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Chaperna: linking the ancient RNA and protein worlds
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ABSTRACT
As a mental framework for the transition of self-replicating biological forms, the RNA world concept 
stipulates a dual function of RNAs as genetic substance and catalyst. The chaperoning function is found 
intrinsic to ribozymes involved in protein synthesis and tRNA maturation, enriching the primordial RNA 
world with proteins of biological relevance. The ribozyme-resident protein folding activity, even before 
the advent of protein-based molecular chaperone, must have expedited the transition of the RNA world 
into the present protein theatre.
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Introduction

Most of metabolic catalysis is carried out by proteins in all 
kingdoms of life. The biological functions of proteins are 
governed by their three-dimensional conformations. 
Molecular chaperones are involved both in facilitating protein 
folding and preventing protein aggregation, which would 
otherwise lead to cytotoxic consequences [1–3]. 
Conventionally, these pivotal functions have been considered 
as unique properties of chaperones and chaperonins, which 
are themselves proteins.

The RNA world concept of the molecular evolution of life 
forms is based on the dual function of RNAs as genetic 
materials and catalysts [4,5]. Several fields have contributed 
to assembling a full picture of the RNA world – better defin
ing early earth environments, prebiotic chemical synthesis 
under simulated conditions, finding functional ribozymes, 
refining evolutionary theory and modelling, and artificial pro
tocells [6]. Recent reports suggest that RNA molecules also 
have a role in assisting protein folding and preventing protein 
aggregation as molecular chaperones, and are extremely effi
cient for the folding of a variety of proteins both in vivo and 
in vitro [7–12]. The chaperoning activity also arises in ribo
zymes, which are responsible for the catalytic turnover of 
RNA or peptide substrates, and also involved in facilitating 
the folding of variety of client proteins into biologically rele
vant conformations [8–11,13]. It is likely that the activity of 
RNA-based chaperones, newly coined as Chaperna (or the 
more lengthy-term chaperone RNA) [14], greatly facilitated 
the folding of early proteins, even before the availability of the 
protein-based chaperones, expediting the transition of the 
RNA World into the current protein theatre. One note on 
terminology before proceeding: ‘Chaperna’ may reduce 

potential confusion between ‘RNA chaperone’- a protein 
that assists the folding of interacting RNA, and ‘chaperone 
RNA’ – an RNA that helps folding of proteins.

RNA-protein world view and Chaperna

The RNA world concept posits that in primitive Earth’s his
tory, RNA served as the primary life substance [4,5]. A life 
form requires at least two elements: a genetic material as the 
blueprint, and a catalyst to multiply the genetic material into 
progeny. RNA molecules exist as a polymer of four distinct 
subunits, and as various conformations, to serve both roles. 
A dual function as genetic substance and catalyst was consid
ered as necessary attributes of a self-replicating biological 
form, although there may never be direct physical evidence 
of an RNA-based organism. Although the ‘RNA-first’ view of 
the origin of life should be given with caution, and must 
consider other types of self-replicating substances preceding 
the RNA molecules [15], it presently serves an intellectual 
framework for understanding molecular evolution of life 
forms. Molecular biological approaches have uncovered arte
facts of this ancestral era in laboratories [16].

The RNA world concept posits a canonical view that cat
alysis proceeded from ribozyme to RNP-enzyme to protein- 
based enzyme. Although catalytic functions are predomi
nantly carried out by protein enzymes rather than RNA 
enzymes, RNA enzymes play a pivotal role in cellular system, 
despite being in the minority. Among the four most out
standing processes in information transfer systems, DNA 
replication and transcription are governed by purely protein 
enzymes, whereas the other two – mRNA splicing and protein 
synthesis – are catalysed by ribozymes. Furthermore, RNAs 
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are crucially involved in RNA processing events [17], viral 
replication of RNA genomes [18,19], and peptide-bond for
mation in ribosome-assisted protein synthesis in all living 
organisms [20,21]. These persistent and pivotal contributions 
of the RNA-based catalysts in modern organism suggest that 
the RNA world is not extinct, but extant in the present 
protein theatre, as an RNA-protein world [22,23]. In the 
RNA world of contemporary biology, RNAs more often act 
in concert with proteins [22,24].

A crucial interdependence between RNA and protein could 
suggest a mutual transfer of energy or information [25]. 
When RNA interacts with a protein, RNA could contribute 
to or at least have an effect on how the bound protein folds. In 
cases where RNA is able to interact with multiple proteins, the 
RNA could affect the stability and/or folding of many pro
teins. Thus, the RNA-mediated chaperone effect would be 
important especially for the function of early proteins, in the 
absence of sophisticated molecular chaperones enjoyed by 
contemporary life forms. It is interesting to ask what factors, 
in the primordial RNA world, could provide chaperoning 
function to the early peptides/proteins produced by peptide- 
bond forming ribozymes. The simplest answer would be that 
early proteins were small, simple, and able to fold indepen
dently of chaperones. Alternatively, it is tempting to speculate 
that between a ribozyme and peptide as a product of the 
enzyme reaction, the ribozyme could also serve 
a chaperoning function to its own product (Fig. 1). Thus, it 
is a natural corollary that ribozymes possibly have an intrinsic 
moonlighting activity like as a molecular chaperone. 
Surprisingly, however, the presence and function of RNA- 
based chaperones are still largely veiled.

New discoveries

Dual function of RNA as ribozyme and Chaperna

Ribonuclease (RNase) P claims a special place among many 
RNA-based catalysts. As one of the first example of RNA- 
catalysed reactions, the enzyme is responsible for endonucleo
lytic cleavage of tRNA precursors to mature tRNA molecules 
[26]. RNase P is present in all three domains of life, strongly 
suggesting that, as an ancient enzyme that was present in the 
last common universal ancestor, it is a remnant of the prebiotic 

RNA world [27–29]. RNase P remains a universal RNA-based 
enzyme, only with a potential exception in endosymbiont orga
nelles where protein-based enzyme is found [30,31]. The RNase 
P holoenzyme is a ribonucleoprotein complex: for instance, the 
RNase P complex in E. coli is composed of M1 RNA, which 
functions as a true catalyst, and C5 protein that supports the 
catalytic efficiency and tRNA substrate specificity [17,26].

Recent study unveiled a new function of the RNA component 
of RNase P in assisting protein folding, in addition to its well- 
known ribozyme activity [8]. The M1 RNA crucially provided 
a chaperoning function to the folding of its partner C5 protein 
in vivo and in vitro. It could be postulated that the nascent 
polypeptide of C5 protein, of the ribosome, interacts with M1 
RNA, and folds into relevant conformation into RNP complex. 
Interestingly, M1 RNA also provided a quality control for the C5 
protein; if C5 protein goes aberrant by mutations, M1 RNA 
facilitates its degradation with expedited clearance from the 
cytoplasm. Thus, from cradle to deathbed, M1 RNA is crucial 
for the fate of C5 protein. The activity is reminiscent of protein- 
based molecular chaperones that provide both folding and pro
teostasis to the client proteins [32].

Although intrinsic enzymatic activity resides in the RNA sub
unit of RNase P, the protein subunit is known to increase the 
catalytic efficiency and the substrate specificity to the pool of pre- 
tRNA substrates [33–36]. It should be recalled that tRNAs, as 
adaptor molecules for translating genetic information encoded in 
mRNA into amino acids, are an integral part of ribosome-based 
protein synthesis. tRNA molecules, specific for each triplet codon 
in mRNA, are essential for the quality of protein synthesis and the 
whole protein theatre. The RNA subunit of RNase P enables itself 
to generate properly folded RNase P holoenzyme efficiently by 
providing chaperoning function, further facilitating the provision 
of efficient machinery for the pool of mature tRNAs. Correct 
creation of tRNAs was likely an important early bridge point 
between the RNA and protein worlds, which enabled adaptor- 
mediated protein synthesis (Fig. 2A).

23S rRNA as peptidyl transferase and Chaperna

According to the RNA world view, ribozymes that once 
dominated a primitive metabolism were gradually sup
planted by more efficient protein-based enzymes. It is 

Figure 1. Extended RNA world view. Upon RNA world view, the catalytic functions of RNAs (ribozymes), could expedite to shift primordial RNA-based machinery to 
protein-based theatre. In this review, we suggest the RNA world view more extended, that is; RNAs serve not only as catalysts, but also play a role in protein stability 
and folding, fulfiling solely or harmonizing with molecular chaperones.
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therefore intriguing that the catalyst responsible for the 
synthesis of virtually all proteins is a ribozyme. This 
remains a universal feature in the translation procedure, 
only with a few exceptions in specialized peptide antibio
tics that are synthesized by protein enzymes [37,38]. One 
of the main functions of the ribosome in translation is 
peptidyl transfer for the extension of peptides. Although 
other ribosomal functions, including aminoacyl-tRNA 
selection and translocation, merit attention from mechan
ical point of view, peptide-bond formation by a ribozyme 
is the sole chemical event that moves amino acids into 
the protein world.

Various biochemical analyses as well as the crystal 
structure of the ribosome and its subunits unambiguously 
placed 23S rRNA as the enzyme responsible for the pep
tide-bond formation [39–41]. The domain V of the rRNA 
of the large subunit of the ribosome (23S for bacteria, 25S 
for yeast, and 28S for mammals) was identified as the 
domain bearing the peptidyl-transferase centre (PTC) 
responsible for the peptidyl-transferase activity [39]. The 
universally conserved adenine 2451, for E. coli numbering, 

in domain V of 23S rRNA has been known to have the 
central role in the catalysis of peptidyl transfer [21,42].

Perhaps eclipsed by the canonical function of ribosome in 
protein synthesis, the protein folding activity of ribosome 
(PFAR) has not been given full attention until recently. 
Initially identified two decades ago in bacterial ribosomes 
in vitro [43], the activity was shown to be conserved among 
bacteria, eubacteria, eukaryotes, and even mitochondria [44]. 
The biological relevance of PFAR with protein synthesis 
remained controversial but could be deduced from various 
biochemical observations. First, the folding activity is inher
ent to the rRNA of the large subunit of the ribosome, and 
more specifically, to domain V where universal peptidyl- 
transferase activity resides [45]. And yet, the nucleotides 
involved in PTC and PFAR do not physically overlap within 
domain V, allowing the execution of distinct biological activ
ities [45]. Second, the nucleotides for PFAR are placed at the 
interface of the small and large subunits [46]. Although the 
whole ribosome as a complex of small and large subunits is 
engaged in protein synthesis, the dissociation of ribosomal 
subunits is triggered by unfolded polypeptides, rendering the 

Figure 2. Moonlight Chaperna function of RNAs in adaptor-mediated protein synthesis. (A) Dual function of RNase P as prototype ribozyme and Chaperna. In 
addition to previously known catalytic function, M1 RNA (RNA component of RNase P), facilitates the folding of its cognate protein, C5 protein. The folding of C5 
protein enhances the overall stability of RNase P complex, binding ability to tRNA, and consequently tRNA maturation, further stimulating translational efficiency. (B) 
Schematic view of the function of 23S rRNA as peptidyl transferase and Chaperna. As a holdase, 23S rRNA prevents misfolding of de novo synthesized polypeptides. 
The chaperoning role of 23S rRNA subunit of ribosome -the protein folding activity of ribosome (PFAR)- lends credence to the intrinsic function of ribozymes as 
Chaperna, which expedited the transition from RNA-based world into protein-based (and/or RNA and protein-based) world.
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PFAR centre physically accessible to the guest proteins for 
folding (Fig. 2B) [44,47]. Thus, PFAR and the protein synth
esis are choreographed to be independent but synergistic to 
each other as an integral ribosome function; when PTC is 
engaged for elongation of peptide bonds, PFAR is silenced, 
but PFAR becomes operational only when the peptide synth
esis is halted. Finally, anti-prion compounds were found to be 
potent PFAR inhibitors [48,49], highlighting the close link 
between the ribosome-resident protein folding activity and 
the proteostasis and quality control of cellular proteins, 
which, if aberrant, results in protein-misfolding disease con
sequences [13,50,51].

Accumulating biochemical evidence suggests that the 
moonlighting activities in protein folding should be in the 
limelight as an integral function of the ribosome [52]. The 
dual function of ribozyme as peptidyl-transferase and 
Chaperna for protein folding could be a vestige of the ancient 
RNA world, but powerfully in operation in all life forms (Fig. 
2B). Conceivably, before the advent of protein-based chaper
ones, the RNA-based catalysts for peptide-bond formation 
could also serve as protein-based chaperones for the folding 
of their own peptide products. This property could have 
expedited the transition from the RNA into protein-based 
cellular machineries.

Protein-based Chaperones-Chaperna network

Similarities and mechanical distinctions

Protein-based chaperones have evolved to fold a variety of 
cellular proteins differing in primary, secondary and tertiary 
structure by recognizing and binding to folding intermediates. 
How chaperone proteins recognize client proteins is still being 
discovered. Based on obvious structural characteristics of all 
unfolded proteins, it is a common belief that the exposed 
hydrophobic residues must be shielded from water molecules 
by interaction with chaperone proteins [32].

Currently, there are two types of protein-based chaperones 
classified: the ‘holdase’ type of chaperone proteins that func
tion without ATP, and the ‘foldase’ type of chaperone proteins 
that utilize ATP for recycling chaperone proteins from cargo 
proteins [53–55]. Small heat shock proteins (sHsps), for 
example, are ATP-independent holdases, which help prevent 
protein aggregation, maintain proteins in a folding-competent 
state for eventual refolding by foldase machinery, or direct 
them for degradation by proteosomal or autophagy pathways. 
It should be noted that sHsps can exist in two states, with 
a low (monomeric structures) and high (oligomeric struc
tures) affinity, respectively. In response to heat shock, the 
structures of sHsps shifts strongly towards oligomeric struc
tures, thereby allowing them to more efficiently interact with 
target proteins and to form a stable complex, preventing 
irreversible aggregation and re-solubilizing proteins. Of note, 
electrostatic interactions have been suggested to be an impor
tant component of protein-based chaperone function [56]. 
Similarly, polyanions such as RNA, DNA and polyphosphates 
can serve as effective ATP-independent chaperones [12,57], 
and in the case of both DNA and polyphosphate, oligomer
ization appears to be an important component of their 

chaperone activity [58,59]. Thus, Chaperna is expected to 
function as ‘holdase’, rather than ‘foldase’.

Although the exact mechanism of RNA-dependent folding 
still needs to be elucidated, it could be proposed that client 
proteins would be initially attracted to RNAs by long-range 
electrostatic interactions between highly negative charges on 
the phosphate backbone of RNA and positive-charged resi
dues on the client proteins. The charge-charge repulsion of 
RNA among RNA-protein complexes can help proteins main
tain a monomeric state, encouraging proper (intramolecular) 
folding and preventing (intermolecular) aggregation among 
misfolded intermediates (Fig. 3). Then, hydrophobic interac
tion follows between the water-exposed non-polar side chains 
of client proteins and the purine/pyrimidine bases, or even the 
ribose ring of RNA backbone [60]. A variety of interactions of 
hydrophobic nature between protein and RNA are well docu
mented in the crystal structure of RNP complexes [61]. 
Similar interactions may also operate in the binding of folding 
intermediates, shielding hydrophobic residues from water 
molecules. The entropic exchange at the interface of binding 
may drive the hydrophobic collapse leading into stable folding 
and subsequent release of client protein from the RNA mole
cule. Possibly, a folding-friendly chemical interface at the 
binding site obviates the need for client-specific folding 
instructions, allowing the clients to direct their own folding. 
This strategy may have preceded more elaborate ATP- 
dependent chaperones. Chaperna thus could represent the 
primordial type of chaperone before licencing ATP as uni
versal cofactors for energy requirement [6,16,62].

Functional relationships between molecular chaperones 
and Chaperna

Certainly, Chaperna is not archaeologically extinct as a vestige 
of an ancient RNA world, but rather still extant as a powerful 
cellular protein folding machinery supporting adaptor-based 
protein synthesis [8], and the ribosome-based PFAR. It 
remains an exciting area of future research to study functional 
relationships between protein-based molecular chaperone and 
Chaperna. Are they complementary or even synergistic in de 
novo protein folding in cellular environment? It should be 
noted that the role of protein-based chaperones is rather 
limited in de novo folding of nascent proteins as evidenced 
by the proteome-wide analysis or in vivo genetic deletion 
studies. GroEL/ES, a major molecular chaperone in prokar
yotes, is estimated to assist the folding of limited number of 
proteins in E. coli [63]. In addition, the physical depletion of 
GroEL via knockdown approach showed little effect on de 
novo protein folding in E. coli [64]. Consistent with the data, 
the deletion of either gene of DnaK or Trigger factor has little 
effect on protein folding [65]. In fact, GroEL is absent in the 
Mycoplasma [66]. Moreover, bioinformatics analyses suggest 
that the class of intrinsically disordered proteins (IDPs), 
which constitutes a significant portion of human proteomes, 
is probably less dependent on molecular chaperones for their 
folding [67]. Due to the intrinsic ability to adopt multiple 
conformational repertoires and interaction with multiple part
ners, IDPs function as hubs in signalling pathways or in 
transcription machineries. It remains unanswered how IDPs, 
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intrinsically prone to misfolding into cytotoxic consequences, 
maintain solubility or folding competence in the crowded 
cellular environment. Of note, IDPs are highly enriched in 
RNA-binding proteins [68–70], and mutations in defective 
RNA binding lead into neurodegenerative or progressive dis
ease consequences [71,72]. It is possible that the folding and 
quality control of IDPs are controlled in part by RNA 
interactions.

It should be noted that under stress conditions, mRNAs form 
stress granules (SGs) or processing bodies (P-bodies), also 
known as liquid-like RNP granules and membraneless organelles 
[73,74], and have a pivotal role in guiding proteins to SGs or 
P-bodies [75,76]. RNA-binding also chaperones DNA-binding 
proteins from starved cells [77]. The multivalent interactions 
between RNAs and proteins have a possible role in assisting 
protein folding and maintaining the stability of the IDPs or 
proteins which have large intrinsically disordered domains 
(IDDs), as well as promote membraneless organelles [78,79]. 
Although further research is needed to elucidate the mechanism 
of mRNAs as Chaperna, it is now understood that cells exploit 
this ‘RNA buffer’ as a mechanism against protein aggregation 
under stress conditions.

Indirect evidence on potential cooperation between protein 
and RNA-based chaperones is given in recent in vitro studies 
[12]. Recent findings have shown that chaperones Hsp70, 110, 
and 60 interact with A + U rich elements (AREs) both in vitro 
and in vivo, and that uridine-rich RNAs can be very effective 

at preventing protein aggregation [12,80–83]. ~10% of all 
eukaryotic mRNAs have AREs in their 3ʹ UTR, suggesting 
possible mechanisms of AREs in rapid response to stress by 
stabilizing and assisting protein folding by cooperating with 
molecular chaperones upon stress conditions [84,85]. 
Moreover, uridine-rich RNA, in cooperation with the DnaK 
chaperone, synergized in increasing the refolding efficiency 
[12]. In this respect, it is also worth mentioning a direct 
Chaperna function of cellular RNA (5S rRNA) towards 
DnaK folding in vitro [86].

Chaperna in viral infections

Chaperna also operates at the interface between some viruses 
and their hosts during infection. For instance, the HIV 
encoded TAR RNA is responsible for folding competence of 
HIV-1 Tat protein. The transactivator Tat protein of HIV-1 
belongs to the large family of intrinsically disordered proteins 
(IDPs), and recruits host proteins for the transactivation of 
viral RNA synthesis. Tat interacts with transactivator response 
RNA (TAR RNA) and exerts RNA chaperone activity for the 
structural rearrangement of interacting RNAs. Here, TAR 
RNA also stabilizes the Tat conformation, and then mediates 
the transfer of Tat into host transcriptional machinery, estab
lishing a proteome link between virus and the infecting host 
[14]. Except for such limited studies, the extent of Chaperna 

Figure 3. Overviews of the chaperoning mechanisms of RNAs function for protein folding. Unfolded proteins are prone to intermolecular interaction and 
consequently aggregation. However, in the presence of molecular chaperones, the hydrophobic residues of folding intermediates are shielded, preventing 
intramolecular interactions into misfolding and aggregation. Due to its highly negative charge of RNP complex, the charge-charge repulsion among monomers 
resists intermolecular interaction of folding intermediates in favour of intramolecular interactions into native conformation.
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function in the proteostasis – folding of nascent polypeptides, 
stable maintenance, and disposal of aberrant species through 
proteosomal pathways – remains to be further elaborated. 
Although the Chaperna activity of TAR RNA should be 
further examined, it is tempting to speculate that this could 
represent part of viral strategies for subverting cellular machi
neries for viral replication [87]. Chaperna provides a unique 
view for understanding new therapeutic modalities of patho
logical consequences of defective proteostasis either by meta
bolic dysregulation or by infectious agents.

Novel RNA-based technologies

As biotechnology increases, RNA technology relying upon the 
chaperone activity of RNA becomes increasingly attractive. 
With the novel RNA technologies in controlling gene expres
sion, e.g., riboswitch, RNA interference and CRISPR, 
Chaperna is expected to serve as a robust folding vehicle for 
the ‘difficult-to-express’ proteins [7]. By using RNA-binding 
domains to mediate the Chaperna function, nanoparticles 
(NPs) of Middle East Respiratory Syndrome Coronavirus 
(MERS)-CoV and trimeric influenza haemagglutinin (HA) 
were effectively assembled, and upon immunization, elicited 
strong receptor-binding interference, high titres of 
a neutralizing antibody, and/or immune response against 
viral infection [88,89], suggesting the potent role of 
Chaperna in production of vaccines against pandemic out
breaks such as COVID-19. It should be noted that perturba
tion of the ratio of ribosomal subunits via tuning BMS1 
transcript levels allowed producing high-yielding proteins, 
consistent with the putative role of PFAR in protein folding 
[90]. Thus, it is tempting to speculate that combining both 
Chaperna-mediated folding technology and modulation of 
PFAR via transcriptome analysis would enhance both protein 
quality and production yield for better expression of recom
binant proteins. The RNA-dependent folding competence of 
IDPs [14] may also immensely increase the repertoire of IDPs 
as novel protein drugs. Whether harnessing Chaperna func
tion to the folding of guest proteins has a direct impact on 
therapeutic, diagnostic and prophylactic applications merit 
further investigation. Many neurodegenerative diseases are 
the consequence of misfolding of RNA-binding proteins 
[70,91]. Confirmation of the aetiology of observed cytopathic 
outcome – an anomaly of either the protein itself or its RNA 
partners – would have an immense impact on the therapeutic 
approaches. For example, 6-aminophenanthridine (6AP) and 
its derivatives, guanabenz acetate (GA), and imiquimod (IQ), 
have been identified as anti-prion compounds [48,49,92]. 
Surprisingly, however, it has been studied that the compounds 
do not target prion itself, but target rRNA and specifically 
inhibit domain V rRNA which is the active site for PFAR. 
Furthermore, there are a variety of small molecules which 
target RNAs as therapeutic drug targets [93]. Given the fact 
that RNAs are closely associated with proteinopathies, anti
bodies and small molecules which target Chaperna could be 
utilized as probes for unravelling mechanisms of protein 
aggregation-associated diseases and the role of Chaperna 
therein.

Conclusions & prospects

As intrinsic to ribozymes, Chaperna function further extends 
and complements the current RNA world concept of molecular 
transition of catalysis. RNA-mediated protein folding provides 
a ‘missing link’ between the primordial RNA world and the 
contemporary protein-dominated biology. A dual function of 
RNA as ribozyme and Chaperna expedited both tRNA mole
cules as adaptor of amino acids, and rRNA as ribosome-based 
protein synthetic machinery. The ribozyme-resident protein 
folding activity, even before the advent of protein-based mole
cular chaperones, must have facilitated the transition from the 
RNA world into the present protein theatre within a much 
shorter time frame than the current RNA world conceives. As 
the ribozyme is powerful in operational in all life forms, 
Chaperna likely performs potent protein folding functions. Its 
strength and extent, and the potential network with protein- 
based chaperones merit further exploration.
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