

Contents lists available at ScienceDirect

Data in brief

Data Article

HPLC, quantitative NMR and HRMS spectroscopic data of nusbiarylins as a new class of antimicrobial agents

Yangyi Qiu, Cong Ma*

State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region

ARTICLE INFO

Article history: Received 4 October 2019 Received in revised form 10 February 2020 Accepted 13 February 2020 Available online 21 February 2020

Keywords: Inhibitor Bacterial transcription NusB-NusE interaction HPLC qNMR HRMS

ABSTRACT

Bacterial transcription is a valid but underutilized target for antimicrobial agent discovery [1]. Nusbiarylins are the first-in-class bacterial ribosomal RNA synthesis inhibitors that possess potent activity against various types of multidrug-resistant bacteria with a novel mode of action by targeting the interaction of bacterial transcription factors NusB and NusE [2]. To facilitate the characterization of nusbiarylin derivatives produced by other researchers, high-performance liquid chromatography (HPLC) profiles, quantitative nuclear magnetic resonance (qNMR) and high-resolution mass spectrometry (HRMS) spectroscopic data were presented for the quick determination of purity and characterization of 95 nusbiarylin compounds. The data presented in this article supplement the ¹H and ¹³C NMR data provided previously [3,4], and assist the reproduction of nusbiarylins for chemical, biological and drug discovery research.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author. E-mail address: cong.ma@polyu.edu.hk (C. Ma).

Specifications Table

Subject	Chemistry
Specific subject area	Organic chemistry
	Analytical chemistry
Type of data	Table
	Figure
How data were acquired	Agilent 1100 series and 1260 infinity system
	Bruker ultrashield™ NMR spectrometer 600 MHz
	Agilent Technologies 6520 Accurate-Mass Q-TOF LC/MS spectrometer
Data format	Raw (as supplementary file)
	Analyzed
Parameters for	The purified compounds were subjected to HPLC and qNMR analysis. The mobile phase for
data collection	HPLC analysis were acetonitrile and water. The ratio was specified in the "Experimental
	Design, Materials, and Methods" section. The flow rate was set as 1.000 mL/min. Compounds
	were dissolved in d-DMSO prior to qNMR analysis. The parameters for qNMR analysis were
Description of	adjusted according to the literature [5]. HPLC profiles of 95 novel compounds were recorded on and exported from an Agilent 1100
data collection	series and 1260 infinity system. Area% and RetTime stands for purity and retention time,
data conection	respectively, qNMR spectra data of 95 novel compounds were recorded on and exported
	form a Bruker ultrashield™ NMR spectroscope 600 MHz spectrometer using standard
	Bruker pulse programs. Chemical shifts were shown as δ -values.
	Positive- and negative-ion HRESI-TOF-MS of 95 novel compounds were recorded on and
	exported from an Agilent Technologies 6520 Accurate-Mass Q-TOF LC/MS spectrometer.
Data source location	Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic
	University, Hong Kong SAR
Data accessibility	Data are available with the article

Value of the Data

- Nusbiarylins are the first-in-class bacterial ribosomal RNA synthesis inhibitors that possess potent activity against various types of multidrug-resistant bacteria with a novel mode of action
- Spectral data of nusbiarylins are useful for elucidating their purity
- The HPLC profiles, qNMR and HRMS spectroscopic data are of 95 unreported compounds and could be useful for the characterization by other researchers

1. Data

Bacterial transcription is a valid but underutilized target for antimicrobial agent discovery [1]. NusB and NusE are bacteria-specific transcription factors essential for cell viability [1,2]. Inhibitors of the NusB-NusE interaction were discovered and named nusbiarylins. The name was derived from the target protein NusB and their biaryl structure [2–4]. The dataset contains high-performance liquid chromatography (HPLC) profiles of 90 compounds, quantitative nuclear magnetic resonance (qNMR) spectroscopic data of 5 compounds and high-resolution mass spectrometry (HRMS) profiles of all 95 compounds [3,4]. The data file (HPLC, qNMR and HRMS spectra) is available publicly within this data article as a supplementary file. The compound structures were presented in Table 1, purities in Table 2 and HRMS data in Table 3. The testing methods and parameters of different compounds by HPLC, HRMS and qNMR were also described.

2. Experimental design, materials, and methods

2.1. HPLC analysis

2.1.1. Sample preparation and HPLC analysis

Approximately 0.1 mg of derivatives were dissolved in 1 mL of HPLC grade acetonitrile. 20 μ L of supernatant was manually loaded onto the sample loop. The analysis was carried out on Agilent 1100

series and 1260 infinity system consisting of G1322A degasser, G1311A quat pump and G1365B multi-wavelength detector (MWD). The chromatographic parameters were set as follows:

Mobile phase: Mobile phase A: MeCN, Mobile phase B: H₂O

Detector: MWD at 254 nm

Column: Agilent ZORBAX Eclipse Plus C18 (4.6 \times 100 mm, 5 μ m)

Flow rate: 1.000 mL/min Gradient programme:

For compound **29, 60, 76, 87, 88**

t/min	Mobile phase A	Mobile phase B
0	30%	70%
2	40%	60%
3	50%	50%
9	80%	20%
14	90%	10%
15	100%	0%
16.5	80%	20%
17	60%	40%
20	30%	70%

For compound **34, 62, 94**

t/min	Mobile phase A	Mobile phase B
0	10%	90%
8	30%	70%
14	50%	50%
24	100%	0%
25	80%	20%
27	40%	60%
28	10%	90%

Table 1 Chemical structures of 95 nusbiarylin compounds as NusB-NusE inhibitors.

(continued on next page)

Table 1 (continued)

No.	R	Х	Υ	Cpd	R	Х	Υ
3	Н		'	51	2-OCH₃		
4	2-F			52	3-OCH₃		
5	3-F			53	4-OCH ₃		
6	4-F		2'-OH	54	2-COOCH₃	=	
7	2-CH ₃			55	3-COOCH₃	-	2'-OH
8	3-CH ₃			56	4-COOCH₃	-NH-CH ₂ -	2 -011
9	4-CH ₃	-N=CH-	2 -011	57	2-CF ₃	1111 5112	5'-NO ₂
10	2-C(CH ₃) ₃		5'-NO ₂	58	3-CF₃	=	_
11	3-C(CH ₃) ₃			59	4-CF ₃		
12	4-C(CH ₃) ₃			60	3-ethynyl		
13	2-OH			61	3-CH ₂ OH		
14	3-OH			62	3-COOH	1	
15	4-OH			63	3-ethynyl	-N=CH-	2'-OH, 5'-COOCH₃
16	2-Cl	1		64	,,.		2'-OH, 5'-F
17	3-Cl			65			2'-OH, 5'-CN
18	4-Cl			66			2'-OH, 5'-CH₂CN
19	2-OCH₃			67			2'-OH, 5'-OCH ₃
20	3-OCH₃			68			2'-OH
21	4-OCH₃			69			5'-NO ₂
22	2-COOCH₃			70		-N=CH-	2'-OCH3, 5'-NO ₂
23	3-COOCH₃		2′-OH 5′-NO₂	71	3-ethynyl		2'-OH, 4'-NO ₂
24	4-COOCH ₃	N. CU		72			2'-OH, 3'-NO ₂
25	2-CF ₃	-N=CH-		73			3'-OH, 6'-NO ₂
26	3-CF ₃			74			2'-OH, 3'-Br, 5'-
27	4-CF ₃			75			2'-OH, 3'-Cl, 5'-Cl
28	2-ethynyl			76		-NH-CH₂-	2'-OH, 5'-COOCH₃
29	3-ethynyl			77			2'-OH, 5'-F
30	4-ethynyl			78			2'-OH, 5'-CN
31	3-CH ₂ OH			79			2'-OH, 5'-CH₂CN
32	4-CH ₂ OH			80			2'-OH, 5'-OCH₃
33	3-COOH			81			2'-OH
36	Н			82			5'-NO ₂
37	2-F			83			2′-OCH₃
38	3-F			84			2'-OH, 4'-NO ₂
39	4-F			85			2'-OH, 3'-NO ₂
40	2-CH ₃			86			2'-OH, 3'-Br, 5'-
41	3-CH ₃	-NH-		87			2'-OH, 3'-Cl, 5'-Cl
42	4-CH ₃	CH ₂ -		88	H		
43	2-C(CH ₃) ₃			89	2-OCH ₃	(E)-	
44	3-C(CH ₃) ₃			90	3-OCH₃	CH=CH-	2'-OH, 5'-NO ₂
45	4-C(CH ₃) ₃			91	2-CN		
46	2-OH			92	3-COOCH₃		
47	3-OH			93	4-COOCH₃	NUI CO	_
48	2-Cl			94	3-ethynyl	-NHCO-	
49	3-Cl			95	Н	-CO-	
50	4-Cl						

For the remaining compounds except compounds 22, 24, 27, 33, 74

t/min	Mobile phase A	Mobile phase B
0	30%	70%
2	40%	60%
3	50%	50%
13	100%	0%
16.5	30%	70%

2.1.2. Data processing

The automated integration software ChemStation for LC systems B.03.02 [341] was used to acquire the *area under the curve* (mAU). The obtained spectra were then exported as images.

2.2. qNMR analysis

2.2.1. Sample preparation and gNMR analysis

Samples were weighed into 5 mm standard NMR tubes using OHAUS® analytical plus balance, followed by addition of 500 μ L of DMSO-d₆ and indicated volume of internal reference 1,3,5-trioxane (99.66% pure, 9.98 mg/mL in DMSO-d₆) purchased from Dieckmann (Hong Kong) Chemical Industry co., LTD. qNMR analysis were carried out *via* Bruker ultrashieldTM NMR spectrometer 600 MHz. NMR instrument controlled parameters were adjusted as follows [5]:

Sample Temperature: 25 °C (298 K, regulated ± 0.1 K)

Data Points (acquired): 64 K Zero-Filling (SI or FN): to 256 K

Dummy Scans: 4

Relaxation delay (D1): 60 s Scans (NS or NT): 16

2.2.2. Data processing

The software Bruker topspin 3.2 was used to acquire the integrals of the signals of sample and internal reference. The normalized integrals values per proton equivalent by dividing each integral by the corresponding number of protons were calculated, so as the integral of the analyte (Int_t and Int_{IC}) as the average of all normalized integrals. The total number of protons (n_t and n_{IC}) was set to one [5]. Purities was then calculated according to the equation as below:

$$P\left[\%\right] = \frac{n_{IC}*Int_{t}*MW_{t}*m_{IC}}{n_{t}*Int_{IC}*MW_{IC}*m_{s}}*P_{IC}$$

where: P = purity of tested compound

 m_{IC} = weight of the internal calibrant (IC)

 m_s = weight of the sample

 Int_{IC} = integral of the IC resonance signal being used for quantification

 Int_t = integral of the target analyte (t) resonance signal being used for quantification

 n_{IC} = number of protons that give rise to Int_{IC}

 n_t = number of protons of the target analyte that give rise to Int_t

MW_{IC} = molecular weight of the internal calibrant

Table 2Data on purities by HPLC or qNMR and retention time (HPLC) of nusbiarylin compounds.

1	00.0	
	99.9	6.51
2	99.0	11.23
3	99.8	9.06
4	98.2	9.35
5	98.0	9.47
6	100.0	9.32
7 8	99.5	9.90
9	99.8 99.9	10.12 10.12
10	99.4	12.10
11	100.0	12.35
12	99.2	12.50
13	96.0	5.66
14	97.8	6.59
15	96.1	6.35
16	98.5	10.17
17	96.6	10.51
18	95.5	10.50
19	97.8	7.80
20	98.7	9.04
21	99.9	9.02
22	98.4	qNMR
23	97.2	9.15
24	98.9	qNMR
25	100.0	10.09
26	98.3	10.55
27	97.3	qNMR
28	97.4	8.98
29	97.0	9.76
30 31	95.5	9.69
32	95.3 97.2	5.95 5.77
33	91.0	qNMR
34	99.2	9.21
35	100.0	7.86
36	99.4	6.48
37	99.7	6.81
38	97.7	6.70
39	99.8	6.58
40	99.8	7.14
41	100.0	7.11
42	98.0	7.17
43	99.4	8.67
44	98.6	8.92
45	99.6	9.15
46	96.3	5.25
47	99.3	4.70
48	99.5	7.45
49	99.3	7.35
50	99.7	7.32
51 53	98.9	6.82
52 52	99.7 07.6	6.27 6.05
53 54	97.6 00.6	6.05
54 55	99.6	7.44 6.21
56	98.0 99.6	6.21 5.80
57	99.4	5.80 7.84
58	99.4	7.84 7.72
59	97.6	7.72
60	98.7	6.79

Table 2 (continued)

Compound	Purity/%	Retention time/min
62	98.9	12.92
63	98.1	9.85
64	97.1	9.87
65	99.4	9.02
66	97.7	8.46
67	97.6	9.46
68	99.8	9.68
69	99.9	9.32
70	99.8	9.62
71	97.2	9.73
72	98.0	8.46
73	95.1	7.03
74	97.7	qNMR
75	99.4	12.08
76	98.3	6.52
77	99.2	6.98
78	99.1	6.33
79	99.7	6.19
80	98.7	6.54
81	99.6	6.94
82	99.4	8.25
83	99.9	8.43
84	99.6	7.23
85	99.5	8.45
86	99.7	7.93
87	100.0	8.96
88	95.5	8.02
89	97.2	8.05
90	97.4	7.91
91	96.8	7.20
92	97.6	7.79
93	97.7	7.76
94	98.9	17.74
95	99.7	7.46

 MW_t = molecular weight of the target analyte

 P_{IC} = purity of the internal calibrant, as percent value

2.3. HRMS analysis for all compounds

2.3.1. Sample preparation and HRMS analysis

Approximately 0.1 mg of derivatives were dissolved in 1 mL of HPLC grade acetonitrile. After sonication and filtration via 0.22 μm PTFE syringe filter, 10 μL of the upper layer was injected using an autosampler onto Agilent Technologies 6520 Accurate-Mass Q-TOF LC/MS spectrometer. The spectrometer was calibrated before each chromatographic run for optimal mass accuracy. The mobile phase gradient was 100% acetonitrile, at a flow rate of 0.5 ml/min. The mass spectra were acquired in positive-or negative-ion mode with source temperature at 300 °C. Ion spray voltage and fragmentor voltage were adjusted to 3.5 kV and 175 V, respectively. The range of mass detected was between 100 m/z and 1000 m/z.

2.3.2. Data processing

HRMS profiles were acquired and processed using MassHunter B.07 software. The obtained spectra were then exported as images.

Table 3 HRMS data of nusbiarylin compounds.

Compound	Ion formula	m/z (calculated)	m/z (found
1	$C_{13}H_{15}N_2O_3 [M - H]^-$	247.1088	247.1089
2	$C_{17}H_{11}N_2O_3[M-H]^{-1}$	291.0775	291.0773
3	$C_{13}H_9N_2O_3 [M - H]^-$	241.0619	241.0620
<u> </u>	$C_{13}H_8FN_2O_3 [M - H]^-$	259.0524	259.0523
) ;	$C_{13}H_8FN_2O_3 [M - H]^{-1}$	259.0524	259.0528
•	$C_{13}H_8FN_2O_3 [M - H]^{-1}$	259.0524 255.0775	259.0522 255.0771
I	$C_{14}H_{11}N_2O_3 [M - H]^-$ $C_{14}H_{11}N_2O_3 [M - H]^-$	255.0775	255.0772
, 	$C_{14}H_{11}N_{2}O_{3}$ [M – H] ⁻	255.0775	255.0772
0	$C_{17}H_{17}N_2O_3 [M-H]^-$	297.1245	297.1247
1	$C_{17}H_{17}N_2O_3 [M - H]^-$	297.1245	297.1242
2	$C_{17}H_{17}N_2O_3 [M - H]^-$	297.1245	297.1243
3	$C_{13}H_9N_2O_4 [M - H]^-$	257.0568	257.0565
4	$C_{13}H_9N_2O_4[M-H]^-$	257.0568	257.0568
5	$C_{13}H_9N_2O_4[M-H]^-$	257.0568	257.0567
6	$C_{13}H_8CIN_2O_3 [M - H]^{-1}$	275.0229	275.0227
7	$C_{13}H_8CIN_2O_3 [M - H]^{-1}$	275.0229	275.0226
8	$C_{13}H_8CIN_2O_3 [M - H]^{-1}$	275.0229	275.0226
9	$C_{14}H_{11}N_2O_4 [M - H]^{-1}$	271.0724	271.0719
0	$C_{14}H_{11}N_2O_4 [M - H]^{-1}$	271.0724	271.0721
1	$C_{14}H_{11}N_2O_4 [M - H]^{-1}$	271.0724	271.0727
2	$C_{15}H_{11}N_2O_5 [M - H]^{-1}$	299.0673	299.0672
3	$C_{15}H_{11}N_2O_5 [M - H]^{-1}$	299.0673	299.0669
4	$C_{15}H_{11}N_2O_5 [M - H]^{-}$	299.0673	299.0672
5	$C_{14}H_8F_3N_2O_3 [M - H]^{-1}$	309.0493	309.0492
6	$C_{14}H_8F_3N_2O_3 [M - H]^{-1}$	309.0493	309.0491
7	$C_{14}H_8F_3N_2O_3 [M - H]^-$	309.0493	309.0490
8	$C_{15}H_9N_2O_3[M-H]^{-1}$	265.0619	265.0618
9	$C_{15}H_9N_2O_3[M-H]^{-1}$	265.0619	265.0620
0	$C_{15}H_9N_2O_3 [M - H]^{-1}$	265.0619	265.0615
1	$C_{14}H_{11}N_2O_4 [M - H]^-$	271.0724	271.0721
2	$C_{14}H_{11}N_2O_4 [M - H]^-$	271.0724	271.0722
3	$C_{14}H_9N_2O_5 [M - H]^-$	285.0517	285.0513
4	$C_{13}H_{17}N_2O_3 [M - H]^-$	249.1245	249.1245
5	$C_{17}H_{13}N_2O_3 [M - H]^-$	293.0932	293.0929
6	$C_{13}H_{11}N_2O_3 [M - H]^-$	243.0775	243.0775
7	$C_{13}H_{10}FN_2O_3 [M - H]^{-1}$	261.0681	261.0683
8	$C_{13}H_{10}FN_2O_3 [M - H]^{-1}$	261.0681	261.0679
9 0	$C_{13}H_{10}FN_2O_3 [M - H]^{-1}$	261.0681	261.0682
0 1	$C_{14}H_{13}N_2O_3 [M - H]^{-1}$ $C_{14}H_{13}N_2O_3 [M - H]^{-1}$	257.0932 257.0932	257.0928 257.0928
2	$C_{14}H_{13}N_{2}O_{3} [M-H]^{-}$ $C_{14}H_{13}N_{2}O_{3} [M-H]^{-}$	257.0932	257.0927
3	$C_{17}H_{19}N_2O_3 [M-H]^-$	299.1401	299.1401
4	$C_{17}H_{19}N_2O_3$ [M – H] ⁻	299.1401	299.1399
5	$C_{17}H_{19}N_2O_3 [M - H]^{-1}$	299.1401	299.1404
6	$C_{13}H_{11}N_2O_4 [M - H]^-$	259.0724	259.0723
- 7	$C_{13}H_{11}N_2O_4 [M - H]^-$	259.0724	259.0723
8	$C_{13}H_{10}CIN_2O_3 [M - H]^-$	277.0385	277.0384
9	$C_{13}H_{10}CIN_2O_3[M-H]^-$	277.0385	277.0387
0	$C_{13}H_{10}CIN_2O_3 [M - H]^{-1}$	277.0385	277.0386
1	$C_{14}H_{13}N_2O_4[M-H]^{-1}$	273.0881	273.0878
2	$C_{14}H_{13}N_2O_4 [M - H]^{-}$	273.0881	273.0876
3	$C_{14}H_{13}N_2O_4 [M - H]^{-}$	273.0881	273.0881
4	$C_{15}H_{13}N_2O_5 [M - H]^-$	301.0830	301.0833
5	$C_{15}H_{13}N_2O_5 [M - H]^-$	301.0830	301.0831
6	$C_{15}H_{13}N_2O_5 [M - H]^-$	301.0830	301.0826
7	$C_{14}H_{10}F_3N_2O_3 [M - H]^-$	311.0649	311.0651
8	$C_{14}H_{10}F_3N_2O_3 [M - H]^-$	311.0649	311.0650
9	$C_{14}H_{10}F_3N_2O_3 [M - H]^-$	311.0649	311.0654
0	$C_{15}H_{11}N_2O_3 [M - H]^{-}$	267.0775	267.0773
1	$C_{14}H_{13}N_2O_4 [M - H]^{-1}$	273.0881	273.0879

Table 3 (continued)

Compound	Ion formula	m/z (calculated)	m/z (found)
62	$C_{14}H_{11}N_2O_5 [M - H]^-$	287.0673	287.0673
63	$C_{17}H_{12}NO_3 [M - H]^{-}$	278.0823	278.0822
64	$C_{15}H_9FNO [M - H]^-$	238.0674	238.0672
65	$C_{16}H_9N_2O [M - H]^-$	245.0720	245.0719
66	$C_{17}H_{11}N_2O [M - H]^-$	259.0877	259.0876
67	$C_{16}H_{12}NO_2 [M - H]^{-}$	258.0874	258.0875
68	$C_{15}H_{10}NO [M - H]^{-}$	220.0768	220.0772
69	$C_{15}H_{11}N_2O_2 [M + H]^+$	251.0815	251.0818
70	$C_{16}H_{13}N_2O_3 [M + H]^+$	281.0921	281.0922
71	$C_{15}H_9N_2O_3 [M - H]^-$	265.0619	265.0620
72	$C_{15}H_9N_2O_3 [M - H]^-$	265.0619	265.0616
73	$C_{15}H_9N_2O_3 [M - H]^-$	265.0619	265.0621
74	$C_{15}H_8BrN_2O_3 [M - H]^{-1}$	342.9724	342.9727
75	$C_{15}H_8C_{12}NO [M - H]^{-1}$	287.9988	287.9987
76	$C_{17}H_{14}NO_3 [M - H]^{-}$	280.0979	280.0974
77	$C_{15}H_{11}FNO [M - H]^{-}$	240.0830	240.0829
78	$C_{16}H_{11}N_2O[M-H]^-$	247.0877	247.0876
79	$C_{17}H_{13}N_2O[M-H]^-$	261.1033	261.1032
80	$C_{16}H_{14}NO_2 [M - H]^{-}$	252.1030	252.1023
81	$C_{15}H_{12}NO [M - H]^{-1}$	222.0924	222.0923
82	$C_{15}H_{13}N_2O_2 [M + H]^+$	253.0972	253.0974
83	$C_{16}H_{15}N_2O_3 [M + H]^+$	283.1077	283.1080
84	$C_{15}H_{11}N_2O_3 [M - H]^-$	267.0775	267.0773
85	$C_{15}H_{11}N_2O_3 [M - H]^-$	267.0775	267.0770
86	$C_{15}H_{10}BrN_2O_3 [M - H]^{-1}$	344.9880	344.9878
87	$C_{15}H_{10}Cl_2NO [M - H]^{-1}$	290.0145	290.0141
88	$C_{14}H_{10}NO_3 [M - H]^{-1}$	240.0666	240.0662
89	$C_{15}H_{12}NO_4 [M - H]^{-}$	270.0772	270.0769
90	$C_{15}H_{12}NO_4 [M - H]^{-}$	270.0772	270.0771
91	$C_{15}H_9N_2O_3[M-H]^{-1}$	265.0619	265.0617
92	$C_{16}H_{12}NO_5[M-H]^{-1}$	298.0721	298.0717
93	$C_{16}H_{12}NO_5[M-H]^{-1}$	298.0721	298.0719
94	$C_{15}H_9N_2O_4 [M - H]^{-1}$	281.0568	281.0571
95	$C_{13}H_8NO_4 [M - H]^-$	242.0459	242.0454

Acknowledgments

We thank the funding support from the Research Grants Council of the Hong Kong Special Administrative Region, China (PolyU 251000/17M and 151000/19M), Hong Kong Polytechnic University internal grants (G-YBYY, 1-ZVPS and large equipment fund) and State Key Laboratory of Chemical Biology and Drug Discovery.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.dib.2020.105313.

References

[1] C. Ma, X. Yang, P.J. Lewis, Bacterial transcription as a target for antibacterial drug development, Microbiol. Mol. Biol. Rev. 80 (2016) 139–160, https://doi.org/10.1128/MMBR.00055-15.

- [2] X. Yang, M.J. Luo, A.C.M. Yeung, P.J. Lewis, P.K.S. Chan, M. Ip, C. Ma, First-in-class inhibitor of ribosomal RNA synthesis with antimicrobial activity against Staphylococcus aureus, Biochemistry 56 (2017) 5049–5052, https://doi.org/10.1021/acs.biochem.7b00349.
- [3] Y. Qiu, S.T. Chan, L. Lin, T.L. Shek, T.F. Tsang, N. Barua, Y. Zhang, M. Ip, P.K.-S. Chan, N. Blanchard, G. Hanquet, Z. Zuo, X. Yang, C. Ma, Design, synthesis and biological evaluation of antimicrobial diarylimine and—amine compounds targeting the interaction between the bacterial NusB and NusE proteins, Eur. J. Med. Chem. 178 (2019) 214—231, https://doi.org/10.1016/j.ejmech.2019.05.090.
- [4] Y. Qiu, S.T. Chan, L. Lin, T.L. Shek, T.F. Tsang, Y. Zhang, M. Ip, P.K.-S. Chan, N. Blanchard, G. Hanquet, Z. Zuo, X. Yang, C. Ma, Nusbiarylins, a new class of antimicrobial agents: rational design of bacterial transcription inhibitors targeting the interaction between the NusB and NusE proteins, Bioorg. Chem. 92 (2019) 103203, https://doi.org/10.1016/j.bioorg.2019.103203.
- [5] G.F. Pauli, S.-N. Chen, C. Simmler, D.C. Lankin, T. Gödecke, B.U. Jaki, B.J. Friesen, J.B. McAlpine, J.G. Napolitano, Importance of purity evaluation and the potential of quantitative 1H NMR as a purity assay, J. Med. Chem. 57 (2014) 9220–9231, https://doi.org/10.1021/jm500734a.