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Abstract
Bacteria with high nucleic acid (HNA) and low nucleic acid (LNA) content are commonly

observed in aquatic environments. To date, limited knowledge is available on their temporal

and spatial variations in freshwater environments. Here an investigation of HNA and LNA

bacterial abundance and their flow cytometric characteristics was conducted in an exorheic

river (Haihe River, Northern China) over a one year period covering September (autumn)

2011, December (winter) 2011, April (spring) 2012, and July (summer) 2012. The results

showed that LNA and HNA bacteria contributed similarly to the total bacterial abundance on

both the spatial and temporal scale. The variability of HNA on abundance, fluorescence

intensity (FL1) and side scatter (SSC) were more sensitive to environmental factors than

that of LNA bacteria. Meanwhile, the relative distance of SSC between HNA and LNA was

more variable than that of FL1. Multivariate analysis further demonstrated that the influence

of geographical distance (reflected by the salinity gradient along river to ocean) and tempo-

ral changes (as temperature variation due to seasonal succession) on the patterns of LNA

and HNA were stronger than the effects of nutrient conditions. Furthermore, the results

demonstrated that the distribution of LNA and HNA bacteria, including the abundance, FL1

and SSC, was controlled by different variables. The results suggested that LNA and HNA

bacteria might play different ecological roles in the exorheic river.

Introduction
In natural aquatic environments, planktonic bacteria tend to cluster into two distinct sub-
groups, namely high nucleic acid content (HNA) bacteria and low nucleic acid content (LNA)
bacteria, by flow cytometry (FCM) measurement in combination with nucleic acid staining [1].
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This classification based on cellular size and fluorescence intensity of bacteria is widely
observed in marine environments [2–6]. When first observed by FCM, LNA bacteria were
regarded as inactive, dead or dying cells [7,8]. However, recent studies demonstrated that LNA
bacteria were metabolically active [1,5,9]. It was found that LNA bacteria can survive and grow
in oligotrophic environments due to their high affinity and binding-protein dependent uptake
system [10]. Meanwhile, certain special cellular membrane constitutions could protect LNA
bacteria from oxidation [11]. It was reported that LNA bacteria could adopt a dormancy strat-
egy to overcome unfavorable environmental conditions [12].

In terms of ecological function, LNA bacteria were reported to play at least an equal niche
role as HNA bacteria in the ecosystems [9,10,13–15]. Hence, information on the relation and
variance between LNA and HNA bacteria are important to a better understanding of these two
widespread groups of bacterioplankton in aquatic environments, and provide important foun-
dation for further exploration of their environmental applications. The data on LNA and HNA
bacterial abundance and activities have mainly come from marine environments [2,3]. It was
found that the abundance and flow cytometric characteristics of LNA and HNA bacteria were
strongly regulated by environmental variables, e.g. temperature, salinity, chlorophyll-α and
nutrient conditions [5,6,16,17]. However, whether their variations on abundance and cyto-
metric characteristics have similar pattern and how the variations respond to environmental
factors are still unclear.

The distribution of LNA and HNA bacteria was found to change seasonally [18,19]. It was
reported that although the growth rate of HNA bacteria in Lake Biwa generally exceeded that
of LNA bacteria, LNA bacteria grew faster than and were grazed as fast as HNA bacteria in late
August, when nutrients were severely limited [20]. Gomes and colleagues reported that HNA
bacteria were apparently more responsive to the winter-spring phytoplankton bloom than
LNA bacteria [21]. Nevertheless, to the best of our knowledge, information on the distribution
and variations of LNA and HNA bacteria in freshwater environments is very limited, especially
for the gradient along the river to the ocean.

The aims of the present study were 1) to analyze the temporal and spatial variations of the
LNA and HNA bacterial abundance and cytometric characteristics along an exorheic river (the
Haihe River); and 2) to estimate the effects of the driving factors on the distribution pattern of
these two subgroups by multivariate analysis.

Materials and Methods

Ethics Statement
Water samples were taken from the Haihe River, where no specific permission is required. The
Haihe River is a public river running through Tianjin, China. It is not privately owned or pro-
tected. The current study did not involve endangered or protected species. Water sampling
procedures were reviewed and followed the Chinese Standard of Collection and Preservation of
Water Samples (GB/T 5750.2–2006).

Sampling sites
The samples were collected at nine sampling stations along the Haihe river, which inflows into
the Bohai Sea and is the largest river in Northern China (Fig 1) [22]. Water samples were col-
lected from each station in four seasons: the autumn (September, 2011), winter (December,
2011), spring (April, 2012), and summer (July, 2012). At each sampling station, 2 L water sam-
ples were collected in clean and sterile bottles from a depth of about 0.5 m below the water sur-
face. Samples were stored at 4°C during transportation and processed immediately within 24
hours after sampling.
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Flow cytometry analysis
Flow cytometry analysis was performed as described in Ma et al. [22]. One milliliter water sam-
ple was stained with 10 μL/ml SYBR Green I (1:100 dilution in dimethyl sulfoxide as the work-
ing solution; Invitrogen, USA), and incubated in the dark for 15 min at room temperature
before measurement. The FCM (CyFlow Space instrument, Partec, Germany) specific instru-
mental gain parameters settings were as follows: SSC = 369 (log3), FL1 = 380 (log4), FL3 = 750
(log4). Bacterial communities were gated through the two-parameter dot-plot of green fluores-
cence (FL1) and side scatter (SSC), then the LNA and HNA bacterial concentrations were
counted separately and the respective geometrical means of FL1 and SSC of LNA and HNA
were calculated. All samples were measured in triplicate. Water samples were diluted in Milli-

Fig 1. Sampling sites in the Haihe River. Black solid circles (●) indicate the sampling stations, and the black dash-dot curve (—�—) and blue solid curve
(—) indicate the coastline and river, respectively.

doi:10.1371/journal.pone.0153678.g001
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Q water (cell-free) so that the bacterial concentration was always less than 2×105 cells/mL dur-
ing the FCMmeasurement. The instrument detection limit was below 500 cells/s with an aver-
age standard deviation of 5%.

Water environmental parameters
The temperature, pH and salinity of sampling waters were measured using YSI EC300 Water
Quality Sonde. Water physical and chemical properties e.g. total suspended solids (TSS), total
nitrogen (TN), nitrate (NO3), total phosphorus (TP), total dissolved phosphorus (TDP), total
organic carbon (TOC), and chlorophyll-α (Chl-a) were measured as described in our previous
studies [22, 23].

Statistical Analysis
Analysis of variance (ANOVA) was conducted to test the significance of differences in mea-
sured or calculated parameters by using R statistical software (http://www.r-project.org/). A
multivariate redundancy analysis (RDA) was performed by Canoco software (Canoco for

Fig 2. Flow cytogram example of LNA and HNA bacteria in the Haihe River.Dashed lines indicate LNA bacteria, and solid lines indicate HNA bacteria.

doi:10.1371/journal.pone.0153678.g002
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Fig 3. Variations of LNA and HNA bacterial concentration (A) and percentage of HNA bacteria (B) along the Haihe River. Error bars represent
standard deviation of triplicate measurements.

doi:10.1371/journal.pone.0153678.g003
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Windows version 4.5) to further illustrate the changes of LNA and HNA bacteria in response
to environmental factors [24]. The data were centered and standardized before redundancy
analysis, and the Monte Carlo test was used to examine the significance of the RDA method.
Meanwhile, a generalized linear model (GLM) and generalized additive model (GAM) were
performed in a stepwise manner to predict the LNA and HNA bacterial abundance and flow
cytometric characteristic response to environmental ordination axes in RDA. The axes were
constrained by environmental variables, and the visualization formula constructed in terms of
linear, quadratic or cubic degrees of GLM, then F statistics were used to test the significance in
both GLM and GAM [25].

Results and Discussion

Temporal and spatial variations of LNA and HNA bacterial abundance
and FCM characteristics
As shown in the flow cytogram, LNA and HNA bacteria in the Haihe River could be clearly dis-
criminated on the basis of their side scatter (SSC) and fluorescence intensity (FL1) in all four
seasons (Fig 2). It showed that the bimodal distribution phenomenon based on nucleic acid
content and cell size was commonly present in the planktonic bacteria from river ecosystems
to oceans irrespective of seasonal shifts. Both LNA and HNA bacterial concentrations in spring
and summer were significantly higher than those in winter and autumn (P< 0.05) (Fig 3).
Although there were similar trends in temporal distributions between HNA and LNA bacteria,
the one-way ANOVA analysis of HNA and LNA bacterial abundance showed that the variabil-
ity in HNA (F = 9.04, P< 0.001) was greater than the variability in LNA (F = 7.99, P< 0.001)
in different seasons (Fig 3A). Clear spatial variations were observed for both HNA and LNA
bacteria along the river to the Bohai Sea (Fig 3). Meanwhile, the results showed that LNA bacte-
ria had an equal share with HNA bacteria in all seasons except spring. In contrast, HNA bacte-
ria dominated the community in spring (64.8%) (Fig 3). This is consistent with previous
reports on variations of LNA bacterial abundance in marine environments. For example,
Calvo-Diaz and Moran investigated seasonal dynamics of picoplankton in the central Canta-
brian Sea (southern Bay of Biscay), where it was observed that HNA bacteria dominated the
community in winter and spring (64%), while the proportion of LNA and HNA bacteria was
almost equal in autumn and summer [26]. The results suggested that both HNA and LNA bac-
teria could potentially dominate the community and were important components in the micro-
bial community in both freshwater and marine ecosystems.

With respect to flow cytometric characteristics, both green fluorescence intensity (FL1)
(Pearson’s R = 0.850, P< 0.01) and side scatter (SSC) (Pearson’s R = 0.600, P< 0.01) of HNA
and LNA were significantly correlated along the river. In comparison, no significant correlation
was found between the FL1 and SSC within each subgroup (HNA: Pearson’s R = 0.371,
P< 0.05, LNA: Pearson’s P> 0.1). In terms of temporal variation, both FL1 and SSC of HNA
as well as FL1 of LNA showed significant changes between seasons (Fig 4A and 4B). Mean-
while, similar to the abundance variation, the variabilities of FL1 (F = 15.2, P< 0.0001) and
SSC (F = 9.81, P< 0.0001) in HNA were greater than that in LNA (FL1: F = 10.2, P< 0.0001;

Fig 4. Temporal changes of fluorescence intensity (FL1) (A), side scatter (SSC) (B) and variance
between LNA and HNA of FL1 and SSC (C) in the Haihe River. The box represents the range from 25% to
75% percentiles, whisker lines represent the outlier percentiles and the middle line in the box shows the
median value of all data points. X-marks and square dots represent the outlier and mean values, respectively.
Letters with and without underline represent seasonal differences of HNA and LNA bacteria respectively.
Different lowercase letters indicate significant difference of 0.05. The symbols "**" and "*" indicate significant
differences of 0.01 and 0.05, respectively.

doi:10.1371/journal.pone.0153678.g004
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SSC: F = 2.16, P> 0.1). In addition, based on the differences in cytometric parameters (FL1
and SSC) between HNA and LNA, the derived variable (FL1HNA/FL1LNA and SSCHNA/SSCLNA)
was used to figure out the relative distances between HNA and LNA in FCM. Such ratios could
complementally represent variance within these two subgroups on FL1 and SSC, then further
explain what and how different factors affect these variations [27]. The results showed that the
relative distance of FL1 between HNA and LNA (median(min-max): 4.4(2.5–10.9)) was signifi-
cantly higher than that of SSC (2.2(0.8–4.0)) (P< 0.01) in each season (Fig 4C). Furthermore,
the relative distance of SSC between HNA and LNA showed significant temporal variation
(F = 14.88, P< 0.001) (Fig 4C). The reason may lie in the seasonal variation of HNA and LNA
bacterial activity which would result in the seasonal changes in cell size [28]. It was reported
that the cell size of LNA bacteria became larger than that of HNA bacteria in the NWMediter-
ranean in March [21]. In contrast, no significant temporal variation was observed for the rela-
tive distance of FL1 (F = 1.13, P> 0.1) (Fig 4C). The different variability of FL1 and SSC
suggested these two cytometric parameters would be related to different factors.

Partition of driving factors on LNA and HNA bacteria
Redundancy analysis (RDA) was conducted to estimate how environmental variables influ-
enced LNA and HNA bacteria (Fig 5). The Monte Carlo test showed that RDA axes 1 and 2
were significant to elucidate the correlations between bacterial properties and environmental
variables (F = 18.26, P = 0.004). RDA revealed that salinity was the main driving factor for
LNA and HNA bacteria distribution patterns, accounting for 20% variance (F = 8.26,
P< 0.01), followed by temperature (explain 11% variance, F = 5.51, P< 0.01), conductivity
(explain 8% variance, F = 4.10, P< 0.05), total phosphorus (explain 6% variance, F = 3.64,
P< 0.05) and total suspended solids (explain 6% variance, F = 3.27, P< 0.05) (Fig 5A). The
salinity primarily controlled the variation of LNA and HNA in the Haihe River, which indi-
cated the geographical gradient along freshwater river to oceans have considerable influence
on the distribution of these two subgroups. While most samples were seasonally clustered
together, samples from S8 and S9 were separated from the others in each season; station S8 is
close to the estuary and S9 is located in the estuary of Bohai Sea (the salinity was higher than
other stations). The changes in temperature reflect the seasonal dynamics and also remarkably
affect the characteristics of LNA and HNA, which coincide with the significant temporal vari-
ability on the abundance and cytometric parameters (Figs 3 and 4). Overall, these two major
factors shaped the variation of LNA and HNA (Fig 5B).

It has been reported that HNA bacteria tend to grow in eutrophic and mesotrophic environ-
ments, while LNA bacteria reside in oligotrophic environments [29–31]. Our results showed
that HNA and LNA bacterial abundance was significantly correlated to different environmen-
tal variables (Fig 5A). Specifically, LNA was negatively related to nitrate (NO3) and positively
related to total suspended solids (TSS), while HNA was significantly related to total nitrogen
(TN). A similar pattern between FL1 and SSC was observed, where the ordination of both cyto-
metric parameters were divided in Fig 5A. The results revealed that the effects of geographical
distance and temporal changes, which were characterized as salinity and temperature gradient
respectively in RDA, were stronger than the effects of nutrient controls (e.g. TOC, TN and TP)

Fig 5. Redundancy analysis of LNA and HNA bacterial characteristic parameters with environmental factors in the Haihe River. (A) Biplots between
characteristics of LNA\HNA and environmental variables, (B) Samples ordination. Abbreviations: TSS, total suspended solids; TN, total nitrogen; NO3,
nitrate; TP, total phosphorus; TDP, total dissolved phosphorus; TOC, total organic carbon; Chl-a, chlorophyll-α; FL1L and FL1H, FL1 of LNA and HNA
bacteria, SSCL and SSCH, SSC of LNA and HNA bacteria; VFL1, FL1HNA/FL1LNA; VSSC, SSCHNA/SSCLNA; LNA and HNA, the LNA and HNA bacterial
concentration, HNA%, the percentage of HNA in total bacterial concentration. Samples were connected with lines according to location along with the Haihe
River in subgraph B.

doi:10.1371/journal.pone.0153678.g005
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on the LNA and HNA distribution (Fig 5A). The results are consistent with previous studies
that seasonal changes in environmental variables have a more significant effect on microbial
community patterns than trophic interactions [17,32]. Contemporary contingencies, e.g. local
climate events, could drive the changes of biotic and abiotic factors on short time scales, then
affects the microbial community dynamics [33–35].

Furthermore, response analysis was performed to graphically compare the differentiation
on the changes of LNA and HNA bacterial abundance and cytometric parameters (FL1 and
SSC). The response of HNA showed more variation than that of LNA (Fig 6A), which indicated
the changes in HNA abundance maybe more sensitive to environmental variation in compari-
son to LNA. Meanwhile, response analysis showed that the variations of FL1 and SSC signifi-
cantly correlated to axis 2 (Fig 6B) and axis 1 (Fig 6C), respectively. Different variation was
observed in SSC and FL1 within and between LNA and HNA. The results demonstrated that
these two cytometric parameters represented dissimilar characteristics in bacterial cells and
could be regulated differently [27]. The dissimilarity along gradients within an ecosystem sug-
gested that LNA and HNA bacteria might play different ecological roles.

Conclusions
In summary, LNA and HNA bacteria make similar contributions to the total microbial abun-
dance in an exorheic river on both spatial and temporal scale. The variability in HNA bacterial
abundance and flow cytometric characteristics was greater than that of LNA bacteria. Mean-
while, the relative distance of SSC between HNA and LNA showed more variability than that
of FL1. The present study demonstrated that the effects of geographical distance (salinity gradi-
ent along river to ocean) and temporal changes (temperature variation by seasonal succession)
were stronger than the effects of nutrient conditions on the variations of LNA and HNA. Fur-
thermore, the distribution of LNA and HNA bacteria, including the abundance and flow cyto-
metric characteristics, were under the control of different environmental variables. The
heterogeneity between LNA and HNA suggested those two subgroups may play different niche
ecological roles in the microbial loop of aquatic ecosystems.
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