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For many decades, researchers have studied how plants use bet-hedging strat-

egies to insure against unpredictable, unfavourable conditions. We improve

upon earlier analyses by explicitly accounting for how variable precipitation

affects annual plant species’ bet-hedging strategies. We consider how the sur-

vival rates of dormant seeds (in a ‘seed bank’) interact with precipitation

responses to influence optimal germination strategies. Specifically, we incor-

porate how response to resource availability (i.e. the amount of offspring

(seeds) generated per plant in response to variation in desert rainfall) influ-

ences the evolution of germination fractions. Using data from 10 Sonoran

Desert annual plants, we develop models that explicitly include these

responses to model fitness as a function of precipitation. For each of the species,

we identify the predicted evolutionarily stable strategies (ESSs) for the fraction

of seeds germinating each year and then compare our estimated ESS values to

the observed germination fractions. We also explore the relative importance of

seed survival and precipitation responses in shaping germination strategies by

regressing ESS values and observed germination fractions against these traits.

We find that germination fractions are lower for species with higher seed sur-

vival, with lower reproductive success in dry years, and with better yield

responses in wet years. These results illuminate the evolution of bet-hedging

strategies in an iconic system, and provide a framework for predicting how

current and future environmental conditions may reshape those strategies.
1. Introduction
For organisms inhabiting variable environments, it can be difficult to perfectly

time key life-history functions, such as emergence or reproduction, with favour-

able conditions. In such environments, natural selection will favour traits or

strategies that buffer against uncertainty, usually by spreading risk over time

or space. This is often achieved through bet-hedging, in which strategies or

traits reduce variance in reproductive success at some cost to mean reproductive

success [1–3]. Empirical examples of putative bet-hedging strategies include

iteroparity [4], variable diapause [5,6] and variable offspring size [7,8]. Delayed

seed germination in annual plants is the classic example of bet-hedging [9], in

which variance in success is reduced by spreading germination over multiple

years, which has been clearly demonstrated in annual plants of the Sonoran

Desert [10,11].

Bet-hedging strategies interact with other traits to determine fitness, so the

degree of bet-hedging should depend on other traits that influence whether an

organism can survive until reproduction [10,12]. For instance, the adaptive

value of delaying germination depends on the risk of seed mortality of seeds

stored underground and seeds freshly produced [11,13], which can depend

on seed traits, such as varying seed coat thickness. Further, the effect of variable
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Figure 1. (a) The life cycle of an individual seed, as described by equation (1). An individual seed remains dormant with probability 1 2 g and survives to the next
autumn with probability sold (outer circle). Otherwise, it germinates, becomes a reproductive plant with probability pt (b), and produces Yt seeds per square metre
(c); a fraction snew of Yt then contributes to the following autumn (inner circle). (b,c) The hurdle model for ERLA. (b) The binomial regression for ERLA, where the
open circles located on the zero and one lines represent reproductive failures and successes corresponding to precipitation values Pt in year t, and the solid, logistic
curve represents the probability of reproductive success pt as a function of precipitation. (c) The linear regression of the post-hurdle low-density yield values Kt

against Pt on a log – log scale for ERLA.
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conditions may also be mediated by traits expressed later in

the life cycle, such as those that relate to the organism’s abil-

ity to tolerate stress as well as the ability to capitalize on

resource bonanzas.

In desert annual plants, low-resource tolerance (i.e. stress

tolerance) and resource-use capacity (i.e. the ability to capitalize

on bonanzas) are likely to influence the fitness consequences of

annual germination rates. One approach to assess the fitness

consequences of such functional responses is through relating

resource availability to two quantities: the probability of produ-

cing any offspring (reproductive success) and the number of

offspring (yield upon reproductive success). The set of inter-

cepts and slopes from these per-species relations explain

performance upon low-resource availability and responsive-

ness to increased resource availability, respectively, and can

be incorporated into models for understanding the adaptive

value of germination timing. Of course, abiotic conditions,

such as temperature or precipitation, are not the only sources

of risk in uncertain environments. The fitness consequences of

risk-spreading strategies also depend on biotic conditions,

making traits that affect response to competition or other

density-dependent processes important as well [14,15]. Under

density dependence, the optimal strategy depends on those

employed by other individuals in the population; methods

from adaptive dynamics can be used to identify evolutionarily

stable strategies (ESSs) [16].

Here, we build upon a model of Gremer & Venable [11] to

estimate long-term stochastic fitness in relation to germination

for 10 annual plants in the iconic Sonoran Desert winter annual

community. We have chosen to analyse these particular

species, as they are both abundant and a good representation

of the variation in functional trait strategies and demography

in the system [10,11]. Here, as in Gremer & Venable [11], we

use germination fractions to indicate the degree of bet hedging.

Low germination fractions indicate that less seeds germinate

in a given year and, instead, more remain in the seedbank.

These dormant seeds serve as a ‘hedge’ against uncertainty

in any given year, so lower germination indicates higher bet

hedging. Conversely, high germination fractions indicate less

bet hedging, with perfect germination fractions (i.e. 100%

germination) indicating that no bet hedging is occurring.
Unlike Gremer & Venable [11], we directly model the effect

of precipitation on plant yield for this water-limited system.

In doing so, we can see how precipitation relates to the fitness,

trait evolution and bet-hedging strategies of each species.

Specifically, we model the probability of reproductive success

(versus reproductive failure) and per capita yield, conditioned

on reproductive success, as functions of precipitation and

intraspecific density. We incorporate these relationships into

a density-dependent seed bank model to predict evolutionarily

stable germination strategies. To distinguish the relative impor-

tance of density, seed survival and functional responses in

driving the evolution of germination strategies, we then build

a statistical regression model and use it to explore how well it

predicts observed and model-predicted germination strategies.
2. Model and methods
To model the seed bank dynamics of annual plants, we adapted

a seed bank model (figure 1a) introduced by Gremer & Venable

[11] and related their low-density yield to precipitation (details

on the empirical data that we used to parametrize the seed bank

model can be found in the electronic supplementary material,

appendix A3). To model low-density yield values from precipi-

tation, we used a two-step hurdle model [17]. First, using a

binomial regression, we identify the probability a germinating

individual reproduces under a certain amount of precipitation

(i.e. the probability that an individual crosses the ‘reproductive

hurdle’ (figure 1b)). Then, we determine how the yield of repro-

ducing individuals depends on this precipitation (figure 1c)

(i.e. once an individual crosses the reproductive hurdle, we

determine its yield from precipitation). Incorporating our

hurdle model into Gremer & Venable’s [11] bet-hedging, seed

bank model, we calculate the evolutionarily stable germination

fraction (ESS) for each of the 10 species, independently. We then

use a statistical regression to estimate the relative importance of

several parameters (that reflect species-specific life-history

traits) in governing both predicted and observed ESS germina-

tion fractions. While we use the modified bet-hedging model to

predict germination values via ESS analysis, we use the statisti-

cal regression or model to assess the relative importance of
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different life-history traits in explaining predicted and observed

germination fractions.

(i) Bet-hedging model
Let nt denote the density of seeds in the seed bank in year t
for a focal species. A fraction of g seeds germinate each

year. Under low-density conditions, germinating seeds con-

tribute Kt seeds to the seed bank in year t; we refer to Kt as

the ‘low-density yield’ in year t. These seeds survive to the

next year with probability snew, the survival rate of fresh

seeds. Negative density dependence reduces yield by a

factor 1/(1 þ agnt), where a . 0 is a species-specific compe-

tition coefficient for the germinating population. A fraction

of (1 2 g) seeds remain dormant until the next year, each

surviving with probability sold, the survival rate of dormant

seeds (figure 1). Under these assumptions,

ntþ1 ¼
gKtsnewnt

1þ agnt
þ (1� g) soldnt: (2:1)

Benaı̈m & Schreiber [18] show that the density of seeds

converges with probability one to a unique statio-

nary distribution as t!1. In particular, if the low-density

per capita growth rate

r ¼ E[log (gKtsnew þ (1� g)sold)] (2:2)

is negative, then nt converges with probability 1 to 0. Alterna-

tively, if this low-density per capita growth rate is positive, nt

converges to a unique, positive stationary distribution n̂(g). In

particular, we can approximate the stationary distribution

n̂(g) by one sufficiently long run of the model.

(ii) Modelling low-density yield from precipitation: the
reproductive hurdle

While Gremer & Venable [11] estimated Kt directly from the

demographic data, we model how Kt depends on precipitation

Pt in each year in order to analyse the effect of precipitation on

seed bank dynamics. We used the same 30 years of data as

Gremer & Venable [11] and obtained each year’s observed

yield and precipitation values for the 10 desert annuals

featured in an earlier study by Venable [10]. Following Venable

[10], a factor of 0.5 is added to yield and a factor of 1 is added to

precipitation, so that the residuals of the linear regressions

between log-yield and log-precipitation were approximately

normally distributed. Let Nt ¼ gnt be the seedlings per metre

square in year t. Then the observed yield is Yt ¼ Kt/(1 þ aNt),

where a and Kt are the measured competitive coefficient and

measured low-density yield for year t, both calculated by

Gremer & Venable [11].

For our two-step hurdle model relating low-density yield

to precipitation, we model the probability of reproductive

failure (Kt , 1) or success (Kt � 1) with a binomial regression

(figure 1b). Specifically, we keep track of each species’s repro-

ductive failures and successes, and their corresponding

log-precipitation values, all of which were measured within

the 30 years of yield and precipitation data. We then binomially

regress these failures and successes against log-precipitation,

the regression being the reproductive hurdle or probability

an individual reproduces as a function of log-precipitation.

For the subset of years that a species experienced reproductive

success (i.e. cleared the hurdle), we linearly regress non-zero,

low-density yield Kt against precipitation Pt on the log scale
(figure 1c): log(Kt) ¼ log(a2) þ b2log(Pt), where Pt is the

measured precipitation for year t. The reproductive hurdle

and the post-hurdle regressions define a two-step process

relating the low-density yield Kt to the precipitation Pt:

Kt ¼ a2Pb2
t with probability ðptÞ

0:5 with probability ð1� ptÞ

�

where the probability of crossing the reproductive hurdle is

pt ¼
1

1þ e�(a1þb1 log (Pt))
: (2:3)

We calla1 the reproductive intercept,b1 the reproductive slope,

a2 the log-yield intercept, and b2 the log-yield slope. Larger

reproductive intercepts and reproductive slopes correspond

to higher probabilities of reproductive success in low and

high precipitation years, respectively. Larger log-yield inter-

cepts and log-yield slopes correspond to higher yield in low

and high precipitation years, respectively. Larger log-yield

intercepts represent increased ability to reproduce under low

resource availability (i.e. tolerance to low water availability),

whereas larger values for log-yield slopes represent increased

responsiveness to resources and ability to capitalize on wet

years for reproduction.

(iii) Predicting ESS values
To identify the ESS for the germination fraction g, consider a

‘mutant’ population at very low density ~n with a different

germination strategy, ~g. At low densities, this mutant popu-

lation has a negligible feedback on the resident population

and itself, but is influenced by the resident. Hence, its

population dynamics are initially approximated by

~ntþ1 ¼
~gKtþ1snew~nt

1þ agnt
þ (1� ~g) sold~nt: (2:4)

The success or failure of the invasion of these mutants is

determined by their stochastic growth rate

r(g, ~g) ¼ E log
~gK1snew

1þ agn̂(g)
þ (1� ~g)sold

� �� �
: (2:5)

If r(g, ~g) , 0 the invasion fails, and if r(g, ~g) � 0 it succeeds

[19]. A germination strategy g is an ESS if r(g, ~g) , 0 for all

~g = g (i.e. no other strategy can invade). A necessary condition

for an ESS with 0 , g , 1 is that h(g) ¼ (@r=@~g)(g, g) ¼ 0. Since

(@2r=@~g2)(g, ~g) , 0 for all ~g, if such a g is found, it is unique.

Thus to find the ESS, we solve for the root of h(g) strictly

between 0 and 1 (see electronic supplementary material,

appendix A1).
3. Results
(iv) Reproductive hurdle model
Species were significantly different in their reproductive

and log-yield intercepts for both the binomial regression

modelling reproductive success and the post-hurdle model.

For a common slope, binomial sub-model with solely log-

precipitation and species as predictors, a pairwise Wald’s

test detected differences between multiple pairs of reproduc-

tive intercepts. In particular, EVMU significantly differed

from ERCI, PERE, PLIN, PLPA and SCBA (p , 0.05); STMI

significantly differed from PERE and SCBA (p , 0.05) (see

table 1 for species’ full nomenclature). The rest of the pairs

were not significantly different, according to the pairwise



Table 1. This table contains (from left to right) values for seed survivorship in the seed bank, seed survivorship of fresh seeds, reproductive intercepts,
reproductive slopes, log-yield intercepts, log-yield slopes and competition factors. Superscripted characters next to a and b values indicate how significantly
different these parameters are from 0: 0.1#, 0.05*, 0.01** and 0.001***.

species sold snew a1 b1 a2 b2 a

Monoptilon belliodes (MOBE) 0.273 0.102 23.31# 2.74* 1.73 0.79 0.0163

Erodium cicutarium (ERCI) 0.429 0.132 21.55 1.97* 0.02 1.25** 0.0351

Stylocline micropoides (STMI) 0.458 0.145 21.78 1.46* 21.67 2.33*** 0.0156

Schismus barbatus (SCBA) 0.512 0.150 22.03 3.10* 20.54 2.38*** 0.0112

Eriophyllum lanosum (ERLA) 0.532 0.153 23.15# 2.86* 20.73 1.95*** 0.0114

Plantago patagonica (PLPA) 0.550 0.160 22.18 2.43* 1.45 0.84 0.0069

Erodium texanum (ERTE) 0.577 0.170 21.29 1.43# 20.07 1.36* 0.0532

Plantago insularis (PLIN) 0.596 0.168 21.42 2.14* 1.52 0.89# 0.0380

Pectocarya recurvata (PERE) 0.627 0.173 20.10 1.43 0.93 1.44*** 0.0167

Evax multicaulis (EVMU) 0.828 0.214 23.86* 2.36* 1.58 1.30* 0.0119
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Figure 2. (a) The observed germination fractions against model-estimated ESS values for each species. (b) Germination fractions against germination estimates
found by taking the inverse-logit of Lobs. Points lying on the dotted line represents equality between predicted ESS values and observed germination fractions.
Points have been coloured from light blue (low seed survival) to dark blue (high seed survival).
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Wald’s test. A post-hoc Tukey test with a Bonferroni correc-

tion also did not reveal significant differences for any

pairing. We compared the common slope sub-model to a

common intercept sub-model (the interaction and log-precipi-

tation as predictors). The common slope, sub-model was the

winning model in AIC, BIC and log-likelihood comparisons

and was not significantly different from the full binomial

model. The binomial fit (the coefficients coming from the

full binomial model) for Eriophyllum lanosum (ERLA) is

shown in figure 1b.

A common intercept, post-hurdle model showed SCBA’s

log-yield slope significantly differed from ERCI, ERLA, ERTE,

MOBE, PLIN, PLPA and STMI; PERE significantly differed

from ERCI and ERTE; EVMU significantly differed from

ERCI, ERTE, PLPA, and STMI (p , 0.05). Non-listed pairs of

log-yield slopes were not significantly different from one

another. In addition, a post-hoc Tukey test with a Bonferroni

correction revealed significant differences between EVMU

and ERCI, ERTE and SCBA, and ERCI and SCBA (p , 0.05).

No other pairs were significantly different. In contrast, a

common slope sub-model also yielded significant intercepts
but was not selected after comparing AIC, BIC and log-

likelihood values to the common intercept sub-model. The

common intercept sub-model was also found to not be signifi-

cantly different from the full, linear model. The post-hurdle fit

(the coefficients coming from the full, linear model) for ERLA

is shown in figure 1c.
(v) Predicted ESS values
With the purpose of estimating ESS values as accurately as

possible, we used the full models’ intercepts and slopes,

unique for each species, for both reproductive success and

post-hurdle yields. We have incorporated the resulting repro-

ductive and log-yield intercepts and slopes, survival rates

within the seed bank, and the competitive responses into

one table (table 1). Predicted ESS values from the full

models corresponded well with observed germination frac-

tions; our ESS values explain 69% of the variance (adjusted

R2) in observed germination fractions (on the logit–logit

scale), although our ESS values typically overestimate these

germination fractions (figure 2).
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(vi) Factors shaping bet hedging
To explore the effect of each trait on ESS values and observed

germination rates, we also examined how well our model-

estimated ESS values and observed germination fractions

could be estimated by parameters of table 1 on the logit scale.

We used our ANOVA—along with the non-dimensionalization

of equation (2.1) (see electronic supplementary material, appen-

dix A2)—to reduce the potential predictors to reproductive

intercepts, log-yield slopes and survival rates of dormant

seeds. The resulting linear regression

LESS ¼ 0:89þ 0:21â1 � 0:32b̂2 � 0:56ŝold, (3:1)

explains 90% (adjusted R2) of the variance in the predicted ESS

values, where the hatted variables denote the standardized pre-

dictor variables. Survival rates of dormant seeds have the most

impact on variation in ESS values, followed by log-yield slopes

and reproductive intercepts. Finally, we analysed the amount of

variance in observed germination fractions explained by these

three parameters. The resulting linear regression

Lobs ¼ �0:29þ 0:46â1 � 0:44b̂2 � 0:59ŝold (3:2)

explains 69% (adjusted R2) of the variance in the observed

germination fractions (figure 2). Seed survival rates again have

the largest negative effect on the germination rates. By contrast,

reproductive intercepts have a much larger positive effect on

observed germination rates than they did in the model-predicted

ESS values. Log-yield slopes had a much stronger negative

impact on observed germination rates than the model-predicted

ESS values. Both regressions show that germination fractions are

lower for species that have larger survival rates of seeds in the

seed bank (sold), higher for species with greater reproductive suc-

cess in dry years (a1) and lower for species that capitalize on wet

years upon reproductive success (b2).
4. Discussion
Our approach, which explicitly incorporates an aspect of

environmental variation, and species-specific responses to that

variation, into models for understanding the factors that shape

optimal strategies, illuminates life-history evolution in variable

environments and is likely to be useful in many other systems.

The ESS model predicts germination fractions based on uncer-

tainty in precipitation, whereas the statistical model indicates

the relative importance of survival rates, reproductive success

and precipitation-dependent yield. Most important is seed sur-

vivorship: the safer it is to be in the seed bank, the more

beneficial it is to bet-hedge, a result consistent with classical

bet-hedging theory [9,13]. Equally as important as the precipi-

tation-dependent yield (but less so than seed survivability) is

the sensitivity of reproductive success in low-rainfall years.

Higher reproductive success in dry years selects for desert

annuals to bet-hedge less. However, higher rates of seed pro-

duction in wet years push annuals to bet-hedge more, which

could be attributed to higher rates of seed production in wet

years being linked to lower rates of seed production in dry years.

Indeed, empirical observations in this system indicate

that some species are better able to capitalize on favourable

conditions than others. For instance, Angert et al. [20] exper-

imentally demonstrated differences in leaf area and biomass

allocation in response to precipitation pulses between two

species of winter annuals. The more stress-tolerant species (Pec-
tocarya recurvata) was less able to capitalize on the resource
pulse than the other, less tolerant species (Stylocline micro-
poides). Similarly, Kimball et al. [21] showed that species with

high relative growth rates (RGR) and low water-use efficiency

(WUE) were favoured in years with large, and more frequent

rain events, using 25 years of climate and fitness data for this

winter annual system. These functional trade-offs also relate

to germination biology; resource acquisitive species with low

germination fractions also have germination physiologies

cued to slower germination and in a narrower range of

conditions [22]. In other words, they have physiologies tuned

to slower and more cautious germination, but also have less

tolerant, resource acquisitive traits once established. Thus,

functional responses included in our ESS analyses strongly

affect long-term variation in fitness and germination in

response to precipitation in this system.

Our ESS estimates explained approximately 29% more

variance in germination fractions than a linear regression on

Gremer & Venable’s predicted values, although we consistently

overestimate the observed germination fractions, whereas their

predictions are a mixture of under- and over-predicted values

with smaller summed squared-residuals (figure 2a) [11]. Our

over-estimates might stem from all the possible risks or factors

that may select for greater bet-hedging, such as seed predation,

interspecific competition, variable temperature and disease

[23–29], which were not included in our model. Furthermore,

30 years of precipitation data might not fully capture the long-

term variation in precipitation that has shaped the evolution

of germination timing in these species.

Our analyses also indicate differences in what is driving

predicted ESS values versus observed germination rates.

While the general intercept, reproductive yield and seed survi-

val rates within the seed bank affect predicted ESS values (see

equation (3.1)), reproductive success is a better predictor of

observed germination fractions (see equation (3.2)). The gen-

eral intercepts of the two regressions account for the largest

difference in fit between the statistical model and the ESS

models’ predicted germination fractions. This major difference

partially stems from the variance in our predicted yield values

generally having lower variance than that of the estimated low-

density yield values of Gremer & Venable [11]. Larger vari-

ation in our yield values would select for more bet-hedging

(lower ESS estimates) for all 10 species, and consequently sub-

tract from the general intercept to equation (3.1). The second

largest difference is that of the coefficient of the â1 term, or stan-

dardized reproductive intercept. Since reproductive success is

also determined solely from precipitation in our model, the

difference in coefficient magnitudes may be highlighting our

inability to capture variation in reproductive success from rain-

fall alone. Thus, the statistical model suggests that the variance

in both yield and reproductive success is not completely

explained by the variation in the 30 years of precipitation.

Other factors such as temperature may also play a role in med-

iating responses to water availability, particularly in this

system, and could be incorporated in future models [21,30,31].

As a model for displaying the relative importance of survi-

val rates, reproduction rates and conditional seed production

rates, the statistical regression for observed germination frac-

tions suggests that we are not fully capturing variance in

yield and reproductive values. Thus, discerning these biologi-

cal uncertainties and modelling them will be an important step

toward understanding the reasons why desert annuals hedge

their bets as much as they do. Moreover, our ESS model can

be a significant springboard to predicting germination rates
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for desert annuals: not only can one fine-tune the ESS estimates

we have predicted by incorporating variable factors such as

temperature and predation, one may also use this same ESS

machinery to predict germination rates of desert annuals out-

side of the 10 studied here. Finally, as 30 years of data did

not capture the whole picture in mean and variation in precipi-

tation, it will be equally important to investigate how

differences in either of these affect ESSs.
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