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Studies of non-equilibrium current fluctuations enable assessing correlations involved in quantum
transport through nanoscale conductors. They provide additional information to the mean current on
charge statistics and the presence of coherence, dissipation, disorder, or entanglement. Shot noise, being a
temporal integral of the current autocorrelation function, reveals dynamical information. In particular, it
detects presence of non-Markovian dynamics, i.e., memory, within open systems, which has been subject of
many current theoretical studies. We report on low-temperature shot noise measurements of electronic
transport through InAs quantum dots in the Fermi-edge singularity regime and show that it exhibits strong
memory effects caused by quantum correlations between the dot and fermionic reservoirs. Our work, apart
from addressing noise in archetypical strongly correlated system of prime interest, discloses generic
quantum dynamical mechanism occurring at interacting resonant Fermi edges.

N
on-equilibrium electronic shot noise is a powerful diagnostic tool revealing properties of mesoscopic
systems inaccessible by the mean current measurements1–3. For example, recent noise measurements in
the Kondo impurities4,5 have brought new insights into strongly correlated transport. Shot noise is

sensitive to the presence of non-Markovian dynamics6 intensively studied in broad context ranging from pho-
tosynthesis to quantum information7–12. However, most theoretical proposals as well as the newest quantum-
optical experimental study12 rely on extensive engineering and control of the system and/or environment (bath)
and a clear observation and identification of the quantum memory effects in ‘‘natural’’, i.e., routinely fabricated
solid-state systems has not been reported yet.

In resonant tunneling, which is ubiquitous in quantum electronic transport, the charge dynamics of the
resonant level can be described by a simple Markovian master equation3 as long as the relaxation time related
to the inverse of the transfer rates is long compared to the characteristic memory time of the fermionic bath
(leads) given by the inverse temperature and/or the detuning of the level from the chemical potentials of the leads.
Comparable time scales for system relaxation and bath memory break down the conventional description for low-
temperature on-resonance transport and indicate13 strong non-Markovian features which, together with many
body-interactions typical for small nanostructures, influence the low-temperature width of the resonant steps in
the current-voltage characteristics14, the decay of the level occupations15, or the noise6. For the noise, significant
deviations from the conventional master equation description have already been observed16, although their origin
has not been identified.

In this work we present new experimental results on the low-temperature noise measurements in the Fermi-
edge singularity (FES) regime16–20 together with a theoretical analysis clearly revealing the presence of strong
quantum memory around the edge. The noise-around-the-edge puzzle16 is briefly introduced in Fig. 1e, where the
measured points are contrasted with the standard Markovian theory3 (black line) showing large deviations of
,15% in the Fano factor F ; S/2eI (a convenient dimensionless measure of the shot noise S), far beyond the
experimental uncertainty. Moreover, the measured dip breaks the Markovian lower bound3 of 1/2, which is a clear
witness of strong memory. The blue line, nicely coinciding with the data, is our new theory accounting for the
memory effects.

The FES, a paradigmatic exactly solvable many-body problem21,22, which originates from the Coulomb
interaction of conduction electrons with those on a localised discrete level represented by core shell electrons
or quantum dot (QD) levels, was first predicted in the X-ray spectra of metals23, but its signatures are
observed also in resonant tunneling set-ups as a (truncated) power-law singularity of the mean current I
around, e.g., the emitter Fermi energy17–20. The interacting resonant level model describing the FES transport
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setup has served recently as an important benchmark for novel
quantum transport techniques24–26 including the noise calcula-
tion27 at its exactly solvable self-dual point (different from our
experimental regime).

Results
We first describe cross-correlation measurements of current shot
noise in self-assembled InAs QDs in the FES regime. The experi-
mental set-up is depicted in Fig. 1a and explained in more detail in
the Methods section. At zero bias voltage the ground state energy
level eD of the InAs dots lies far above the emitter Fermi energy mE

(see Fig. 1b, left). Therefore, a large threshold voltage bias Vth <
170 mV applied to the collector lead is required to shift eD to res-
onance with the emitter Fermi energy by electrostatic gating with the
leverage factor g~

mE{eD

e V{Vthð Þ giving the fraction of the bias voltage
dropped at the emitter-dot junction (see Fig. 1b, right). On res-
onance, the tunneling current sets in and displays a sharp peak
(shaded part of Fig. 1c, solid line) due to the Fermi edge singularity
caused by the Coulomb interaction of the occupied dot level with the
electrons in the emitter lead (there is no relevant interaction with the
collector due to the asymmetry of the setup). Further increase of the
bias causes a decrease of the current due to the decrease of the emitter
rate induced by the three-dimensional density of states (DOS) in the
emitter19. Together with the current-voltage characteristics on a large
voltage scale, i.e., far around the edge, Fig. 1c shows the measured
shot noise power S (symbols).

Far enough from the edge, i.e., outside of the shaded region of
Fig. 1c, we can use the standard Markovian master equation and
evaluate the emitter cE and collector cC tunneling rates, Fig. 1d, from
formulas3 I 5 2ecEcC/(2cE1cC) and F 5 1 2 4cEcC/(2cE 1 cC)2

(excluded double occupancy due to strong onsite Coulomb inter-
action implies usage of 2cE instead of just cE as for a noninteracting
resonant level28). While the collector rate cC ¼

:
8:109s{1 is basically

constant, cE reflects the energy dependence of the emitter DOS29 and
exhibits an expected asymmetry of the tunneling barriers with cE/cC

ranging between 0.06 and 0.22. Plausibly assuming constant cC

throughout the resonance we can analogously to Ref. 16 extrapolate
the cE to the resonance (shaded) region in Fig. 1d (solid lines) from
the expression for the current. The resulting Markovian prediction
based on these extrapolated rates (black curve in Fig. 1e) clearly
exhibits substantial deviations from the measurement inexplicable
by experimental errors. Obviously, the resonant transport regime
calls for a radically new theoretical understanding.

Discussion
Using the procedure briefly described in the Methods section for B 5

0, we arrive at a non-Markovian generalised master equation (GME)
for the occupations of the resonant level, where p1(t) is the probabil-
ity that the level is occupied by an electron, while p0(t) 5 1 2 p1(t)
denotes the probability of the dot being empty,
dp0 tð Þ

dt
~cCp1 tð Þz

ðt

0
dt0 cb

E t0ð Þp1 t{t0ð Þ{2c
f
E t0ð Þp0 t{t0ð Þ

h i
: ð1Þ

Figure 1 | Shot noise power measurement around the Fermi edge singularity. (a) Simplified schematic of the studied device consisting of an InAs QD

(pyramid) between emitter (E, blue) and collector (C, red) and the equivalent detection circuit. (b) Energy levels of the dot and leads. Left: zero applied

bias with unoccupied dot level high above the lead chemical potential. Right: threshold bias when the dot level aligns with the emitter chemical potential

and the current strongly enhanced by the Fermi edge singularity starts flowing. (c) Mean current I (solid line) and shot noise power S (symbols) as

functions of applied voltage at T 5 70 mK and B 5 0 T. (d) Energy dependence of cE and cC in the off-resonant regime as determined from the measured

current and shot noise (symbols outside the shaded region) and around the resonance with cC fixed and cE calculated from the mean current (lines within

the shaded region). (e) Fano factor around the resonant edge (corresponding to the shaded range of (c) and (d)). Experimental values supplemented with

their estimated errors (details in the Methods section) are contrasted with the Markovian approximation based on tunnel rate values from (d) (black line)

and the full non-Markovian theory (blue line).
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The expressions (B5 1) for the forward/backward non-Markovian
electron transfer rates across the QD/emitter-lead interface

c
f =b
E tð Þ~2< e{

cC
2 {ieDð ÞtG0=1 tð Þ

h i
involve standard FES Green’s

functions, whose evaluation is a known result of the FES
theory21,22,30. This results in the explicit form of the rates
entering equation (1) — in the Laplace space they read

c
f
E z;Dð Þ!{= {i

2pkBT

� �a

B
1{a

2
z

zzcC 1ziDð Þ=2
2pkBT

,a

� �� �
and

cb
E z;Dð Þ~c

f
E z; {Dð Þ, where D:

mE{eD

cC=2
~

eg V{Vthð Þ
cC=2

is the

dimensionless energy/voltage distance from the resonant edge, a is
the FES critical exponent, and B(x, y) denotes the beta-function.
In the zero-temperature limit the formula simplifies to

c
f
E z;Dð Þ!{= {i

zzcC 1ziDð Þ=2

� �a� �
. When the counting field x

at the emitter junction is included6,31 the GME memory kernel cor-
responding to equation (1) is of the form

W x,z;Dð Þ~
{2c

f
E z;Dð Þ cb

E z;Dð Þe{xzcC

2c
f
E z;Dð Þex {cb

E z;Dð Þ{cC

 !
: ð2Þ

Using the standard procedure for the cumulant evaluation6,31 on this

memory kernel, we get, using the abbreviations c
f =b
E :c

f =b
E 0;Dð Þ

and c
f =b’
E :dc

f =b
E z;Dð Þ=dz z~0j , the formulas for the mean current

I~e
2cCc

f
E

cCz2c
f
Ezcb

E

and for the non-Markovian Fano factor

F~1{4
cCc

f
E

cCz2c
f
Ezcb

E

� �2 z4cC

cCzcb
E

� 	
c

f
E’{c

f
Ecb

E’

cCz2c
f
Ezcb

E

� �2 : ð3Þ

The last term in the Fano factor, proportional to the derivatives,
constitutes the non-Markovian correction. Well above the edge,
where both the back-flow cb

E and the non-Markovian features can
be neglected, we recover the standard master equation result (with

cE:c
f
E).

In the lowest order in c
f ,b
E

.
cC we can write F<1{4c

f
E

.
cCz4c

f
E’,

with magnitude c
f
E’
.

c
f
E




 


< max kBT,cC,cCD=2ð Þ½ �{1. This implies

that for low temperatures kBT *v cC and close to the edge Dj j *v 2
the non-Markovian correction is governed by the collector rate cC

and, thus, it is of the same order as the Markovian correction

{4c
f
E

.
cC to the Poissonian noise (with F 5 1) due to correlations

caused by sequential occupying and emptying of the QD. Being of
quantum origin, it vanishes fast with increasing temperature
kBT *> cC , which kills quantum correlations between the dot and
leads responsible for the memory effects. Moreover, it generically
assumes both signs — negative above the edge, further suppressing
the Fano factor as in Fig. 1e, but also positive below the edge in the
purely quantum tunneling regime, where it counteracts the classical
term by increasing the Fano factor to potentially super-Poissonian
values (F . 1). While the noise suppression can be achieved by
memory of any origin, quantum or classical, the noise enhancement
is a fingerprint of subtle quantum correlations.

We now demonstrate these concepts by more elaborate analysis of
the experimental data acquired at various values of the temperature
and magnetic field. We start by fitting the experimental data for the
mean current (insensitive to memory) around the edge(s) with a
straightforward extension of the above theory to the case of two
spin-split levels due to the magnetic-field with resulting 333 (double
occupancy excluded) memory kernel analogous to equation (2) as
shown in Fig. 2. In the finite magnetic field case 6 free parameters
were fixed by fitting simultaneously curves at various temperatures,
namely two independent critical exponents a"5 0.40, a#5 0.43 and

thresholds Vth",# together with an overall prefactor to the emitter
rates and the leverage factor g, while in the B 5 0 case only 4 para-
meters due to a single resonance peak were fixed with a 5 0.28 in
qualitative agreement with in-depth investigations19,20.

By this procedure all parameter values are fully determined and
the predicted Fano factor curves in the lower panel of Fig. 3 are free of
any ambiguity. Considering this, the correspondence between the
measurements (points with error-bars) and our non-Markovian the-
ory (lines) is quite remarkable in all cases encompassing two mag-
netic field values and various temperatures. We also compare the
Markovian, i.e., with the derivative terms in equation (3) omitted
(dashed lines), and non-Markovian (solid lines) predictions in the
insets and the detail of Fig. 3 with clear demonstration of the already
mentioned non-Markovian features in the low-temperature Fano
factor, namely, the significantly more pronounced dip on the high-
voltage side of the FES and the potentially super-Poissonian peak on

Figure 2 | Mean current fits for FES in magnetic field. Top (bottom)

panel: I–V curves for different temperatures (colour-coded as shown by the

middle panel and horizontally shifted with respect to each other for clarity)

at B 5 9.75T (B 5 0). Experimental data are plotted in colour and the black

dashed curves are the theoretical fits for a unique set of 6 (4) parameters at

all temperatures. Middle panel: Differential conductance dI/dV as a

function of the bias voltage and magnetic field at the lowest temperature T

5 70 mK. The Zeeman splitting of the edge is clearly visible. The top and

bottom panels depict the cuts along the corresponding borders of the

middle panel; the shaded stripes in the panels indicate matching ranges for

the lowest temperature curves.
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the low-voltage side with fast destruction of the non-Markovian
corrections with temperature or distance from the resonant edge.

All these features are clearly seen in the experimental data as well.
The super-Poissonian Fano factor due to quantum coherence at the
lower edge is not reliably confirmed experimentally because of assoc-
iated large errors resulting from a ratio of very small values of both
the current and noise (tunneling regime). Nevertheless, the experi-
mentally observed peak just below the upper edge (see the detail in
Fig. 3), although sub-Poissonian, is caused by the very same mech-
anism and is thus an indirect confirmation of the purely quantum
memory effect. Altogether, the importance of the non-Markovian
corrections due to quantum memory is established both qualitatively
and quantitatively.

Methods
Experimental details. The studied InAs QDs are embedded in a GaAs-AlAs-GaAs
resonant tunneling device patterned into pillars with a cross section of 9 3 9 mm
sufficiently small to resolve single dot tunneling16. The effective AlAs barrier widths of
4 and 3 nm are slightly asymmetric. The measurements, whose schematic of the
electronic setup is shown in Fig. 1a, were performed in a dilution refrigerator at
temperatures down to 70 mK and magnetic fields up to 13 T. The DC-part of the
source drain current I is measured with a transimpedance amplifier which also biases
the sample. Two 4.7 kV resistors convert the fluctuating current to voltages which are
measured in a cross-correlation configuration. Together with parasitic capacitances
these resistors form RC-circuits which define the bandwidth of our experiment. To

increase this bandwidth we use home-built coaxial cables thereby lowering the total
parasitic capacitance to 20 pF.

The voltage fluctuations are amplified by a two-stage low temperature amplifier
based on the ATF34143 HEMT with a gain of 22 dB, followed by a room temperature
amplifier with a gain of 60 dB. The amplified signal is filtered and digitised, and from
the Fourier spectra the cross-correlation noise power SAB is calculated and averaged
over 8 minutes. To retrieve the shot noise power the real part of SAB in the frequency
range from 500 kHz to 3 MHz is evaluated. A technical background-noise, largely
dominated by thermal noise sources like the first transistor stage of the cryogenic
amplifiers and the conversion resistors, is measured at zero current and subtracted. At
finite sample impedances the partially correlated thermal background is estimated
and also subtracted. The correlation gain parameters are determined by noise ther-
mometry. The error bars in Fig. 1e and Fig. 3 consist of the statistical error, the error of
the estimated background and the calibration error.

Theoretical details. Hamiltonian of simplified spin-less model of a resonant level
tunnel-coupled to two leads (emitter E and collector C) and Coulomb-coupled just to
the emitter reads H 5 HQD 1 HE 1 HC 1 HT 1 VXd {d with HQD 5 eDd {d,

Hb~
P

kb kb
c{kb

ckb
, HbT~

P
kb

tkb
d{ckb

zt�kb
c{kb

d
� �

and VX~
P

kE ,k0E
VkE ,k0E

c{kE
ck0E

,

where b 5 E, C; d and ck,b are QD and lead annihilation operators, eD and kb
are the

energies of the QD level and of the electrons in the leads, respectively, while tkb

describe the tunneling between the QD and the leads. The last term describes the
scattering of emitter lead electrons on an electron in the QD and is responsible for the
FES phenomenon. Since the Fermi level of the collector lead is far below the resonant
level and cC does not depend on energy close to the edge (Fig. 1d) we can use the
method by Gurvitz and Prager28 to exactly integrate out the collector lead. This leads
to the equation of motion for the density operator s(t; n) of the dot and the emitter
resolved with respect to the number n of passed electrons through the emitter/QD
interface. After introducing the counting field x as a conjugate variable to n, one can

Figure 3 | Memory effects on the FES noise. Top (bottom) panel: mean current (Fano factor) for two values of the magnetic field specified in the top

panel and various temperatures shown in the bottom panel. Measured Fano factor with the estimated error-bars (explained in the Methods section) is

compared to theoretical predictions based on parameters obtained from the fits of Fig. 2. Insets: Comparison of non-Markovian theory (solid lines) with

the Markovian approximation (dashed lines) for corresponding magnetic fields (individual insets) and temperatures (curves within insets; horizontally

displaced for clarity). Differences between the two curves are highlighted by colours according to their sign. Left detail: zoom onto the low-temperature

Fano factor curve in the region around the upper Fermi edge shown by the dashed rectangle. Measured data with their error-bars are supplemented with

both the non-Markovian as well as Markovian predictions in the spirit of the insets.
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write the equation of motion for s t; xð Þ~
P

n s t; nð Þenx, partly expressed in the block
form6,31, s 5 (s00, s11, s01, s10)T,

ds t; xð Þ
dt

~{i HE xð Þs t; xð Þ{s t; xð ÞHE {xð Þð Þ

z

0 cC 0 0

0 {cC 0 0

0 0 {cC=2 0

0 0 0 {cC=2

0
BBBBB@

1
CCCCCAs t; xð Þ,

ð4Þ

where HE xð Þ~HQDzHEzVX d{dz
P

kE
tkE ex=2d{ckE zt�kE

e{x=2c{kE
d

� �
~H{

E {xð Þ
is the appropriately modified Hamiltonian of the emitter and QD including the
counting field.

The emitter lead can then be handled perturbatively in the tunnel coupling tkE

following closely the derivation for dissipative double quantum dot from Ref. 31 by
first separating equation (4) into four equations for the elements of s. Tracing out the
electron states of the emitter lead in the two equations for the evolution of the
diagonal elements sjj (j 5 0, 1), allows us to find the evolution equations for the
generalised QD occupations pj(t; x) 5 TrEsjj(t; x)

dp0=1 t; xð Þ
dt

~+cC p1 t; xð Þ

+2e+x=2
X

kE

Im tkE TrE ckE s01 t; xð Þð Þ½ �:
ð5Þ

The equation governing the evolution of s01(t; x) which enters Eqs. (5) contains the
diagonal elements sjj(t; x) of the total density matrix. In order to close the equations
for pj(t; x) we perform physically motivated QD-state-resolved perturbative
decoupling of the density matrix into sjj t; xð Þ~pj t; xð Þ6%E

j with

%E
j ~exp { HEzjVX{mE

P
kE

c{kE
ckE

h i.
kBT

� �.
ZE

j being the grand-canonical

density matrix of the emitter lead at temperature T and chemical potential mE when
the QD is empty (j 5 0) or occupied (j 5 1). Thus, after multiplying the forward rate
by 2 due to the interplay of spin and Coulomb blockade28, we find equation (2)
(reducing to equation (1) for x 5 0) with FES Green’s functions reading

G0 tð Þ~
P

kE ,k0E
tkE t�k0E

TrE c{k0E
ei HEzVXð Þt ckE e{iHE t%E

0

h i
,

G1 tð Þ~
P

kE ,k0E
tkE t�k0E

TrE ei HEzVXð Þt ckE e{iHE tc{k0E
%E

1

h i
.
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