<br>7<br>24<br>9<br>9<br>6<br>5<br>5<br>6<br>16<br>15<br>102<br>102<br>102<br>\$<br>102<br>56%<br>8<br>14<br>556% | 26.9%<br>44%<br>2.2%<br>3.1%<br>3.5%<br>2.3%<br>3.5%<br>3.6%<br>3.5%<br>3.6%<br>3.3%<br>2.8%<br>30.5%<br>30.5%<br>2.9%<br>100.0%                      | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-58.00 [-93.11, -22.89]<br>-50.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-64.88 [-79.24, -50.51]<br>-69.00 [-110.31, -27.89]<br>3.90 [-81.02, 88.82]                             | •<br>                                                                                       |
| Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: <i>J</i><br><b>10.1.3 postreatment</b><br>Pschorn U 1993<br>Herz RC 1998<br>Moyanova SG 2007<br>Margaill I 1996<br>Uchida K 2001<br>Park CK 1988<br>Pan DQ 2003<br>Herz RC 1998<br>Gill R 1992<br>Xue D 1994<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: <i>J</i><br><b>10.1.4 postreatment</b><br>Lo EH 1994<br>Onal MZ 1997<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = :<br>Test for overall effect: <i>J</i>                 | 588.06; Ci<br>Z = 6.01 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169<br>61<br>75<br>94.29<br>45.96<br>121.32<br>170<br>433.79; Ci<br>Z = 8.85 (P<br>(30,60min<br>49<br>179.1<br>1496.56; C<br>Z = 1.21 (P | hi <sup>#</sup> = 132<br>< < 0.00(<br>10.85<br>5.2<br>30<br>38<br>7<br>8.94<br>3.68<br>7<br>8.94<br>19.82<br>33<br>3.68<br>19.82<br>3.68<br>19.82<br>3.68<br>19.82<br>3.68<br>19.82<br>3.68<br>19.82<br>3.68<br>19.82<br>3.68<br>19.85<br>5.2<br>3.68<br>19.85<br>5.2<br>3.68<br>19.85<br>5.2<br>3.68<br>19.85<br>5.2<br>3.68<br>19.85<br>5.2<br>3.68<br>19.85<br>5.2<br>3.68<br>19.85<br>5.2<br>3.68<br>19.82<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120<br>2.32, dtf<br>2.32, dtf<br>001)<br>5<br>5<br>7<br>7<br>13<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>8<br>8<br>5<br>6<br>16<br>16<br>11<br>89<br>90.02, dtf<br>001)<br>6<br>7<br>7<br>13<br>3<br>29, dtf<br>9<br>9<br>8<br>8<br>8<br>5<br>6<br>6<br>16<br>17<br>18<br>9<br>9<br>9<br>8<br>8<br>8<br>5<br>6<br>6<br>16<br>17<br>18<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19 | 250.52<br>154.41<br>170.5<br>239<br>119<br>127<br>144.65<br>92.83<br>159.8<br>181<br>= 9 (P <<br>118<br>175.2<br>= 1 (P = 0 | 41.6<br>20.22<br>22.7<br>30<br>38<br>7<br>7.37<br>3.68<br>20.7<br>32<br>0.00001<br>44<br>49.3<br>13); ₱= | 110<br>);   <sup>2</sup> = \$<br>5<br>7<br>24<br>9<br>9<br>6<br>5<br>5<br>6<br>16<br>15<br>102<br>102<br>102<br>\$<br>102<br>56%<br>8<br>14<br>556% | 26.9%<br>44%<br>2.2%<br>3.1%<br>3.5%<br>2.3%<br>3.5%<br>3.6%<br>3.5%<br>3.6%<br>3.3%<br>2.8%<br>30.5%<br>30.5%<br>2.9%<br>100.0%                      | -53.36 [-70.77, -35.94]<br>-174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-58.00 [-93.11, -22.89]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-36.848 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-64.88 [-79.24, -50.51]<br>-69.00 [-110.31, -27.69]<br>3.90 [-81.02, 88.82]<br>-42.38 [-111.17, 26.42] | +<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ |

# Additional Figure 3 Lesion volume subgroup analysis concerning administration time after brain injury.

Under different administration time, most literatures have proved that MK-801 can also decrease Lesion volume after acute brain injury in rats.

| Nuture Outers                       |             | K-801     | · · · · · |           | ontrol     | T        | 104-1-1-1-1 | Mean Difference            | Mean Difference                |
|-------------------------------------|-------------|-----------|-----------|-----------|------------|----------|-------------|----------------------------|--------------------------------|
| Study or Subgroup                   | Mean        | SD        | Total     | Mean      | SD         | Total    | Weight      | IV, Random, 95% Cl         | IV, Random, 95% Cl             |
| 11.1.1 MCAO                         |             |           |           |           |            | -        |             |                            |                                |
| Pschorn U 1993                      |             | 10.85     |           | 250.52    | 41.6       | 5        |             | -174.55 [-212.23, -136.87] |                                |
| Memezawa H 1995                     |             | 46.49     |           | 157.76    |            | 7        | 1.0%        | -130.75 [-200.68, -60.82]  |                                |
| Buchan AM 1992                      | 41          | 19        | 9         | 150       | 43         | 9        | 2.3%        | -109.00 [-139.71, -78.29]  |                                |
| Hanon E 2001                        | 107         | 22.3      | 9         | 211       | 23.8       | 12       | 2.8%        | -104.00 [-123.84, -84.16]  |                                |
| Herz RC 1998                        | 54.23       | 17.46     | 7         | 154.41    | 20.22      | 7        | 2.8%        | -100.18 [-119.97, -80.39]  |                                |
| Mackensen GB 2000                   | 35          | 35        | 16        | 125       | 72         | 16       | 1.9%        | -90.00 [-129.23, -50.77]   |                                |
| Foster KA 2009                      | 112.82      | 20.5      | 41        | 200.71    | 23.88      | 41       | 3.2%        | -87.89 [-97.52, -78.26]    | 1                              |
| Moyanova SG 2007                    | 85.5        | 5.2       | 13        | 170.5     | 22.7       | 24       | 3.2%        | -85.00 [-94.51, -75.49]    | -                              |
| Sarraf-Yazdi S 1998                 | 100         | 65        | 18        | 182       | 63         | 18       | 1.8%        | -82.00 [-123.82, -40.18]   |                                |
| Sarraf-Yazdi S 1999                 | 81          | 60        | 18        | 163       | 36         | 12       | 2.1%        | -82.00 [-116.40, -47.60]   |                                |
| Regan HK 2007                       | 130         | 24        | 20        | 211       | 28         | 17       | 3.0%        | -81.00 [-97.96, -64.04]    |                                |
| Shen SY 2003                        | 60.8        | 7.76      | 18        | 140.6     | 14.81      | 18       | 3.3%        | -79.80 [-87.52, -72.08]    | +                              |
| Takamatsu H 1998                    | 126.1       | 20.3      | 8         | 202.4     | 8.5        | 9        | 3.0%        | -76.30 [-91.42, -61.18]    |                                |
| Gorgulu A 2000                      | 90.55       | 8.49      | 10        | 162.29    | 16.31      | 10       | 3.2%        | -71.74 [-83.14, -60.34]    | -                              |
| Margaill I 1996                     | 169         | 30        | 9         | 239       | 30         | 9        | 2.5%        | -70.00 [-97.72, -42.28]    |                                |
| Lo EH 1994                          | 49          | 27        | 6         | 118       | 44         | 6        | 1.8%        | -69.00 [-110.31, -27.69]   |                                |
| Dirnagl U 1990                      | 165         | 63        | 15        | 231       | 22         | 13       | 2.1%        | -66.00 [-100.05, -31.95]   |                                |
| Katsuta K 1995                      |             | 42.54     | 24        | 145.99    | 36.46      | 9        | 2.4%        | -56.61 [-85.89, -27.33]    |                                |
| Relton JK 1996                      | 26.87       | 6.37      | 8         | 78.88     | 13.06      | 8        | 3.2%        | -52.01 [-62.08, -41.94]    | +                              |
| Pan DQ 2003                         | 94.29       | 8.94      |           | 144.65    | 7.37       | 5        | 3.2%        | -50.36 [-60.52, -40.20]    |                                |
| Cam E 2008                          | 23.12       | 21.1      | 5         | 73.12     | 23.2       | 5        | 2.5%        | -50.00 [-77.49, -22.51]    |                                |
| lijima T 1992                       | 58          | 11.5      | 6         | 108       | 38.5       | 6        | 2.2%        | -50.00 [-82.15, -17.85]    |                                |
| Gill R 1991                         |             | 16.15     | 24        | 141.97    | 4.68       | 24       | 3.3%        | -49.50 [-56.23, -42.77]    | -                              |
| Park CK 1988                        | 79.71       | 8.49      | 14        | 127       | 7          | 6        | 3.3%        | -47.29 [-54.44, -40.14]    | +                              |
| Herz RC 1998                        | 45.96       | 3.68      | 6         | 92.83     | 3.68       | 6        | 3.4%        | -46.87 [-51.03, -42.71]    | -                              |
| Buchan AM 1992                      | 145.29      |           | 31        | 186.23    | 7.86       | 31       | 3.4%        | -40.94 [-45.71, -36.17]    | +                              |
| Gill R 1992                         | 121.32      |           | 16        | 159.8     | 20.7       | 16       | 3.1%        | -38.48 [-52.52, -24.44]    |                                |
| Roussel S 1992                      |             | 26.47     | 21        | 110.71    | 22.62      | 19       | 3.0%        | -36.90 [-52.12, -21.68]    |                                |
| Bielenberg GW 1991                  |             | 28.13     | 14        | 99.1      | 26.9       | 9        | 2.7%        | -32.74 [-55.67, -9.81]     |                                |
| Bertorelli R 1998                   | 24.6        | 20.13     | 4         | 44.5      | 20.9       | 9<br>4   | 3.4%        |                            | +                              |
|                                     |             |           |           |           |            |          |             | -19.90 [-24.80, -15.00]    |                                |
| Dirnagl U 1990                      | 186         | 33        | 12        | 197       | 51         | 11       | 2.1%        | -11.00 [-46.45, 24.45]     |                                |
| Xue D 1994                          | 170         | 33        | 11        | 181       | 32         | 15       | 2.6%        | -11.00 [-36.35, 14.35]     |                                |
| Margaill   1996                     | 200         | 40        | 8         | 209       | 14         | 8        | 2.4%        | -9.00 [-38.37, 20.37]      |                                |
| Dawson DA 1994                      |             | 15.71     | 9         |           | 11.43      | 10       | 3.2%        | -8.35 [-20.82, 4.12]       |                                |
| Onal MZ 1997                        | 179.1       | 78.5      | 7         | 175.2     | 89.3       | 8        | 0.7%        | 3.90 [-81.02, 88.82]       |                                |
| Subtotal (95% CI)                   |             |           | 455       |           |            | 433      | 92.2%       | -60.37 [-68.98, -51.76]    | •                              |
| Heterogeneity: Tau <sup>2</sup> = 5 |             |           |           | = 34 (P < | < 0.0000   | 11); l*= | 94%         |                            |                                |
| Test for overall effect: Z          | .= 13.75 (  | P < 0.00  | JUU1)     |           |            |          |             |                            |                                |
| 444011                              |             |           |           |           |            |          |             |                            |                                |
| 11.1.2 Hemorrhage                   |             |           | 621       |           |            | 2        |             |                            |                                |
| Uchida K 2001                       | 61          | 38        | 9         | 119       | 38         | 9        | 2.1%        | -58.00 [-93.11, -22.89]    |                                |
| Lyden PD 1994                       |             | 26.09     |           | 118.19    |            | 27       | 2.9%        | -29.65 [-47.86, -11.44]    |                                |
| Kawai N 2000                        | 66.4        | 13.7      | 5         | 86.6      | 20.7       | 5        | 2.7%        | -20.20 [-41.96, 1.56]      |                                |
| Subtotal (95% CI)                   |             |           | 37        |           |            | 41       | 7.8%        | -31.58 [-48.90, -14.26]    | •                              |
| Heterogeneity: Tau² = 8             |             |           |           | (P = 0.20 | l); l² = 3 | 3%       |             |                            |                                |
| Test for overall effect: Z          | . = 3.57 (P | = 0.000   | 04)       |           |            |          |             |                            |                                |
| Total (95% CI)                      |             |           | 492       |           |            | 474      | 100.0%      | -58.31 [-66.55, -50.07]    | •                              |
| Heterogeneity: Tau <sup>2</sup> = 5 | 520.31: CI  | ni² = 580 |           | = 37 (P < | < 0.0000   |          |             |                            | - <u>t-t-</u> ++               |
| Fest for overall effect: Z          |             |           |           | 0. 0      | 5.0000     |          | - / //      |                            | -200 -100 Ó 100 20             |
| Fest for subaroup diffe             |             |           |           | 1 /P - 0  | 004) 12-   | - 00 20  |             |                            | Favours MK-801 Favours control |

## Additional Figure 4 Lesion volume subgroup analysis concerning injury model after brain

injury.

Under different injury model, most literatures have proved that MK-801 can also decrease Lesion volume after acute brain injury in rats.

| Study or Subgroup<br>13.1.1 i.p.<br>3echorn U 1993<br>Buchan AM 1992<br>Hanon E 2001<br>Foster KA 2009<br>Moyanova SG 2007<br>Sarraf-Yazdi S 1998<br>Regan HK 2007<br>Shen SY 2003<br>Sorgulu A 2000<br>Dimagl U 1990<br>Katsuta K 1995 | Mean<br>75.97<br>41<br>107<br>112.82<br>85.5<br>100<br>130<br>60.8<br>90.55<br>165 |                                       | <u>Total</u><br>9<br>9<br>41<br>13<br>18 | Mean<br>250.52<br>150<br>211<br>200.71<br>170.5 | 41.6<br>43<br>23.8<br>23.88 | 101a1<br>5<br>9<br>12<br>41 | Weight<br>2.2%<br>2.5%<br>3.1% | N, Random, 95% Cl<br>-174.55 [-212.23, -136.87]<br>-109.00 [-139.71, -78.29] | IV, Random, 95% Cl             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|-------------------------------------------------|-----------------------------|-----------------------------|--------------------------------|------------------------------------------------------------------------------|--------------------------------|
| Pschom U 1993<br>Juchan AM 1992<br>Hanon E 2001<br>"oster KA 2009<br>Moyanova SG 2007<br>Sarraf-Yazdi S 1998<br>Regan HK 2007<br>Shen SY 2003<br>Sorgulu A 2000<br>Dirmagl U 1990<br>Katsuta K 1995                                     | 41<br>107<br>112.82<br>85.5<br>100<br>130<br>60.8<br>90.55                         | 19<br>22.3<br>20.5<br>5.2<br>65<br>24 | 9<br>9<br>41<br>13<br>18                 | 150<br>211<br>200.71<br>170.5                   | 43<br>23.8<br>23.88         | 9<br>12                     | 2.5%                           |                                                                              |                                |
| Buchan AM 1992<br>Hanon E 2001<br>Foster KA 2009<br>Moyanova SG 2007<br>Barraf-Yazdi S 1998<br>Regan HK 2007<br>Shen SY 2003<br>Borgulu A 2000<br>Dimagl U 1990<br>Katsuta K 1995                                                       | 41<br>107<br>112.82<br>85.5<br>100<br>130<br>60.8<br>90.55                         | 19<br>22.3<br>20.5<br>5.2<br>65<br>24 | 9<br>9<br>41<br>13<br>18                 | 150<br>211<br>200.71<br>170.5                   | 43<br>23.8<br>23.88         | 9<br>12                     | 2.5%                           |                                                                              |                                |
| Hanon E 2001<br>Foster KA 2009<br>Moyanova SG 2007<br>Sarraf-Yazdi S 1998<br>Regan HK 2007<br>Shen SY 2003<br>Sorgulu A 2000<br>Dimagl U 1990<br>Katsuta K 1995                                                                         | 107<br>112.82<br>85.5<br>100<br>130<br>60.8<br>90.55                               | 22.3<br>20.5<br>5.2<br>65<br>24       | 9<br>41<br>13<br>18                      | 211<br>200.71<br>170.5                          | 23.8<br>23.88               | 12                          |                                | -109.001-139.7178.790                                                        |                                |
| Foster KA 2009<br>Moyanova SG 2007<br>Sarraf-Yazdi S 1998<br>Regan HK 2007<br>Shen SY 2003<br>Sorgulu A 2000<br>Dirnagl U 1990<br>Katsuta K 1995                                                                                        | 112.82<br>85.5<br>100<br>130<br>60.8<br>90.55                                      | 20.5<br>5.2<br>65<br>24               | 41<br>13<br>18                           | 200.71<br>170.5                                 | 23.88                       |                             |                                |                                                                              |                                |
| Moyanova SG 2007<br>Sarraf-Yazdi S 1998<br>Regan HK 2007<br>Shen SY 2003<br>Sorgulu A 2000<br>Dirnagi U 1990<br>Katsuta K 1995                                                                                                          | 85.5<br>100<br>130<br>60.8<br>90.55                                                | 5.2<br>65<br>24                       | 13<br>18                                 | 170.5                                           |                             |                             |                                | -104.00 [-123.84, -84.16]                                                    | -                              |
| Sarraf-Yazdi S 1998<br>Regan HK 2007<br>Shen SY 2003<br>Gorgulu A 2000<br>Dirnagl U 1990<br>Katsuta K 1995                                                                                                                              | 100<br>130<br>60.8<br>90.55                                                        | 65<br>24                              | 18                                       |                                                 |                             |                             | 3.5%                           | -87.89 [-97.52, -78.26]                                                      | 1                              |
| Regan HK 2007<br>Shen SY 2003<br>Sorgulu A 2000<br>Dirnagl U 1990<br>Katsuta K 1995                                                                                                                                                     | 130<br>60.8<br>90.55                                                               | 24                                    |                                          |                                                 | 22.7                        | 24                          | 3.5%                           | -85.00 [-94.51, -75.49]                                                      |                                |
| Bhen SY 2003<br>Gorgulu A 2000<br>Dirnagl U 1990<br>Katsuta K 1995                                                                                                                                                                      | 60.8<br>90.55                                                                      |                                       |                                          | 182                                             | 63                          | 18                          | 2.0%                           | -82.00 [-123.82, -40.18]                                                     |                                |
| ∋orgulu A 2000<br>Dirnagl U 1990<br><atsuta 1995<="" k="" td=""><td>90.55</td><td>( /h</td><td>20</td><td>211</td><td>28</td><td>17</td><td>3.2%</td><td>-81.00 [-97.96, -64.04]</td><td></td></atsuta>                                 | 90.55                                                                              | ( /h                                  | 20                                       | 211                                             | 28                          | 17                          | 3.2%                           | -81.00 [-97.96, -64.04]                                                      |                                |
| Dirnagl U 1990<br>Katsuta K 1995                                                                                                                                                                                                        |                                                                                    |                                       | 18                                       |                                                 | 14.81                       | 18                          | 3.6%                           | -79.80 [-87.52, -72.08]                                                      |                                |
| ≺atsuta K 1995                                                                                                                                                                                                                          | 165                                                                                | 8.49                                  | 10                                       | 162.29                                          | 16.31                       | 10                          | 3.5%                           | -71.74 [-83.14, -60.34]                                                      |                                |
|                                                                                                                                                                                                                                         |                                                                                    | 63                                    | 15                                       | 231                                             | 22                          | 13                          | 2.3%                           | -66.00 [-100.05, -31.95]                                                     |                                |
|                                                                                                                                                                                                                                         | 89.38                                                                              |                                       |                                          | 145.99                                          | 36.46                       | 9                           | 2.6%                           | -56.61 [-85.89, -27.33]                                                      |                                |
| Relton JK 1996                                                                                                                                                                                                                          | 26.87                                                                              | 6.37                                  | 8                                        | 78.88                                           | 13.06                       | 8                           | 3.5%                           | -52.01 [-62.08, -41.94]                                                      | +                              |
| Pan DQ 2003                                                                                                                                                                                                                             | 94.29                                                                              | 8.94                                  |                                          | 144.65                                          | 7.37                        | 5                           | 3.5%                           | -50.36 [-60.52, -40.20]                                                      |                                |
| ijima T 1992                                                                                                                                                                                                                            | 58                                                                                 | 11.5                                  | 6                                        | 108                                             | 38.5                        | 6                           | 2.4%                           | -50.00 [-82.15, -17.85]                                                      |                                |
| Cam E 2008                                                                                                                                                                                                                              | 23.12                                                                              | 21.1                                  | 5                                        | 73.12                                           | 23.2                        | 5                           | 2.7%                           | -50.00 [-77.49, -22.51]                                                      |                                |
| Buchan AM 1992                                                                                                                                                                                                                          | 145.29                                                                             |                                       |                                          | 186.23                                          | 7.86                        | 31                          | 3.6%                           | -40.94 [-45.71, -36.17]                                                      | -                              |
| Roussel S 1992                                                                                                                                                                                                                          | 73.81                                                                              |                                       | 21                                       | 110.71                                          | 22.62                       | 19                          | 3.3%                           | -36.90 [-52.12, -21.68]                                                      |                                |
| Bielenberg GW 1991                                                                                                                                                                                                                      | 66.36                                                                              |                                       | 14                                       | 99.1                                            | 26.9                        | 9                           | 2.9%                           | -32.74 [-55.67, -9.81]                                                       |                                |
| Bertorelli R 1998                                                                                                                                                                                                                       | 24.6                                                                               | 4                                     | 4                                        | 44.5                                            | 3                           | 4                           | 3.6%                           | -19.90 [-24.80, -15.00]                                                      | -                              |
| (ue D 1994                                                                                                                                                                                                                              | 170                                                                                | 33                                    | 11                                       | 181                                             | 32                          | 15                          | 2.8%                           | -11.00 [-36.35, 14.35]                                                       |                                |
| Dirnagl U 1990                                                                                                                                                                                                                          | 186                                                                                | 33                                    | 12                                       | 197                                             | 51                          | 11                          | 2.3%                           | -11.00 [-46.45, 24.45]                                                       |                                |
| Onal MZ 1997                                                                                                                                                                                                                            | 179.1                                                                              | 78.5                                  | 7                                        | 175.2                                           | 89.3                        | 8                           | 0.8%                           | 3.90 [-81.02, 88.82]                                                         | -                              |
| Subtotal (95% CI)                                                                                                                                                                                                                       |                                                                                    |                                       | 306                                      |                                                 |                             | 297                         | 63.3%                          | -62.25 [-75.06, -49.44]                                                      | •                              |
| Heterogeneity: Tau² = 7:<br>Fest for overall effect: Z<br>13.1.2 i.v.                                                                                                                                                                   |                                                                                    |                                       |                                          | - 21 (i                                         |                             | -17,1 -                     | 33 %                           |                                                                              |                                |
| vlemezawa H 1995                                                                                                                                                                                                                        | 27.01                                                                              | 46.49                                 | 8                                        | 157.76                                          | 83.78                       | 7                           | 1.1%                           | -130.75 [-200.68, -60.82]                                                    |                                |
| Herz RC 1998                                                                                                                                                                                                                            | 54.23                                                                              |                                       |                                          | 154.41                                          | 20.22                       | 7                           | 3.1%                           | -100.18 [-119.97, -80.39]                                                    |                                |
| dackensen GB 2000                                                                                                                                                                                                                       | 35                                                                                 | 35                                    | 16                                       | 125                                             | 72                          | 16                          | 2.1%                           | -90.00 [-129.23, -50.77]                                                     |                                |
| Sarraf-Yazdi S 1999                                                                                                                                                                                                                     | 81                                                                                 | 60                                    | 18                                       | 163                                             | 36                          | 12                          | 2.3%                           | -82.00 [-116.40, -47.60]                                                     |                                |
| Fakamatsu H 1998                                                                                                                                                                                                                        | 126.1                                                                              | 20.3                                  | 8                                        | 202.4                                           | 8.5                         | 9                           | 3.3%                           | -76.30 [-91.42, -61.18]                                                      |                                |
| dargaill   1996                                                                                                                                                                                                                         | 169                                                                                | 30                                    | 9                                        | 239                                             | 30                          | 9                           | 2.7%                           | -70.00 [-97.72, -42.28]                                                      |                                |
| _0 EH 1994                                                                                                                                                                                                                              | 49                                                                                 | 27                                    | 6                                        | 118                                             | 44                          | 6                           | 2.0%                           | -69.00 [-110.31, -27.69]                                                     |                                |
| Gill R 1991                                                                                                                                                                                                                             | 92.47                                                                              |                                       |                                          | 141.97                                          | 4.68                        | 24                          | 3.6%                           | -49.50 [-56.23, -42.77]                                                      | -                              |
| Park CK 1988                                                                                                                                                                                                                            | 79.71                                                                              | 8.49                                  | 14                                       | 127                                             | 7                           | 6                           | 3.6%                           | -47.29 [-54.44, -40.14]                                                      | -                              |
| Herz RC 1998                                                                                                                                                                                                                            | 45.96                                                                              | 3.68                                  | 6                                        | 92.83                                           | 3.68                        | 6                           | 3.6%                           | -46.87 [-51.03, -42.71]                                                      | -                              |
| Sill R 1992                                                                                                                                                                                                                             | 121.32                                                                             |                                       | 16                                       | 159.8                                           | 20.7                        | 16                          | 3.3%                           | -38.48 [-52.52, -24.44]                                                      |                                |
| vlargaill   1996                                                                                                                                                                                                                        | 200                                                                                | 40                                    | 8                                        | 209                                             | 14                          | 8                           | 2.6%                           | -9.00 [-38.37, 20.37]                                                        |                                |
| Dawson DA 1994                                                                                                                                                                                                                          | 50.71                                                                              |                                       | 9                                        |                                                 | 11.43                       | 10                          | 3.4%                           | -8.35 [-20.82, 4.12]                                                         |                                |
| Subtotal (95% CI)                                                                                                                                                                                                                       | 00.11                                                                              |                                       | 149                                      | 00.00                                           | . 1.45                      | 136                         | 36.7%                          | -55.52 [-66.55, -44.50]                                                      | ◆                              |
| Heterogeneity: Tau <sup>2</sup> = 2                                                                                                                                                                                                     | 76 79.04                                                                           | ni <sup>2</sup> = 104                 |                                          | = 12 (P -                                       | . 0 0000                    |                             |                                | 19102 [ 00100, 14100]                                                        |                                |
| Fest for overall effect: Z                                                                                                                                                                                                              |                                                                                    |                                       |                                          | 12 (1                                           | 5.0000                      | .,, -                       | 0010                           |                                                                              |                                |
| fotal (95% CI)                                                                                                                                                                                                                          |                                                                                    |                                       | 455                                      |                                                 |                             | 433                         | 100.0%                         | -60.37 [-68.98, -51.76]                                                      | •                              |
| Heterogeneity: Tau <sup>2</sup> = 5                                                                                                                                                                                                     |                                                                                    |                                       |                                          | = 34 (P •                                       | 0.0000                      |                             |                                |                                                                              | -200 -100 0 100 200            |
| Fest for overall effect: Z :<br>Fest for subaroup differ                                                                                                                                                                                |                                                                                    |                                       |                                          |                                                 |                             |                             |                                |                                                                              | Favours MK-801 Favours control |

Additional Figure 5 Middle cerebral artery occlusion (MCAO) sub-subgroup analysis concerning administration routes after brain injury.

Under different administration routes, most literatures have proved that MK-801 can also decrease Lesion volume after acute brain injury in rat MCAO model.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K-801<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                | ontrol<br>SD                                                                                  | Total                                                                                                                                                              | Weight                                                                                                       | Mean Difference<br>IV. Random, 95% Cl                                                                                                                                                                                                                                                                                              | Mean Difference<br>IV, Random, 95% Cl                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total                                                                                                                                                                                                                                                                                                                                                                                                       | mean                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                            | Total                                                                                                                                                              | weight                                                                                                       | 10, Random, 35% CI                                                                                                                                                                                                                                                                                                                 | N, Kandolii, 55% Ci                                  |
| 27.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                           | 157 76                                                                                                                                                                                                                                                                                                                                                                                                         | 02 70                                                                                         | 7                                                                                                                                                                  | 1 2%                                                                                                         | -120 75 (-200 69 -60 92)                                                                                                                                                                                                                                                                                                           |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    | -                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                | 5.73                                                                                          | 2.075                                                                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    | -                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                      |
| 50.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                             | 59.06                                                                                                                                                                                                                                                                                                                                                                                                          | 11.43                                                                                         |                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    | ▲ <sup>-1</sup>                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              | -57.16 [-73.32, -41.00]                                                                                                                                                                                                                                                                                                            | •                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             | '=13 (P ∘                                                                                                                                                                                                                                                                                                                                                                                                      | ¢ 0.0000                                                                                      | )1); l²=                                                                                                                                                           | 94%                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |                                                      |
| 0,15min]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                      |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                          | 125                                                                                                                                                                                                                                                                                                                                                                                                            | 72                                                                                            | 16                                                                                                                                                                 | 2.2%                                                                                                         | -90.00 [-129.23, -50.77]                                                                                                                                                                                                                                                                                                           |                                                      |
| 126.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                           | 202.4                                                                                                                                                                                                                                                                                                                                                                                                          | 8.5                                                                                           | 9                                                                                                                                                                  | 3.5%                                                                                                         | -76.30 [-91.42, -61.18]                                                                                                                                                                                                                                                                                                            |                                                      |
| 90.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                          | 162.29                                                                                                                                                                                                                                                                                                                                                                                                         | 16.31                                                                                         | 10                                                                                                                                                                 | 3.6%                                                                                                         | -71.74 [-83.14, -60.34]                                                                                                                                                                                                                                                                                                            | +                                                    |
| 89.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                          | 145.99                                                                                                                                                                                                                                                                                                                                                                                                         | 36.46                                                                                         | 9                                                                                                                                                                  | 2.7%                                                                                                         | -56.61 [-85.89, -27.33]                                                                                                                                                                                                                                                                                                            |                                                      |
| 23.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                           | 73.12                                                                                                                                                                                                                                                                                                                                                                                                          | 23.2                                                                                          | 5                                                                                                                                                                  | 2.8%                                                                                                         |                                                                                                                                                                                                                                                                                                                                    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                           | 108                                                                                                                                                                                                                                                                                                                                                                                                            | 38.5                                                                                          | 6                                                                                                                                                                  |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                          | 141.97                                                                                                                                                                                                                                                                                                                                                                                                         | 4.68                                                                                          | 24                                                                                                                                                                 |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    | -                                                    |
| 24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                           | 44.5                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                             | 4                                                                                                                                                                  | 3.8%                                                                                                         | -19.90 [-24.80, -15.00]                                                                                                                                                                                                                                                                                                            | <b>•</b> •                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               | 83                                                                                                                                                                 | 25 0%                                                                                                        | 56 50 [ 75 72 37 AA1                                                                                                                                                                                                                                                                                                               | •                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                    |                                                                                                              | -50.56 [-75.72, -57.44]                                                                                                                                                                                                                                                                                                            |                                                      |
| 634.60; Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.52, df                                                                                                                                                                                                                                                                                                                                                                                                    | = 7 (P <                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00001                                                                                       |                                                                                                                                                                    |                                                                                                              | -50.56 [-75.72, -57.44]                                                                                                                                                                                                                                                                                                            |                                                      |
| 634.60; Ch<br>(= 5.79 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.52, df                                                                                                                                                                                                                                                                                                                                                                                                    | = 7 (P <                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00001                                                                                       |                                                                                                                                                                    |                                                                                                              | -50.56 [-75.72, -57.44]                                                                                                                                                                                                                                                                                                            |                                                      |
| . = 5.79 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.52, df                                                                                                                                                                                                                                                                                                                                                                                                    | = 7 (P <                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00001                                                                                       |                                                                                                                                                                    |                                                                                                              | -30.36 [-13.12, -31.44]                                                                                                                                                                                                                                                                                                            |                                                      |
| (= 5.79 (P<br>(15,30min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ' < 0.000<br>]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.52, df<br>D01)                                                                                                                                                                                                                                                                                                                                                                                            | , da                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               | ); l² = 9                                                                                                                                                          | 5%                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                                                      |
| (= 5.79 (P<br>(15,30min<br>(75.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ' < 0.000<br> ]<br>  10.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.52, df<br>D01)<br>5                                                                                                                                                                                                                                                                                                                                                                                       | 250.52                                                                                                                                                                                                                                                                                                                                                                                                         | 41.6                                                                                          | ); I² = 9<br>5                                                                                                                                                     | 2.3%                                                                                                         | -174.55 [-212.23, -136.87]                                                                                                                                                                                                                                                                                                         |                                                      |
| (= 5.79 (P<br>(15,30min<br>75.97<br>54.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ' < 0.000<br>]<br>10.85<br>17.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.52, df<br>D01)<br>5<br>7                                                                                                                                                                                                                                                                                                                                                                                  | 250.52<br>154.41                                                                                                                                                                                                                                                                                                                                                                                               | 41.6<br>20.22                                                                                 | ); I² = 9<br>5<br>7                                                                                                                                                | 2.3%<br>3.2%                                                                                                 | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]                                                                                                                                                                                                                                                                            |                                                      |
| (= 5.79 (P<br>(15,30min<br>75.97<br>54.23<br>85.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ' < 0.00(<br>]<br>10.85<br>17.46<br>5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.52, df<br>D01)<br>5<br>7<br>13                                                                                                                                                                                                                                                                                                                                                                            | 250.52<br>154.41<br>170.5                                                                                                                                                                                                                                                                                                                                                                                      | 41.6<br>20.22<br>22.7                                                                         | ); I² = 9<br>5<br>7<br>24                                                                                                                                          | 2.3%<br>3.2%<br>3.7%                                                                                         | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]                                                                                                                                                                                                                                                 |                                                      |
| (= 5.79 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ol> <li>&lt; 0.000</li> <li>10.85</li> <li>17.46</li> <li>5.2</li> <li>30</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.52, df<br>D01)<br>5<br>7<br>13<br>9                                                                                                                                                                                                                                                                                                                                                                       | 250.52<br>154.41<br>170.5<br>239                                                                                                                                                                                                                                                                                                                                                                               | 41.6<br>20.22<br>22.7<br>30                                                                   | ); l² = 9<br>5<br>7<br>24<br>9                                                                                                                                     | 2.3%<br>3.2%<br>3.7%<br>2.8%                                                                                 | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]                                                                                                                                                                                                                      |                                                      |
| (= 5.79 (P<br>(15,30min<br>(75.97<br>(54.23<br>(85.5)<br>(169<br>(75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 < 0.000<br>10.85<br>17.46<br>5.2<br>30<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.52, df<br>D01)<br>5<br>7<br>13<br>9<br>8                                                                                                                                                                                                                                                                                                                                                                  | 250.52<br>154.41<br>170.5<br>239<br>127                                                                                                                                                                                                                                                                                                                                                                        | 41.6<br>20.22<br>22.7<br>30<br>7                                                              | ); I² = 9<br>5<br>7<br>24<br>9<br>6                                                                                                                                | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%                                                                         | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]                                                                                                                                                                                           |                                                      |
| 2 = 5.79 (P<br>15,30min<br>75.97<br>54.23<br>85.5<br>169<br>75<br>94.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 < 0.000<br>10.85<br>17.46<br>5.2<br>30<br>7<br>8.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.52, df<br>D01)<br>5<br>7<br>13<br>9<br>8<br>5                                                                                                                                                                                                                                                                                                                                                             | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65                                                                                                                                                                                                                                                                                                                                                              | 41.6<br>20.22<br>22.7<br>30<br>7<br>7.37                                                      | );  ² = 9<br>5<br>7<br>24<br>9<br>6<br>5                                                                                                                           | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.7%                                                                 | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-86.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]                                                                                                                                                                |                                                      |
| 2 = 5.79 (P<br>15,30min<br>75.97<br>54.23<br>85.5<br>169<br>75<br>94.29<br>45.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>9 &lt; 0.000<br/>10.85<br/>17.46<br/>5.2<br/>30<br/>7<br/>8.94<br/>3.68</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.52, df<br>D01)<br>5<br>7<br>13<br>9<br>8<br>5<br>6                                                                                                                                                                                                                                                                                                                                                        | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65<br>92.83                                                                                                                                                                                                                                                                                                                                                     | 41.6<br>20.22<br>22.7<br>30<br>7<br>7.37<br>3.68                                              | );  ² = 9<br>5<br>7<br>24<br>9<br>6<br>5<br>6                                                                                                                      | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.7%<br>3.7%<br>3.8%                                                 | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-50.52, -40.20]<br>-46.87 [-51.03, -42.71]                                                                                                                                     |                                                      |
| 2 = 5.79 (P<br>15,30min<br>75.97<br>54.23<br>85.5<br>169<br>75<br>94.29<br>45.96<br>121.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>&lt; 0.000</li> <li>10.85</li> <li>17.46</li> <li>5.2</li> <li>30</li> <li>7</li> <li>8.94</li> <li>3.68</li> <li>19.82</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.52, df<br>D01)<br>5<br>7<br>13<br>9<br>8<br>5<br>6<br>16                                                                                                                                                                                                                                                                                                                                                  | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65<br>92.83<br>159.8                                                                                                                                                                                                                                                                                                                                            | 41.6<br>20.22<br>22.7<br>30<br>7<br>7.37<br>3.68<br>20.7                                      | );  ² = 9<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>16                                                                                                                | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.7%<br>3.8%<br>3.5%                                                 | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-86.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]                                                                                                                                                                |                                                      |
| 2 = 5.79 (P<br>15,30min<br>75.97<br>54.23<br>85.5<br>169<br>75<br>94.29<br>45.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>9 &lt; 0.000<br/>10.85<br/>17.46<br/>5.2<br/>30<br/>7<br/>8.94<br/>3.68</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.52, df<br>D01)<br>5<br>7<br>13<br>9<br>8<br>5<br>6<br>16<br>11                                                                                                                                                                                                                                                                                                                                            | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65<br>92.83                                                                                                                                                                                                                                                                                                                                                     | 41.6<br>20.22<br>22.7<br>30<br>7<br>7.37<br>3.68                                              | );   <sup>2</sup> = 9<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>16<br>15                                                                                              | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.7%<br>3.8%<br>3.5%<br>2.9%                                         | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-50.52, -40.20]<br>-46.87 [-51.03, -42.71]                                                                                                                                     |                                                      |
| 2 = 5.79 (P<br>15,30min<br>75.97<br>54.23<br>85.5<br>169<br>75<br>94.29<br>45.96<br>121.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>&lt; 0.000</li> <li>10.85</li> <li>17.46</li> <li>5.2</li> <li>30</li> <li>7</li> <li>8.94</li> <li>3.68</li> <li>19.82</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.52, df<br>D01)<br>5<br>7<br>13<br>9<br>8<br>5<br>6<br>16                                                                                                                                                                                                                                                                                                                                                  | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65<br>92.83<br>159.8                                                                                                                                                                                                                                                                                                                                            | 41.6<br>20.22<br>22.7<br>30<br>7<br>7.37<br>3.68<br>20.7                                      | );  ² = 9<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>16                                                                                                                | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.7%<br>3.8%<br>3.5%                                                 | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-60.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]                                                                                                          |                                                      |
| z = 5.79 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169<br>75<br>94.29<br>45.96<br>121.32<br>170<br>143.72; Cł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r < 0.000<br>10.85<br>17.46<br>5.2<br>30<br>7<br>8.94<br>3.68<br>19.82<br>33<br>hi <sup>2</sup> = 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.52, df<br>D01)<br>5<br>7<br>13<br>9<br>8<br>5<br>6<br>16<br>11<br>80<br>9.96, df                                                                                                                                                                                                                                                                                                                          | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65<br>92.83<br>159.8<br>181                                                                                                                                                                                                                                                                                                                                     | 41.6<br>20.22<br>22.7<br>30<br>7<br>7.37<br>3.68<br>20.7<br>32                                | );  ² = 9<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>16<br>15<br>93                                                                                                    | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.7%<br>3.8%<br>3.8%<br>3.8%<br>3.5%<br>2.9%<br>29.7%                | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]                                                                                |                                                      |
| 2 = 5.79 (P<br>15,30min<br>75.97<br>54.23<br>85.5<br>169<br>75<br>94.29<br>45.96<br>121.32<br>170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r < 0.000<br>10.85<br>17.46<br>5.2<br>30<br>7<br>8.94<br>3.68<br>19.82<br>33<br>hi <sup>2</sup> = 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.52, df<br>D01)<br>5<br>7<br>13<br>9<br>8<br>5<br>6<br>16<br>11<br>80<br>9.96, df                                                                                                                                                                                                                                                                                                                          | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65<br>92.83<br>159.8<br>181                                                                                                                                                                                                                                                                                                                                     | 41.6<br>20.22<br>22.7<br>30<br>7<br>7.37<br>3.68<br>20.7<br>32                                | );  ² = 9<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>16<br>15<br>93                                                                                                    | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.7%<br>3.8%<br>3.8%<br>3.8%<br>3.5%<br>2.9%<br>29.7%                | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]                                                                                |                                                      |
| z = 5.79 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169<br>75<br>94.29<br>45.96<br>121.32<br>170<br>143.72; Cł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>       &lt; 0.000       10.85       17.46       5.2       30       7       8.94       3.68       19.82       33       hi<sup>2</sup> = 129       &lt; 0.000 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.52, df<br>D01)<br>5<br>7<br>13<br>9<br>8<br>5<br>6<br>16<br>11<br>80<br>9.96, df                                                                                                                                                                                                                                                                                                                          | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65<br>92.83<br>159.8<br>181                                                                                                                                                                                                                                                                                                                                     | 41.6<br>20.22<br>22.7<br>30<br>7<br>7.37<br>3.68<br>20.7<br>32                                | );  ² = 9<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>16<br>15<br>93                                                                                                    | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.7%<br>3.8%<br>3.8%<br>3.8%<br>3.5%<br>2.9%<br>29.7%                | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]                                                                                |                                                      |
| 2 = 5.79 (P<br>15,30min<br>75.97<br>54.23<br>85.5<br>169<br>75<br>94.29<br>45.96<br>121.32<br>170<br>143.72; CH<br>2 = 8.52 (P<br>30,60min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>     &lt; 0.000     10.85     17.46     5.2     30     7     8.94     3.68     19.82     33 hi<sup>2</sup> = 129     &lt; 0.000 ] </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.52, df<br>001)<br>5<br>7<br>13<br>9<br>8<br>5<br>6<br>16<br>11<br>80<br>9.96, df<br>001)                                                                                                                                                                                                                                                                                                                  | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65<br>92.83<br>159.8<br>181<br>= 8 (P < 1                                                                                                                                                                                                                                                                                                                       | 41.6<br>20.22<br>22.7<br>30<br>7<br>7.37<br>3.68<br>20.7<br>32<br>0.00001                     | );   <sup>2</sup> = 9<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>16<br>16<br>19<br>3<br>93<br>);   <sup>2</sup> = 9                                                    | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.7%<br>3.8%<br>3.5%<br>2.9%<br>29.7%                                | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, +00.20]<br>-60.36 [-50.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-65.46 [-80.52, -50.41]                          |                                                      |
| <ul> <li>5.79 (P</li> <li>(15,30min</li> <li>75.97</li> <li>54.23</li> <li>85.5</li> <li>169</li> <li>75</li> <li>94.29</li> <li>45.96</li> <li>121.32</li> <li>170</li> <li>143.72; Cf</li> <li>= 8.52 (P</li> <li>(30,60min</li> <li>49</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>v &lt; 0.000 10.85 17.46 5.2 300 7 8.94 3.68 19.82 33 hi² = 129 v &lt; 0.000 ] 27</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.52, df<br>D01)<br>5<br>7<br>13<br>9<br>8<br>5<br>6<br>16<br>11<br>80<br>9.96, df<br>001)<br>6                                                                                                                                                                                                                                                                                                             | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65<br>92.83<br>159.8<br>181<br>= 8 (P <                                                                                                                                                                                                                                                                                                                         | 41.6<br>20.22<br>22.7<br>30<br>7,37<br>3.68<br>20.7<br>32<br>0.00001                          | );   <sup>2</sup> = 9<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>16<br>16<br>93<br>93<br>93<br>();   <sup>2</sup> = 9                                                  | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.7%<br>3.5%<br>2.9%<br>29.7%<br>4%                                  | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-60.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-65.46 [-80.52, -50.41]<br>-69.00 [-110.31, -27.69]                         |                                                      |
| 2 = 5.79 (P<br>15,30min<br>75.97<br>54.23<br>85.5<br>169<br>75<br>94.29<br>45.96<br>121.32<br>170<br>143.72; CH<br>2 = 8.52 (P<br>30,60min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>     &lt; 0.000     10.85     17.46     5.2     30     7     8.94     3.68     19.82     33 hi<sup>2</sup> = 129     &lt; 0.000 ] </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.52, df<br>D01)<br>5<br>7<br>13<br>9<br>8<br>5<br>6<br>16<br>11<br>80<br>9.96, df<br>D01)<br>6<br>7                                                                                                                                                                                                                                                                                                        | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65<br>92.83<br>159.8<br>181<br>= 8 (P < 1                                                                                                                                                                                                                                                                                                                       | 41.6<br>20.22<br>22.7<br>30<br>7<br>7.37<br>3.68<br>20.7<br>32<br>0.00001                     | );  * = 9<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>16<br>15<br>93<br>);  * = 9<br>6<br>8                                                                             | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.8%<br>3.5%<br>2.9%<br>29.7%<br>4%                                  | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-65.46 [-80.52, -50.41]<br>-69.00 [-110.31, -27.69]<br>3.90 [-81.02, 88.82] |                                                      |
| <ul> <li>5.79 (P</li> <li>(15,30min<br/>75.97<br/>54.23<br/>86.5<br/>94.29<br/>45.96<br/>121.32<br/>170</li> <li>(143.72; CF</li> <li< td=""><td><pre>         &lt; 0.000         10.85         17.46         5.2         30         7         8.94         3.68         19.82         33         hi<sup>2</sup> = 129         &lt; 0.000         27         78.5         </pre></td><td>1.52, df<br/>D01)<br/>5<br/>7<br/>13<br/>9<br/>8<br/>5<br/>6<br/>16<br/>11<br/>80<br/>9.96, df<br/>D01)<br/>6<br/>7<br/>13</td><td>250.52<br/>154.41<br/>170.5<br/>239<br/>127<br/>144.65<br/>92.83<br/>159.8<br/>181<br/>= 8 (P &lt;<br/>118<br/>175.2</td><td>41.6<br/>20.22<br/>22.7<br/>30<br/>7<br/>7.37<br/>3.68<br/>20.7<br/>32<br/>0.00001<br/>0.00001</td><td>);  <sup>2</sup> = §<br/>5<br/>7<br/>24<br/>9<br/>6<br/>5<br/>6<br/>16<br/>15<br/>93<br/>93<br/>93<br/>);  <sup>2</sup> = §<br/>6<br/>8<br/>14</td><td>2.3%<br/>3.2%<br/>3.7%<br/>2.8%<br/>3.7%<br/>3.7%<br/>3.5%<br/>2.9%<br/>29.7%<br/>4%</td><td>-174.55 [-212.23, -136.87]<br/>-100.18 [-119.97, -80.39]<br/>-85.00 [-94.51, -75.49]<br/>-70.00 [-97.72, -42.28]<br/>-52.00 [-59.41, -44.59]<br/>-60.36 [-60.52, -40.20]<br/>-46.87 [-51.03, -42.71]<br/>-38.48 [-52.52, -24.44]<br/>-11.00 [-36.35, 14.35]<br/>-65.46 [-80.52, -50.41]<br/>-69.00 [-110.31, -27.69]</td><td></td></li<></ul> | <pre>         &lt; 0.000         10.85         17.46         5.2         30         7         8.94         3.68         19.82         33         hi<sup>2</sup> = 129         &lt; 0.000         27         78.5         </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.52, df<br>D01)<br>5<br>7<br>13<br>9<br>8<br>5<br>6<br>16<br>11<br>80<br>9.96, df<br>D01)<br>6<br>7<br>13                                                                                                                                                                                                                                                                                                  | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65<br>92.83<br>159.8<br>181<br>= 8 (P <<br>118<br>175.2                                                                                                                                                                                                                                                                                                         | 41.6<br>20.22<br>22.7<br>30<br>7<br>7.37<br>3.68<br>20.7<br>32<br>0.00001<br>0.00001          | );   <sup>2</sup> = §<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>16<br>15<br>93<br>93<br>93<br>);   <sup>2</sup> = §<br>6<br>8<br>14                                   | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.7%<br>3.5%<br>2.9%<br>29.7%<br>4%                                  | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-60.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-65.46 [-80.52, -50.41]<br>-69.00 [-110.31, -27.69]                         |                                                      |
| 2 = 5.79 (P<br>(15,30min<br>75.97<br>54.23<br>85.5<br>169<br>75<br>94.29<br>45.96<br>121.32<br>170<br>443.72; Cf<br>= 8.52 (P<br>(30,60min<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r < 0.000<br>10.85<br>17.46<br>5.2<br>30<br>7<br>8.94<br>3.68<br>19.82<br>33<br>hi <sup>2</sup> = 129<br>r < 0.000<br>r = 27<br>78.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.52, df<br>D01)<br>5<br>7<br>7<br>13<br>9<br>8<br>5<br>6<br>16<br>16<br>16<br>16<br>16<br>18<br>00<br>9.96, df<br>001)<br>6<br>7<br>7<br>13<br>29, df=                                                                                                                                                                                                                                                     | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65<br>92.83<br>159.8<br>181<br>= 8 (P <<br>118<br>175.2                                                                                                                                                                                                                                                                                                         | 41.6<br>20.22<br>22.7<br>30<br>7<br>7.37<br>3.68<br>20.7<br>32<br>0.00001<br>0.00001          | );   <sup>2</sup> = §<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>16<br>15<br>93<br>93<br>93<br>);   <sup>2</sup> = §<br>6<br>8<br>14                                   | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.8%<br>3.5%<br>2.9%<br>29.7%<br>4%                                  | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-65.46 [-80.52, -50.41]<br>-69.00 [-110.31, -27.69]<br>3.90 [-81.02, 88.82] |                                                      |
| <ul> <li>5.79 (P</li> <li>(15,30min<br/>75.97<br/>54.23<br/>85.5<br/>94.29<br/>45.96<br/>121.32<br/>170</li> <li>(143.72; CF</li> <li>(130,60min<br/>49<br/>179.1</li> <li>(1496.56; C</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r < 0.000<br>10.85<br>17.46<br>5.2<br>30<br>7<br>8.94<br>3.68<br>19.82<br>33<br>hi <sup>2</sup> = 129<br>r < 0.000<br>r = 27<br>78.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.52, df<br>D01)<br>5<br>7<br>7<br>13<br>9<br>8<br>5<br>6<br>16<br>16<br>16<br>16<br>16<br>18<br>00<br>9.96, df<br>001)<br>6<br>7<br>7<br>13<br>29, df=                                                                                                                                                                                                                                                     | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65<br>92.83<br>159.8<br>181<br>= 8 (P <<br>118<br>175.2                                                                                                                                                                                                                                                                                                         | 41.6<br>20.22<br>22.7<br>30<br>7<br>7.37<br>3.68<br>20.7<br>32<br>0.00001<br>0.00001          | );   <sup>2</sup> = §<br>5<br>7<br>24<br>9<br>6<br>5<br>5<br>6<br>16<br>15<br>93<br>3<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>16<br>8<br>14<br>5<br>56% | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.7%<br>3.7%<br>3.5%<br>2.9%<br>2.9.7%<br>4%<br>2.1%<br>0.9%<br>3.0% | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-50.36 [-50.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-65.46 [-80.52, -50.41]<br>-89.00 [-110.31, -27.89]<br>3.90 [-81.02, 88.82]<br>-42.38 [-111.17, 26.42] |                                                      |
| <ul> <li>5.79 (P</li> <li>(15,30min<br/>75.97<br/>54.23<br/>85.5<br/>94.29<br/>45.96<br/>121.32<br/>170</li> <li>(143.72; CF</li> <li>(130,60min<br/>49<br/>179.1</li> <li>(1496.56; C</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.00(<br>] 10.85<br>17.46<br>5.2<br>30<br>7<br>8.94<br>3.68<br>19.82<br>33<br>19.82<br>33<br>19.82<br>33<br>19.82<br>33<br>19.82<br>33<br>19.82<br>33<br>19.82<br>33<br>19.82<br>27<br>78.5<br>Chi <sup>2</sup> = 2.2<br>Chi <sup>2</sup> = 2.2 | 1.52, df<br>001)<br>5<br>7<br>13<br>9<br>8<br>5<br>6<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>10<br>9.96, df<br>7<br>13<br>29, df=<br>7<br>400                                                                                                                                                                                                                                                          | 250.52<br>154.41<br>170.5<br>239<br>127<br>144.65<br>92.83<br>159.8<br>181<br>= 8 (P < 1<br>118<br>175.2<br>: 1 (P = 0.                                                                                                                                                                                                                                                                                        | 41.6<br>20.22<br>22.7<br>30<br>7.37<br>3.68<br>20.7<br>32<br>0.00001<br>44<br>89.3<br>13); F= | );  *= \$<br>5<br>7<br>24<br>9<br>6<br>5<br>6<br>16<br>15<br>3<br>9<br>3<br>8<br>4<br>4<br>5<br>5<br>6%<br>3<br>86                                                 | 2.3%<br>3.2%<br>3.7%<br>2.8%<br>3.7%<br>3.8%<br>3.5%<br>2.9%<br>29.7%<br>4%<br>2.1%<br>0.9%<br>3.0%          | -174.55 [-212.23, -136.87]<br>-100.18 [-119.97, -80.39]<br>-85.00 [-94.51, -75.49]<br>-70.00 [-97.72, -42.28]<br>-52.00 [-59.41, -44.59]<br>-50.36 [-60.52, -40.20]<br>-46.87 [-51.03, -42.71]<br>-38.48 [-52.52, -24.44]<br>-11.00 [-36.35, 14.35]<br>-65.46 [-80.52, -50.41]<br>-69.00 [-110.31, -27.69]<br>3.90 [-81.02, 88.82] |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107<br>112.82<br>81<br>100<br>130<br>60.8<br>26.87<br>86<br>73.81<br>66.36<br>186<br>200<br>50.71<br>92.51; Cl<br>= 6.93 (P<br>0,15min]<br>35<br>126.1<br>90.55<br>89.38<br>23.12<br>58<br>92.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{ccccccc} 27.01 & 46.49 \\ 107 & 22.3 \\ 112.82 & 20.5 \\ 81 & 60 \\ 100 & 65 \\ 130 & 24 \\ 60.8 & 7.76 \\ 26.87 & 6.37 \\ 86 & 6 \\ 73.81 & 26.47 \\ 66.36 & 28.13 \\ 186 & 33 \\ 200 & 40 \\ 50.71 & 15.71 \\ 92.51; Chi^2 = 21 \\ = 6.93 (P < 0.001 \\ 0.15min] \\ 35 & 35 \\ 126.1 & 20.3 \\ 90.55 & 8.49 \\ 89.38 & 42.54 \\ 23.12 & 21.1 \\ 58 & 11.5 \\ 92.47 & 16.15 \\ \end{array}$ | 27.01 46.49 8<br>107 22.3 9<br>112.82 20.5 41<br>81 60 18<br>100 65 18<br>130 24 20<br>60.8 7.76 18<br>26.87 6.37 8<br>86 6 6<br>73.81 26.47 21<br>66.36 28.13 14<br>186 33 12<br>200 40 8<br>50.71 15.71 9<br>210<br>92.51; Chi² = 214.72, df<br>= 6.93 (P < 0.00001)<br>0.15min]<br>35 35 16<br>126.1 20.3 8<br>90.55 8.49 10<br>89.38 42.54 24<br>23.12 21.1 5<br>5 88 11.5 6<br>92.47 16.15 24<br>24.6 4 4 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

## Additional Figure 6 Middle cerebral artery occlusion (MCAO) sub-subgroup analysis concerning administration time after brain injury.

Under different administration time, most literatures have proved that MK-801 can also decrease Lesion volume after acute brain injury in rat MCAO model.

| Study                          | Animals                                                                                        | Injury model                                  | Animal number                                           | Source of MK-<br>801                  | Experimental<br>groups                                                                                                                                             | Control group                                                              | Main outcomes                                                                                                                    |
|--------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Sommer et al.<br>(2017)        | 45 male Wistar<br>rats (321–387 g)                                                             | TBI with a<br>pneumatic<br>impactor<br>device | 12/11/11/11                                             | Tocris<br>Bioscience<br>(Bristol, UK) | 1. ABI+ MK-<br>801 (1 mg/kg<br>intravenously,<br>5 minutes pre-<br>injury)                                                                                         | 2.Sham+vehicle/<br>saline<br>3. ABI+ UCCB01-<br>147<br>4. ABI+vehicle      | Behavior: water maze<br>test<br>Histopathology: Cresyl<br>violet staining, lesion<br>volume                                      |
| Qian et al.<br>(2016)          | 32 male SD rats<br>(240–260 g)                                                                 | MCAO                                          | 8/8/8/8                                                 | Sigma                                 | 1. ABI+MK-801<br>(0.5 mg/kg                                                                                                                                        | 2. ABI+vehicle<br>3. ABI+MA<br>4. ABI+(MA +MK-<br>801)                     | Histopathology: TTC<br>staining, HE staining<br>immunohistochemistry,<br>western blot assay, lesion<br>volume                    |
| Hu et al.<br>(2015)            | 40 male SD rats<br>(250–320 g)                                                                 | MCAO                                          | 10/10/10/10                                             | N/A                                   | 1. ABI+MK-801<br>(1.0 mg/kg<br>intraperitoneally,<br>immediately<br>post-injury)                                                                                   | 2. Sham<br>3. ABI+notreatment<br>4. ABI+GBE                                | Behavior: Longa scoring<br>system, Movement<br>capture analysis system<br>test<br>Histopathology: TTC<br>staining, lesion volume |
| Nategh et al.<br>(2010)        | 48 male Wistar<br>rats (250–300 g)                                                             |                                               | Hyperthermic:<br>8/8/8<br>Normothermic:<br>8/8/8        |                                       | 1. ABI+MK-801<br>(0.1 mg/kg<br>intravenously,<br>immediately<br>post-injury)                                                                                       | 2. ABI+saline<br>3. ABI+Rosiglitazone                                      | Behavior: Neurological<br>deficit, seizure activity<br>Histopathology: TTC<br>staining, lesion volume                            |
| Han et al.<br>(2009)           | 40 male SD rats<br>(200±30 g)                                                                  | TBI (weight-<br>drop head<br>injury, 600 g)   | 8/8/8/8                                                 | N/A                                   | 1. ABI+MK-801<br>(0.5 mg/kg)<br>2. ABI+MK-801<br>(2 mg/kg<br>intraperitoneally)<br>3. ABI+MK-801<br>(10 mg/kg<br>intraperitoneally,<br>immediately<br>post-injury) | 4. Sham+saline<br>5. ABI+saline                                            | Behavior: water maze<br>test<br>Histopathology: TTC<br>staining, morphology,<br>immunohistochemistry                             |
| Foster et al.<br>(2009)        | 121 male rats<br>(270–310 g)                                                                   | MCAO                                          | Pretreatment:<br>19/20/19<br>Posttreatment:<br>22/21/20 | N/A                                   | 1. ABI+MK-801<br>(3 mg/kg,<br>intraperitoneally,<br>pre-injury)                                                                                                    | <ol> <li>Sham+vehicle</li> <li>ABI+Compound-1</li> </ol>                   | Histopathology: TTC staining, lesion volume                                                                                      |
| Ashioti et al.<br>(2009)       | 28 male<br>spontaneously<br>hypertensive<br>rats (200–250 g)<br>38 male SD rats<br>(280–360 g) | MCAO                                          | 6/5 9/8                                                 | Sigma<br>Aldrich, UK                  | 1. ABI+MK-801<br>(1.5 mg/kg,<br>intraperitoneally)                                                                                                                 | 2. ABI+saline                                                              | Behavior: neurological<br>scoring<br>Histopathology: MRI                                                                         |
| Cam et al.<br>(2008)           | 10 male Wistar<br>rats (330–370 g)                                                             | MCAO                                          | 5/5                                                     | N/A                                   | 1. ABI+MK-801<br>(3 mg/kg,<br>intraperitoneally,<br>post-injury)                                                                                                   | 2. ABI+saline                                                              | Histopathology:<br>toluidine blue staining,<br>lesion volume                                                                     |
| Regan et al.<br>(2007)         | 37 male rats<br>(270–310 g)                                                                    | MCAO                                          | 20/17                                                   | Sigma Aldrich                         | 1. ABI+MK801<br>(3 mg/kg,<br>intraperitoneally,<br>15 min pre-<br>injury)                                                                                          | 2. ABI+saline                                                              | Histopathology: TTC<br>staining, lesion volume                                                                                   |
| Moyanova et<br>al. (2007)      | 39 male Wistar<br>rats                                                                         | MCAO                                          | 13/24/2                                                 | Tocris<br>Cookson Ltd.                | 1. ABI+MK-801<br>(3 mg/kg,<br>intraperitoneally,<br>20 min post-<br>injury)                                                                                        | 2. ABI+ddwater<br>3. Sham                                                  | Behavior: behavioral<br>and neurological<br>examinations<br>Histopathology: TTC<br>staining, lesion volume                       |
| Moyanova et<br>al. (2009)      | 30 male SD rats<br>(280–350 g)                                                                 | MCAO                                          | 11/19                                                   | N/A                                   | 1. ABI+MK801<br>(3 mg/kg,<br>intraperitoneally,<br>pre-injury)                                                                                                     | 2. ABI+saline                                                              | Behavior: neurological<br>scores                                                                                                 |
| Allahtavakoli<br>et al. (2007) | 32 male Wistar<br>rats (250–320 g)                                                             |                                               | 8/8/8/8                                                 | Alexis<br>Biochemicals                | 1. ABI+MK-801<br>(0.1 mg/kg,<br>intravenously,<br>post-injury)                                                                                                     | 2. Sham+DMSO<br>3. ABI+Rosiglitazone<br>4. ABI+MK-801 and<br>rosiglitazone | Behavior: neurological<br>function score<br>Histopathology: TTC<br>staining, lesion volume                                       |

#### Additonal Table 1 Continued

| Study                            | Animals                                       | Injury model                                                                      | Animal<br>number                                            | Source of<br>MK-801                         | Experimental groups                                                                                                            | Control group                                                                       | Main outcomes                                                                                                                           |
|----------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Shirasaki et<br>al. (2004)       | 16 male Wistar<br>rats<br>(220–270 g)         | Embolic model<br>(Microspheres<br>injection)                                      | 10/6                                                        | Sigma                                       | 1. ABI+ MK-801 (5<br>mg/kg, intravenously,<br>30 min pre-injury)                                                               | 2. Sham<br>operation+20% dextran<br>solution without micro<br>spheres               | Histopathology: brain<br>water content                                                                                                  |
| Shen et al.<br>(2003)            | 36 male Wistar<br>rats<br>(220±20 g)          | MCAO                                                                              | 18/18                                                       | Sigma                                       | 1.ABI+MK-801<br>(3 mg/kg,<br>intraperitoneally, 30<br>min pre-injury)                                                          | 2. ABI+saline                                                                       | Behavior: neurological<br>function score<br>Histopathology: TTC<br>staining, lesion volume                                              |
| Pan and Li<br>(2003)             | 50 male Wistar<br>rats<br>(280–320 g)         | MCAO                                                                              | Occlusion 6<br>h: 5/5/5/5/5<br>Occlusion 24<br>h: 5/5/5/5/5 | Sigma                                       | 1.ABI+MK-801<br>(1 mg/kg,<br>intraperitoneally, 30<br>min post-injury)                                                         | 2. ABI+saline<br>3. ABI+FDP<br>4. ABI +NAC<br>5. ABI + cocktail<br>(FDP+NAC+MK-801) | Histopathology: TTC<br>staining, lesion volume                                                                                          |
| Wexler et al.<br>(2002)          | 28 male SD<br>rats<br>(250–300 g)             | MCAO                                                                              | 11/6/11                                                     | Sigma                                       | 1. MK-801 (3 mg/kg,<br>intraperitoneally, 15<br>min pre-injury)                                                                | 2. Sham<br>3. ABI+saline                                                            | Histopathology: TTC staining, lesion volume                                                                                             |
| Uchida et al.<br>(2001)          | 36 male Wistar<br>rats<br>(350–450 g)         | Subdural<br>hematoma<br>(150 µL venous<br>blood)                                  | 9/9/9/9                                                     | N/A                                         | 1. ABI+mk-801 (1<br>mg/kg, intravenously,<br>30 min post-injury)                                                               | 2. ABI+saline<br>3. ABI+ketamine<br>4. ABI+silicone                                 | Histopathology: HE<br>staining, lesion volume                                                                                           |
| Hanon and<br>Klitgaard<br>(2001) | 21 male Wistar<br>rats<br>(300–350 g)         | MCAO                                                                              | 9/12                                                        | N/A                                         | 1. ABI+MK-801<br>(0.4 mg/kg,<br>intraperitoneally, 30<br>min pre-injury)                                                       | 2. ABI+saline                                                                       | Histopathology: TTC staining, lesion volume                                                                                             |
| Ai et al.<br>(2000)              | 45 male SD<br>rats<br>(320–350 g)             | TBI (height 1 m,<br>weight 350 g)                                                 | 15/15/15                                                    | Sigma                                       | 1. ABI+mk-801<br>(1 mg/kg,<br>intraperitoneally, 20<br>min post-injury)                                                        | <ol> <li>Vehicle+saline</li> <li>ABI+saline</li> </ol>                              | Histopathology: brain water content                                                                                                     |
| Mackensen<br>et al. (2000)       | 49 male Wistar<br>rats<br>(age 8–10<br>weeks) | MCAO                                                                              | 16/16/17                                                    | Natick MA                                   | 1. ABI+mk-801 (0.25 mg/kg, intravenously, post-injury)                                                                         |                                                                                     | Behavior: Neurological<br>scores<br>Histopathology: HE<br>staining, lesion volume                                                       |
| Kawai et al.<br>(2000)           | 10 male SD<br>rats<br>(280–370 g)             | Acute subdural<br>hematoma<br>(0.4 mL non-<br>heparinized<br>autologous<br>blood) | 5/5                                                         | N/A                                         | 1. ABI+MK-801<br>(2 mg/kg,<br>intraperitoneally, pre-<br>injury)                                                               | 2. ABI+saline                                                                       | Histopathology: HE<br>staining, brain water<br>content, lesion volume                                                                   |
| Gorgulu et<br>al. (2000)         | 30 male SD<br>rats<br>(270–300 g)             | MCAO                                                                              | 10/10/10                                                    | Merck Sharp<br>Dohme<br>Laboratories<br>USA | 1. ABI+MK-801<br>(1 mg/kg,<br>intraperitoneally, 15<br>minutes post-injury)                                                    | 2. ABI+saline<br>3. ABI+Memantine                                                   | Behavior: Neurological<br>deficit examination<br>Histopathology: Evans<br>Blue staining, TTC<br>staining, brain edema,<br>lesion volume |
| Sarraf-Yazdi<br>et al. (1999)    | 30 male Wistar<br>rats<br>(age 8–10<br>weeks) | MCAO                                                                              | 12/18                                                       |                                             | 1. ABI+MK-801 (0.25<br>mg/kg, intravenously,<br>15 min pre-injury)                                                             | 2. ABI+saline                                                                       | Behavior: Neurological<br>scores<br>Histopathology: HE<br>staining, lesion volume                                                       |
| Takamatsu<br>et al. (1998)       | 17 male SD<br>rats<br>(280–300 g)             | MCAO                                                                              | 8/9                                                         | RBI, USA                                    | 1. ABI+MK-801 (0.1<br>mg/kg, intravenously,<br>immediately post-<br>injury)                                                    | 2. ABI+saline                                                                       | Histopathology: HE<br>staining, lesion volume                                                                                           |
| Sarraf-Yazdi<br>et al. (1998)    | 58 male Wistar<br>rats<br>(age 8–10<br>weeks) | MCAO                                                                              | 18/18/22                                                    |                                             | 1.ABI+MK-801                                                                                                                   | 2. ABI+saline<br>3. ABI+isoflurane                                                  | Behavior: Neurological<br>scores<br>Histopathology: HE<br>staining, lesion volume                                                       |
| Herz et al.<br>(1998)            | 26 male Wistar<br>rats<br>(350–400 g)         | MCAO                                                                              | 7/6/7/6                                                     | N/A                                         | 1. Intravasal<br>ABI+mk-801 (500<br>µg/kg)<br>2. Extravasal<br>ABI+mk-801 (500<br>µg/kg, intravenously,<br>30 min post-injury) | 3. Intravasal<br>ABI+saline<br>4. Extravasal<br>ABI+saline                          | Histopathology: HE<br>staining, lesion volume                                                                                           |

#### Additonal Table 1 Continued

| Study                        | Animals                               | Injury model                                 | Animal number                                 | Source of<br>MK-801     | Experimental<br>groups                                                                                                                                | Control group                                                               | Main outcomes                                                                                                              |
|------------------------------|---------------------------------------|----------------------------------------------|-----------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Chen et al.<br>(1998)        | 33 male SD<br>rats                    | MCAO                                         | 11/11/11                                      | N/A                     | 1. ABI+MK-801<br>(1 mg/kg,<br>intraperitoneally,<br>post-injury)                                                                                      | 2. ABI+saline<br>3. ABI+Memantine                                           | Behavior: water maze<br>test                                                                                               |
| Bertorelli et<br>al. (1998)  | 12 male SD<br>rats<br>(230–300 g)     | MCAO                                         | 4/4/4                                         | RBI, Natick,<br>MA, USA | 1. ABI+MK-801<br>(3 mg/kg,<br>intraperitoneally,<br>10 min post-injury)                                                                               | <ol> <li>ABI+saline</li> <li>ABI+dexamethasone</li> </ol>                   | Histopathology: cresyl<br>violet staining, lesion<br>volume                                                                |
| Onal et al.<br>(1997)        | 31 male SD<br>rats<br>(290–350 g)     | MCAO                                         | 7/8/7/9                                       | N/A                     | 1. ABI+MK-801<br>(0.5 mg/kg,<br>intraperitoneally,                                                                                                    | 2. ABI+saline<br>3. ABI+citicoline<br>4. ABI+MK-801 and<br>citicoline       | Behavior: Neurologica<br>scores<br>Histopathology: TTC                                                                     |
| Relton et al.<br>(1996)      | 24 male SD<br>rats<br>(200–300 g)     | MCAO                                         | 8/8/8                                         | RBI, Natick,<br>MA, USA | post-injury)<br>1. ABI+MK-801<br>(5 mg/kg,<br>intraperitoneally,<br>post-injury)                                                                      | 2. ABI+saline<br>3. Sham                                                    | staining, lesion volume<br>Histopathology: TTC<br>staining, lesion volume                                                  |
| Margaill et<br>al. (1996)    | 34 male SD<br>rats<br>(300–350 g)     | MCAO                                         | Pretreatment:<br>9/9<br>Posttreatment:<br>8/8 | N/A                     | 1. Pretreatment:<br>ABI+MK-801<br>(1 mg/kg,<br>intravenously)<br>2. Posttreatment:<br>ABI+MK-801<br>(1 mg/kg,<br>intravenously 30<br>min post-injury) | 3. ABI+saline                                                               | Histopathology: cresyl<br>violet staining, brain<br>edema, lesion volume                                                   |
| Liu and<br>Feng (1995)       | 23 male Wistar<br>rats<br>(250–350 g) | MCAO                                         | 8/8/7                                         | Sigma                   | 1. ABI+MK-801<br>(0.5 mg/kg,<br>intraperitoneally,<br>15 min post-injury)                                                                             | 2. ABI+ oil<br>3. ABI+ Nimodipine                                           | Behavior: Neurological<br>scores<br>Histopathology: TTC<br>staining                                                        |
| Memezawa<br>et al. (1995)    | 15 male Wistar<br>rats<br>(290–350 g) | MCAO                                         | 8/7                                           | N/A                     | 1. ABI+MK-801<br>(1 mg/kg,<br>intraperitoneally,<br>15 min pre-injury)                                                                                | 2. ABI+saline                                                               | Histopathology: TTC staining, lesion volume                                                                                |
| Katsuta et<br>al. (1995)     | 33 male SD<br>rats<br>(300–400 g)     | MCAO                                         | 10/7/7/9                                      | N/A                     | 1. ABI+MK-801<br>(0.1 mg/kg)<br>2. ABI+MK-801 (1<br>mg/kg)<br>3. ABI+MK-801<br>(10 mg/kg,<br>intraperitoneally,<br>post-injury)                       | 4. ABI+saline                                                               | Behavior: Neurological<br>scores<br>Histopathology: HE,<br>cresyl violet and luxol<br>fast blue staining,<br>lesion volume |
| Green et al.<br>(1995)       | 32 male Wistar<br>rats                | MCAO                                         | 6/6/8/6/6                                     | N/A                     | 1. ABI (37°C)+<br>MK-801 (4 mg/kg,<br>intraperitoneally)<br>2. ABI (30°C)+<br>MK-801 (4 mg/kg,<br>intraperitoneally,<br>post-injury)                  | 3. Sham<br>4. ABI (37°C)<br>5. ABI (30°C)                                   | Behavior: water maze<br>test                                                                                               |
| Xue et al.<br>(1994)         | 47 male rats<br>(225–250 g)           | MCAO                                         | 11/15/15/6                                    | N/A                     | 1. ABI+MK-801<br>(1 mg/kg,<br>intraperitoneally,<br>post-injury)                                                                                      | 2. ABI+saline<br>3. ABI+NBQX<br>4. ABI+MK-801 and<br>NBQX                   | Histopathology: TTC staining                                                                                               |
| Lyden and<br>Lonzo<br>(1994) | 118 male SD<br>rats<br>(250–300 g)    | Embolic model<br>(microspheres<br>injection) | 23/26/27/17/25                                | Merck                   | 1. ABI+MK-801<br>(1 mg/kg,<br>intravenously, 5<br>min pos-injury)                                                                                     | 1. Sham<br>2. ABI+saline<br>3. ABI+Muscimol<br>4. ABI+MK801 and<br>Muscimol | Behavior: water maze<br>test Histopathology:<br>Cresyl violet and Luxol<br>Fast Blue staining,<br>lesion volume            |
| Lo et al.<br>(1994)          | 12 male SD<br>rats<br>(300±20 g)      | MCAO                                         | 6/6                                           | N/A                     | 1. ABI+MK-801<br>(0.5 mg/kg,<br>intravenously, 80<br>min post-injury)                                                                                 | 2. ABI+saline                                                               | Histopathology: MRI,<br>TTC staining, lesion<br>volume                                                                     |

#### Additonal Table 1 Continued

| Study                            | Animals                                                               | Injury model                        | Animal<br>number                                        | Source of<br>MK-801                                 | Experimental groups                                                                                                                             | Control group                         | Main outcomes                                                                                   |
|----------------------------------|-----------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------|
| Frazzini et<br>al. (1994)        | 27 male<br>Wistar rats<br>(260–400 g)                                 | MCAO                                | 7/9/11                                                  | Merck                                               | 1. ABI + MK-801 (1 mg/kg)<br>2. ABI+MK-801 (2.5 mg/kg<br>MK-801 intraperitoneally,<br>30 min pre-injury)                                        | 3. ABI+saline                         | Histopathology: TTC staining, lesion volume                                                     |
| Dawson et<br>al. (1994)          | 19 male SD<br>rats                                                    | MCAO                                | 9/10                                                    |                                                     | 1. ABI+MK-801 (0.12<br>mg/kg, intravenously,<br>pre-injury)                                                                                     | 2. ABI+saline                         | Histopathology: HE<br>staining, physiological<br>variables, blood<br>pressure, lesion<br>volume |
| Shapira et<br>al. (1993)         | 10 male Sabra<br>rats (340±4 g)                                       |                                     | 5/5                                                     | Merck, Sharp<br>& Dohme<br>Research<br>Laboratories | 1. ABI+MK-801 (3 mg/kg,<br>intraperitoneally, 1 h post-<br>injury)                                                                              | 2. ABI+saline                         | Histopathology: brain water content                                                             |
| Pschorn et<br>al. (1993)         | 10 male<br>Wistar rats<br>(275–320 g)                                 | MCAO                                | 5/5                                                     | N/A                                                 | 1. ABI+MK801 (1 mg/kg,<br>i.h. post-injury)                                                                                                     | 2. ABI+untreatment                    | Histopathology:<br>neuronal cells number,<br>lesion volume<br>MRI                               |
| Hamm et<br>al. (1993)            | 76 male SD<br>rats (300–350<br>g)                                     | TBI (fluid<br>percussion<br>device) | Pretreatment:<br>8/8/8/14<br>Posttreatment:<br>8/8/8/14 | N/A                                                 | 1. ABI+MK-801 (0.3<br>mg/kg, intraperitoneally,<br>15 min pre-injury)<br>2. ABI+MK-801 (0.3<br>mg/kg, intraperitoneally,<br>15 min post-injury) | 3. Sham<br>4.<br>ABI+scopolamine      | Behavior: water maze<br>test                                                                    |
| Roussel et<br>al. (1992)         | 40 male<br>Fischer-344<br>rats<br>(290–330 g)                         | MCAO                                | 9/12/10/9                                               | N/A                                                 | 1. ABI+MK801 (5 mg/kg)<br>2. ABI+MK801 (0.5 mg/kg,<br>intraperitoneally, 30 min<br>pre-injury)                                                  | 3. ABI+saline<br>4. ABI+saline        | Histopathology: TTC staining, lesion volume                                                     |
| Iijima et al.<br>(1992)          | 18 male CDF<br>344 strain rats<br>(200–280 g)                         | MCAO                                | 6/6/6                                                   | N/A                                                 | 1. ABI+MK801 (3 mg/kg,<br>intraperitoneally, 3 min<br>post-injury)                                                                              | 2. Sham<br>3. ABI+saline              | Histopathology: Cresyl<br>violet and HE staining,<br>lesion volume                              |
| Gill et al.<br>(1992)            | 32 male SD<br>rats<br>(330–370 g)                                     | MCAO                                | 16/16                                                   | N/A                                                 | 1. ABI+MK801 (3 mg/kg,<br>intraperitoneally, 30 minutes<br>post-injury)                                                                         | 2. ABI+saline                         | Histopathology: HE staining, lesion volume                                                      |
| Buchan et<br>al. (1992)          | 18 male<br>Wistar rats<br>(180–230 g)<br>and 62 SHR<br>(230–260 g)    | MCAO                                | Wistar: 9/9<br>SHR: 31/31                               | N/A                                                 | Wistar: ABI+MK801 (2.5 mg/kg) SHR: ABI+MK801 (5 mg/kg, intraperitoneally, 30 min pre-injury and 2.5 mg/kg at 6 and 14 h)                        | Wistar: ABI+saline<br>SHR: ABI+saline | Histopathology: HE<br>staining, lesion volume                                                   |
| Oh and<br>Betz<br>(1991)         | 23 male SD<br>rats<br>(350–450 g)                                     | MCAO                                | 8/7/8                                                   | Merck & Co.<br>Inc.                                 | 1. ABI+MK801 (0.5 mg/kg)<br>2. ABI+MK801 (2.0 mg/kg,<br>intravenously, 30 min pre-<br>injury)                                                   | 3. ABI+saline                         | Histopathology: brain<br>edema                                                                  |
| Gill et al.<br>(1991)            | 36 male SD<br>rats<br>(300–350 g)                                     | MCAO                                | 12/12/12                                                | N/A                                                 | 1. ABI+MK801 (0.04 mg/kg)<br>2. ABI+MK801 (0.4 mg/kg,<br>intravenously, post-injury)                                                            | 3. ABI+saline                         | Histopathology: HE staining, lesion volume                                                      |
| Bielenberg<br>and Beck<br>(1991) | 23 Fischer 344<br>rats                                                | MCAO                                | 8/6/9                                                   |                                                     | 1. ABI+MK801 (1 mg/kg)<br>2. ABI+MK801 (10 mg/kg,<br>intraperitoneally, 30 min<br>pre-injury)                                                   | 3. ABI+saline                         | Histopathology: Cresyl<br>violet staining, lesion<br>volume                                     |
| Dirnagl et<br>al. (1990)         | 51 adult male<br>spontaneously<br>hypertensive<br>rats<br>(250–300 g) |                                     | 12/15/11/13                                             | N/A                                                 | 1. ABI+MK801 (5 mg/kg)<br>2. ABI+MK801 (5 mg/kg,<br>intraperitoneally, 30 min<br>pre-injury and 2.5 mg/kg, 8<br>h and 16 h after injury)        | 3. ABI+saline<br>4. ABI+saline        | Histopathology: HE<br>staining, lesion volume                                                   |
| Park et al.<br>(1988)            | 20 male SD<br>rats<br>(368–463 g)                                     | MCAO                                | 6/8/6                                                   | N/A                                                 | 1. ABI+MK801 (0.5 mg/kg,<br>intravenously, 30 min pre-<br>injury) 2. ABI+MK801 (0.5<br>mg/kg, intravenously, 30<br>min post- injury)            | 3. ABI+saline                         | Histopathology: Cresyl<br>violet and Luxol fast<br>blue staining, lesion<br>volume              |

ABI: Acute brain injury; TBI: traumatic brain injury; MCAO: middle cerebral artery occlusion; SD: Sprague-Dawley; TTC: staining, 2,3,5-triphenyltetrazolium chloride staining; MA: maslinic acid; HE: hematoxylin-eosin; GBE: Ginkgo biloba extract; MRI: magnetic resonance imaging; SHR: spontaneously hypertensive rats; DMSO: dimethyl sulfoxide; FDP: fructose 1,6-diphosphate; NAC: N-acetylcysteine; N/A: not available; min: minutes; h: hours.