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Orotracheal treprostinil administration attenuates bleomycin-
induced lung injury, vascular remodeling, and fibrosis in mice
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Abstract

Pulmonary fibrosis is a progressive disease characterized by disruption of lung architecture and deregulation of the pulmonary

function. Prostacyclin, a metabolite of arachidonic acid, is a potential disease mediator since it exerts anti-inflammatory and anti-

fibrotic actions. We investigated the effect of treprostinil, a prostacyclin analogue, in bleomycin-induced experimental pulmonary

fibrosis. Bleomycin sulfate or saline was administrated intratracheally to mice (n¼ 9–10/group) at day 0. Orotracheal aspiration of

treprostinil or vehicle was administered daily and started 24 h prior to bleomycin challenge. Evaluation of lung pathology was

performed in tissue samples and bronchoalveolar lavage fluid collected 7, 14 and 21 days after bleomycin exposure. Lung injury was

achieved due to bleomycin exposure at all time points as indicated by impaired lung mechanics, pathologic lung architecture (from

day 14), and cellular and protein accumulation in the alveolar space accompanied by a minor decrease in lung tissue VE-cadherin at

day 14. Treprostinil preserved lung mechanics, and reduced lung inflammation, fibrosis, and vascular remodeling (day 21); reduced

cellularity and protein content of bronchoalveolar lavage fluid were additionally observed with no significant effect on VE-cadherin

expression. Bleomycin-induced collagen deposition was attenuated by treprostinil from day 14, while treprostinil involvement in

regulating inflammatory processes appears mediated by NF-kB signaling. Overall, prophylactic administration of treprostinil, a

stable prostacyclin analogue, maintained lung function, and prevented bleomycin-induced lung injury, and fibrosis, as well as vascular

remodeling, a hallmark of pulmonary hypertension. This suggests potential therapeutic efficacy of treprostinil in pulmonary fibrosis

and possibly in pulmonary hypertension related to chronic lung diseases.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, fatal lung
disease of unknown etiology with a median survival of
patients not exceeding three to five years from diagnosis.1,2

The result of progressive lung structure disruption is func-
tional impairment and subsequently excessive morbidity and
mortality. Global incidence slowly increases and usually
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60–70 year old males are affected.3 Pulmonary hypertension
(PH) is a frequent complication of IPF and other chronic
lung diseases,4 increasing the morbidity and mortality of
such patients. Several multicenter clinical trials have been
conducted for IPF, but only two drugs (pirfenidone and
nintedanib) were proved to be effective as disease-modifying
therapies.5 However, for a number of patients the only
effective treatment will still be lung transplantation.1

IPF pathophysiology involves alveolar epithelial cell
damage usually of repetitive nature, accompanied by
deregulated wound healing. This leads to excessive extracel-
lular matrix (ECM) deposition and eventually fibrosis.
The animal model most widely used to resemble the
human disease is the bleomycin (BLM) mouse model.6

Previous studies have revealed possible target molecules
participating in IPF pathogenesis. Eicosanoids are signaling
molecules produced from arachidonic acid through cycloox-
ygenase (COX) pathways, and their group includes among
others prostaglandins (PGI2, PGF2a, PGD2, and PGE2),
leukotrienes and thromboxanes (TX). Notably, prostaglan-
dins have been previously linked to lung fibrotic processes.
Prostacyclin (PGI2) elevates the levels of cyclic adenosine
monophosphate (cAMP) and may thus control inflamma-
tion and fibrosis.7 In human fibroblasts from IPF patients,
the ratio of PGI2 to profibrotic thromboxane A2 (TXA2)
was found lower compared to healthy lung fibroblasts, sug-
gesting a trend towards fibrogenesis.8 Besides, studies on
human fetal lung fibroblasts revealed that two PGI2 ana-
logues were able to inhibit fibroblast migration,9 and most
importantly prostacyclin analogues protected COX-2�/�

mice from BLM-induced pulmonary fibrosis.10

Prostaglandin E2 (PGE2) and TXA2 are both involved in
lung fibrosis; inhibition of TXA2 synthesis was able to
attenuate BLM-induced fibrosis in mice11 and PGE2 was
shown to inhibit fibroblast proliferation12 and collagen
production.13

Treprostinil is a prostacyclin analogue previously shown
to inhibit the recruitment of circulating fibrocytes in PH.14

Thus, the aim of the study was to delineate whether trepros-
tinil controls inflammation and pulmonary fibrosis, while its
effect on vascular remodeling was additionally studied.
Experimental approach involved intratracheal exposure of
mice to BLM and daily treatment with the stable prostacyc-
lin analogue treprostinil through the inhaled route. Some of
the results presented here were previously reported in the
form of an abstract.15

Methods

Animals

This study was approved by the Evangelismos Hospital
Research Review Board – Ethics Committee and by the
Veterinary Service of the governmental prefecture of
Attica, Greece (approval protocol number 788/11

February 2014). All experiments were performed in compli-
ance with the European Union Directive 2010/63/EU and
with the ARRIVE guidelines. Handling was performed
under deep anesthesia induced by intraperitoneal injection
of ketamine/xylazine (100mg/kg and 10mg/kg, respect-
ively). Animal distress and suffering were minimized, and
exsanguination was used as the method of euthanasia.
Mice were bred and maintained on the C57BL/6 back-
ground in the animal facilities of the ‘‘BSRC Alexander
Fleming’’ (Athens, Greece) under specific pathogen–free
conditions. All experiments were performed at the Animal
Model Research Unit of Evangelismos Hospital where
animals are kept at 20–22�C, 55� 5% humidity, and 12-h
light-dark cycle. Food and water were provided ad libitum.

BLM model

BLM sulfate (2U/kg) was administered intratracheally to
wild type (WT) mice via tracheotomy under intraperitoneal
ketamine/xylazine anesthesia. Mice in the control group
received saline (SAL) alone.

Experimental design

Mice were randomly assigned into experimental groups and
were monitored twice daily. The time points studied are 7,
14 and 21 days post BLM or SAL. Orotracheal aspiration of
treprostinil (TREP, TYVASO� United Therapeutics,
Maryland, USA; 0.6mg/ml) or vehicle (VEH; NaCl,
Na3C6H5O7, NaOH, and HCl in sterile water, at concentra-
tions same as in Tyvaso solution) was performed twice
daily (12-h intervals) starting 24 h (day �1) prior to
BLM or SAL exposure (day 0) and lasting for the whole
duration of the experiment. All time points include four
experimental groups (n¼ 9–10 animals per group): (1)
SAL/VEH group receiving orotracheally vehicle solution
starting at day �1, and SAL at day 0; (2) SAL/TREP
group receiving treprostinil (total amount of 80 mg/kg/day
in two doses; i.e. 40 mg/kg BID, based on previous studies16)
starting at day �1, and SAL at day 0; (3) BLM/VEH group
treated orotracheally with vehicle starting at day �1, and
BLM at day 0; (4) BLM/TREP group receiving orotrache-
ally treprostinil, as per group 2, starting at day �1, and
BLM at day 0.

Samples

Mice were sacrificed under deep anesthesia by exsanguin-
ation. A heparinized 27 g syringe was used to obtain arterial
blood samples from the abdominal large vessels. Serum
was extracted from blood samples via centrifugation
at 1500 r/min for 10min at 4�C and stored at �80�C.
Bronchoalveolar lavage fluid (BALF) was collected as pre-
viously described,17 cellular components were removed via
centrifugation at 1500 r/min for 10min at 4�C and the
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supernatants were kept at �80�C. Lungs were collected and
stored at �80�C or kept in 4% paraformaldehyde.

Lung mechanics

Lung mechanics assessment was performed at all-time
points; 7, 14, and 21 days after BLM or SAL exposure
(day 0), each animal was cannulated following deep anes-
thesia and was shortly ventilated for lung mechanics evalu-
ation purposes. Tissue elastance and static compliance (Cst)
were measured by means of a small animal ventilator
(FlexiVent, Scireq, Ontario, Canada), using the low
frequency forced oscillation technique and static pressure-
volume curve of respiratory system. The ventilation proto-
col consists of 8 ml/kg tidal volume (Vt) and 150 breaths per
minute while positive end expiratory pressure (PEEP) was
adjusted at 2 cm/H2O. Standardization of respiratory func-
tion required the performance of two total lung capacity
maneuvers (deep inflations) following the short run-in
period. Data collection of lung mechanics started after
1min of Vt ventilation. Respiratory function evaluation
was achieved via the assessment of tissue elastance coeffi-
cient (H) and Cst. The former was collected via the forced
oscillation technique and was estimated by the use of the
Constant Phase model. A 30-s interval was separating each
measurement. The Cst of the respiratory system was then
evaluated using data by three quasi-static PV curves, and
more specifically by fitting of the Salazar–Knowles equation
to the expiratory part of the loop.18

BALF total protein and differential cell count

Total protein concentration in BALF was determined using
the Bio-Rad Dc Protein Assay kit (Bio-Rad Laboratories,
Hercules, CA, USA). A Neubauer hemocytometer was used
for the determination of total cell counts. Following total
cell number quantification in BALF, cellular components
were removed via centrifugation at 1500 r/min for 10 min
and resuspended in PBS; 50–70� 103 cells per glass slide
were centrifuged (Cytospin3, SHANDON), air dried at
room temperature and stained with May-Grunwald–
Giemsa. Optical observation was used for differential cell
count via an optical microscope (Olympus BX50).

Histopathology

Sections (5 mm) of paraffin-embedded tissues were stained
with hematoxylin and eosin (H&E) according to standard
histological procedures and optical observation of the
microscopic lung structure was performed blindly by an
expert pathologist. Lung inflammation scoring was per-
formed according to Murao et al.19 Focal thickening of
alveolar membranes, congestion, and interstitial and intra-
alveolar neutrophil infiltration were assigned a score from 0
to 3 based on the absence (0) or presence to a mild (1),

moderate (2), severe (3) degree and a total cumulative hist-
ology score was determined.

Immunostaining and pulmonary vascular morphometry

From paraffin-embedded lungs, 4 mm sections were obtained
and staining was performed with an anti-alpha-SMA anti-
body (Abcam plc, UK). After incubation with an HRP-
conjugated secondary antibody, 3, 30 diaminobenzidine
was used as chromogen and sections were counterstained
with hematoxylin. Morphometry was performed as previ-
ously described.20 Small vessels from 20 to 70 mm in diam-
eter were counted and characterized blindly as fully
muscularized (>75% a-SMA staining), partially muscular-
ized (up to 75%) or non-muscularized.

Soluble collagen evaluation

Lung soluble collagen content was evaluated with Sircol
collagen assay kit; 50mg of each tissue was homogenized
and incubated in a pepsin solution at 4�C for 24 hours,
and the concentration of soluble collagen in the supernatant
was assessed according to the manufacturer’s protocol.

Masson trichrome stain

Lung sections were stained with a Sigma Aldrich stain kit
following the manufacturer’s protocol. Optical observation
of the samples was performed blindly by a specialist.
Aschroft test was used for the quantification of fibrotic
injury in the lung according to Hubner et al.21

Enzyme-linked immunosorbent assay

Quantification of osteopontin and periostin was performed
in BALF samples from all mice using commercial Elisa kits
(R&D Systems, Inc., MN, USA) according to the manufac-
turer’s protocol. Samples from all time points were prepared
in duplicate.

Western blotting

SDS-PAGE was performed on 10% polyacrylamide gels
and samples from all groups of time point day 21 were
transferred to Immobilon-P PVDF membranes (Millipore,
0.45ml pore size, Millipore Corporation, Billerica, MA,
USA). Membranes were probed with one of the following
primary antibodies: phospho-JNK, JNK, phospho-p44/42
MAPK, p44/42 MAPK, phospho-p38, p38, phospho-IkBa
(Cell Signaling, Danvers, MA, USA), VE-cadherin (Santa
Cruz Biotechnology, Texas, USA) and actin (Millipore,
Temecula, CA, USA). Protein bands were detected by
chemiluminescence (Santa Cruz Biotechnology, Texas,
USA). For quantification, densitometric analysis was
performed.
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Statistical analysis

Data are presented as means� SEM. Comparisons among
groups were made using one-way randomized ANOVA, fol-
lowed by Newman–Keuls or Tukey’s multiple comparisons
tests, as appropriate. Differences were considered significant
when p< 0.05 (*p< 0.05, **p< 0.01, ***p< 0.001).

Results

Treprostinil treatment preserves lung mechanics and
maintains lung function of BLM-challenged mice

Lung injury due to BLM affects respiratory function.
Impaired breathing in our model is denoted by a decrease
in lung Cst and an increase in elastance (H). In detail, Cst
decreases at all time points were observed (Fig. 1a–c) in
animals of the BLM/VEH group, with concurrent H
increases (Fig. 1d–f) peaking at day 21 (67.7� 8.9 vs.
34.95� 4.3 cmH2O/ml). To test our orotracheal method,
Evans Blue was given to mice in preliminary experiments,
and homogeneous lung distribution was confirmed (data not
shown). Daily treatment with treprostinil, starting at day
�1, attenuated BLM-induced lung mechanical dysfunction,
as the BLM/TREP group showed a smaller decrease of Cst
at all three time points, reaching a statistical significance at
day 21 (Fig. 1c, 0.0424� 0.006 vs. 0.070� 0.006ml/cmH2O).
Remarkably, in the BLM/TREP group, H decreased in a
statistically significant way at all time points (Fig. 1d–f).

Treprostinil maintains lung architecture and prevents
BLM-induced lung injury

Lung injury due to BLM is characterized by alveolar wall
thickening and cell accumulation. Eventually normal lung
structure is replaced by ‘‘scar’’ tissue formation due to exces-
sive collagen deposition. In our experimental protocol,
histological evaluation revealed a mild lung injury of the
BLM/VEH group starting (non-significantly) at day 7 and
progressing until day 21 (Fig. 2). Treprostinil administration
attenuated BLM-induced lung injury at days 14 and 21;
histopathological score was significantly lower in BLM/
TREP group compared to BLM/VEH (Fig. 2b and c) and
representative tissue histology showed less extensive inflam-
mation and focal alveolar thickening in the BLM/TREP
group (Fig. 2d–f).

Treprostinil effect on BLM-induced BALF cell infiltration
and increased vascular permeability

BLM-induced inflammatory response is characterized by an
increase of the cellular content in the alveolar compartment.
Accumulation of white blood cells occurs, as well as disrup-
tion of the endothelial barrier and increased protein content
in BALF. BLM-challenged mice in our experiment showed
excessive alveolar flooding (Fig. 3). In particular, a marked
increase in BALF total cellularity was observed at all time
points (Fig. 3a–c) and a peak was reached at day 21 (total
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Fig. 1. Effect of orotracheal treprostinil (TREP) administration on lung mechanics of all animal groups 7, 14 and 21 days after intratracheal

injection of bleomycin (BLM) or saline (SAL). BLM reduced lung static compliance (a–c) and increased tissue elastance (d–f), phenomena that were

reversed in the BLM/TREP treated group. Results are expressed as mean� SEM, n¼ 9–10 mice per group. One-way ANOVA followed by

Newman–Keuls post hoc test was used for the comparison among groups. Cst: static compliance; H: tissue elastance coefficient; 7D: 7 days; 14D:

14 days; 21D: 21 days.
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score 985.9� 158.1 cells/ml). Additionally, examination of
cell population in BALF revealed a neutrophil increase
(Fig. 3d–f), with accumulation reaching a peak at day 21
(neutrophils % of total cells: 35.64� 6.7). Exposure to BLM
led to BALF protein enrichment in BLM/VEH group start-
ing at day 7 (Fig. 3g) and increasing at days 14 and 21
(Fig. 3h and i). Treprostinil managed to attenuate the

aforementioned phenomena; pleocytosis in BALF was sig-
nificantly reduced in BLM/TREP group 7, 14 and 21 days
after BLM (Fig. 3a–c). Neutrophil levels in BALF also
showed a decrease upon treprostinil treatment at all time
points; notably, 14 and 21 days after BLM neutrophil
counts of BLM/TREP mice reached those of the control
groups (SAL/VEH, SAL/TREP) (Fig. 3e and f). Protein

Fig. 2. Orotracheal treprostinil (TREP) administration attenuates bleomycin (BLM)-induced pulmonary inflammation and fibrosis. Following

histological analysis of murine lungs included in each group at every time point, lung injury was quantified (a–c). Results are expressed as

mean� SEM, n¼ 9–10 mice per group. One-way ANOVA followed by Newman–Keuls post hoc test was used for comparison among groups.

Representative H&E stainings are shown in (d–f); mice treated with bleomycin and treprostinil show less leukocyte accumulation, alveolar

structure distortion and collagen deposition (d: 7D, e: 14D, f: 21D). SAL: saline; VEH: vehicle; 7D: 7 days; 14D: 14 days; 21D: 21 days.
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content in BALF showed a decrease upon treprostinil treat-
ment and statistically significant differences were observed
at time points of 14 and 21 days (Fig. 3h and i). In order to
examine the vascular endothelial integrity of our model,
apart from total protein levels in BALF, levels of vascular
endothelial (VE)-cadherin in lung tissues were also deter-
mined. VE-cadherin is a protein of the adherens junctions,
essential for the maintenance of the endothelial barrier.
In our model, we observed a small but significant decrease

14 days after BLM challenge not affected by treprostinil
(Fig. 3j and k); however, this decrease was not maintained
at the time point of 21 days (data not shown).

Treprostinil effect on BLM-induced increase in pulmonary
vascular muscularization

In order to determine whether pulmonary vascular remodel-
ing is affected by treprostinil, the degree of pulmonary vessel
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muscularization at Day 21 was assessed (Fig. 4). In agree-
ment with previous studies,22 BLM caused the development
of pulmonary vascular remodeling, as evident from the sig-
nificant reduction in % of non-muscularized vessels and
augmentation in % of muscularized vessels, in comparison
to the control group (Fig. 4e–g). TREP treatment in BLM-
challenged mice significantly ameliorated this process, as

demonstrated by increase in % of non-muscularized vessels
and decrease in % of fully muscularized vessels.

Treprostinil administration attenuates collagen deposition

Fibrotic phenotype due to BLM is established seven days
from the time of exposure. In our experimental setting,
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BLM-induced cell accumulation and alveolar thickening
eventually resulted in excessive collagen production and
ECM deposition that altered normal lung structure, creating
a scar formation (Fig. 5g–i). Soluble collagen levels in BLM/
VEH group showed a slight increase at day 7, and as disease
progressed they reached a peak at day 21 (Fig. 5c).
Histological evaluation of lung sections, specifically for col-
lagen, revealed sporadic collagen deposition at day 7
(Fig. 5g), fibrotic lesion presence at day 14 (Fig. 5h), and
excessive fibrotic lung areas at day 21 (Fig. 5i). Fibrotic
scores were given accordingly by a specialist using the
Ashcroft methodology. Significant formation of fibrosis
started at day 7 for the BLM/VEH group, while at day
21, an almost 3-fold increase of the fibrotic areas of the
BLM/VEH group was observed compared to the SAL/
VEH group (Fig. 5f). Treprostinil treatment resulted in sol-
uble collagen levels decrease at days 14 and 21 (Fig.5b and c)
compared to the BLM/VEH group levels (677.8� 31.03 vs
861.7� 44.87mg/ml; day 21). Histological evaluation further
revealed that in the BLM group receiving treprostinil, fibro-
sis formation was attenuated, and corresponding fibrotic
scores of BLM/TREP and BLM/VEH groups showed sig-
nificant differences at days 14 and 21 (Fig. 5e and f).

Treprostinil administration affects the levels of IPF
candidate biomarkers

Osteopontin and periostin are proteins reported to be
instrumental in IPF and experimental pulmonary
fibrosis. We observed increased levels of osteopontin in the
BALF of the BLM-challenged mice, beginning from day 7
and remaining elevated until day 21 (Fig. 6a–c). The peak
of osteopontin levels was observed in BALF of BLM/
VEH group at day 21 post BLM (470.2� 42.23 mg/ml)
(Fig. 6c). Treprostinil administration significantly lowered
osteopontin levels at day 14, continuing until day 21
(325� 73.13 mg/ml). Levels of the matricellular protein peri-
ostin were measured in BALF, and BLM was shown
to drastically increase periostin from day 7 until day 21
(Fig. 6d–f). Upon treprostinil treatment, periostin levels
gradually dropped, with significant differences occurring at
days 14 and 21 between treprostinil-treated BLM group and
BLM/VEH group (Fig. 6e and f).

Treprostinil represses inflammatory signaling pathways

Nuclear factor-kB (NF-kB) is a transcription factor
involved in the regulation of several proinflammatory path-
ways. Phosphorylation and subsequent degradation of the
kB inhibitor (IkB) results in NF-kB activation. Mitogen-
activated protein kinases (MAPKs) include the extracellular
signal-regulated kinase (ERK), the c-Jun N-terminal kinases
(JNK) and the p38 isoforms, which participate in cellular
processes activated by various stimuli. Thus, we sought to
study whether the aforementioned molecules are affected by
pulmonary fibrosis induction and by treatment with

treprostinil. The effect of BLM and TREP on ERK, p38
and JNK phosphorylation is presented in (Fig. 7a–f).
BLM induced phosphorylation of IkBa inhibitory subunit
leading to NF-kB activation (Fig. 7g and h). JNK and IkBa
phosphorylation were inhibited by treprostinil (Fig. 7e and
g) and these data were accordingly quantified to check stat-
istical significance (Fig. 7f and h).

Discussion

As reported, in this study an experimental animal model of
IPF was used to test the efficacy of a stable prostacyclin
analogue when administrated through the inhaled route.
Treprostinil is a prostanoid analogue that has been intro-
duced as a specific treatment for pulmonary arterial hyper-
tension following a randomized control trial that
demonstrated its safety and efficacy.23 Since then it has
been a valuable asset, under different formulations, in the
treatment of PAH patients.24 To our knowledge, this is the
first time that administration of treprostinil was proven to
be beneficial in BLM-induced pulmonary inflammation,
vascular remodeling, and fibrosis in mice. Our results indi-
cate that orotracheal administration of treprostinil twice
daily preserves lung function, reduces cellular accumulation,
attenuates endothelial barrier disruption, attenuates vascu-
lar muscularization, preserves lung structure and diminishes
collagen deposition in the lung. Moreover, treprostinil
reduced MAPK and NF-kB activation, suggesting a role
in lung inflammation. Daily treatment with this prostacyclin
analogue through inhalation adequately mimicked human
administration of inhaled treprostinil and provided a non-
invasive way for the compound to the injured area, as
opposed to invasive routes (e.g. intravenous or subcutane-
ous) that could cause discomfort and side-effects.25,26

Exposure to BLM causes acute excessive cell accumula-
tion, edema formation and, in later stages, ECM deposition
and distorted lung architecture. Treprostinil administration
had beneficial effects in all the examined aforementioned fea-
tures and at all time points, thus indicating multiple actions.
Lung function was preserved at most time points, with lung
mechanics of the prostacyclin analogue-treated group in early
inflammatory phase (days 7, 14) approaching control values.
Our results are supported by previous findings reporting the
effects of inhaled PGI2 on lowering airway resistance and
improving lung compliance in a PH model.27 Additionally,
another PGI2 analogue was recently shown to maintain lung
function in BLM-challenged mice28 and COX2-derived pros-
tacyclin managed to prevent BLM-induced pulmonary fibro-
sis using genetically modified mice.10 Overall, accumulative
data support that administration of prostanoids can be bene-
ficial to lung function, a phenomenon also supported by our
findings. Improvement of respiratory function is of great
importance as it may improve life quality.29

Inflammatory cell accumulation was present in our BLM
model, with the dominant cell types being macrophages,
lymphocytes and neutrophils. Treprostinil managed to
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Fig. 5. Orotracheal administration of treprostinil (TREP) attenuates collagen deposition in bleomycin (BLM)-challenged mouse lungs. (a–c)

Soluble collagen determination in lung extracts as measured by Sircol collagen kit 7, 14 and 21 days post BLM respectively. (g–i): Representative

Masson staining of lung sections from samples collected at the aforementioned time points (g: 7D, h: 14D, i: 21D). Fibrotic injury in lung sections

from all groups was given a score in order to be quantified and as shown in (d–f) the BLM/TREP group score was lower compared to BLM/VEH

group. Results are expressed as mean� SEM, n¼ 9–10 mice per group. One-way ANOVA followed by Newman–Keuls post hoc test was used for

comparison among groups. SAL: saline; VEH: vehicle; 7D: 7 days; 14D: 14 days; 21D: 21 days.
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prevent BLM-induced pleocytosis at all time points and to
attenuate increased total protein content in the alveolar
space. It has been recently shown that increased peripheral
monocytes are associated with poor outcome in patients
with fibrotic diseases.30 We cannot provide related informa-
tion and this is a limitation of our study. To further examine
the role of vascular endothelial barrier in the observed vas-
cular leak, we tested the expression of VE-cadherin, a com-
pound essential for the adequate endothelial barrier
function. In accordance with the BLM-induced down-
regulation of VE-cadherin expression in human umbilical
vein endothelial cells (HUVECs),31 in our model, VE-
cadherin was slightly, although significantly, reduced by
BLM at one time point with no effect of treprostinil.
Thus, the contribution of this molecule in the observed vas-
cular leak, and presumably the endothelial barrier disrup-
tion involved, appears minimal.

Prostaglandins have been shown to possess anti-
inflammatory actions in human and murine lungs, explained
possibly by an imbalance between PGI2 and TXA2.

7,10,32

Increased levels of TXA2 are also linked to neutrophil adhe-
sion and pulmonary vascular permeability,33 while
BLM-induced BALF cellularity and protein content was
previously attenuated by a prostacyclin agonist through
controlling TXA2 synthesis.

11 Over-expression of PGI2 syn-
thase attenuated inflammation in BLM-challenged mouse
lungs without, though, reducing plasma protein leakage.34

Overall, in vitro and in vivo studies have proven the barrier
protective actions of prostacyclin analogues in different
experimental models.35–37

BLM has already been shown to induce pulmonary vas-
cular remodeling.22 Accordingly, in our study, BLM
increased vascular muscularization, a phenomenon attenu-
ated by treprostinil. The latter implies that TREP might also
attenuate the PH observed in patients with pulmonary fibro-
sis, since pulmonary vascular remodeling has a central role
in the development of PH. In fact, the aforementioned posi-
tive results of TREP in this disease model, may suggest a
potential therapeutic effect in PH under chronic lung dis-
eases,4 i.e. in Group 3 PH patients,38 but this needs to be
investigated.

Induction of inflammatory cells in IPF promotes the pro-
duction of profibrotic agents, the differentiation of fibro-
blasts into myofibroblasts, and ultimately the large
production of ECM components. In our model, BLM instil-
lation led to a dramatic increase of soluble collagen in
murine lungs with a significant deformation of normal
lung structure and collagen deposition into lung paren-
chyma. These effects were all ameliorated by the stable pros-
tacyclin analogue used in this study. In support of our
results, prostanoids were previously implicated in fibrotic
processes. Prostaglandin D2 (PGD2) was recently reported
to protect mice from BLM-induced fibrosis,39 while several
other studies indicated PGE2 as a dominant prostaglandin
involved in fibrotic pathways.40–42 TXA2 also exerts fibrotic
properties, and for an antifibrotic phenotype to be induced
its expression must be suppressed.33

In support of our results, previous findings highlighted
the possible clinical utility of prostacyclin analogues in IPF
treatment. Prostacyclin analogs seemed to be beneficial
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Fig. 6. Effect of treprostinil (TREP) on the production of osteopontin and periostin. Concentration of osteopontin (a–c) and periostin (d–f) was
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against fibrotic procedures, as they were shown to inhibit
fibroblast migration,9 to reduce production of connective
tissue growth factor (CTGF) in fibroblasts from skin of
systemic sclerosis (SSc)-suffering patients,43 and to block
TGF-�-induced fibrosis in rats.44 Treprostinil in particular
blocked the recruitment of bone marrow circulating fibro-
cytes in a chronic hypoxic PH model.14 Finally and more

recently an inhaled treprostinil prodrug was shown to attenu-
ate collagen deposition in lungs of BLM-treated rats.45

As diagnosis and prognosis of IPF remain extremely
challenging,1 several molecules have been proposed as pos-
sible markers, underlying the need to monitor disease pres-
ence and/or progression. A potent biomarker of IPF is
osteopontin (OPN),46 a glycosylated phosphoprotein
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exerting proinflammatory and profibrotic properties. OPN
is highly upregulated in IPF lungs,47 in BALF of IPF
patients and in serum of interstitial lung disease (ILD)
patients when compared with controls.48 We observed
increased levels of OPN in mouse BALF due to BLM expos-
ure and our finding is consistent with previous studies on
experimental lung fibrosis.49 OPN is suggested to have a
profibrotic effect in disease development50 and to induce
fibroblast growth and migration.47 Treprostinil administra-
tion attenuated OPN increase in our experimental setting.
This is further supported by another study showing that
prostacyclin overexpression restores OPN levels in mouse
osteoblasts.51

Periostin, a matricellular protein participating in wound
healing and fibrosis52,53 was the second molecule examined.
Periostin is elevated in IPF lungs, with this increase mainly
observed at fibroblast foci. Serum periostin levels are
elevated in IPF patients and are correlated with disease pro-
gression.53,54 In accordance with the above, we observed an
increase of periostin in BALF of our BLM-challenged mice,
a phenomenon attenuated by treprostinil administration.
The former is supported by other studies demonstrating
that in BLM-challenged lungs, deposition of periostin
colocalized with fibrotic areas and that periostin genetic
ablation reduced collagen deposition.55 Moreover, periostin
production by fibrocytes was proven instrumental in indu-
cing myofibroblast differentiation.56

Focusing further on the molecular mechanisms underly-
ing beneficial effects of treprostinil, apart from affecting
osteopontin and periostin levels, we have also found affected
inflammatory signalling pathways. More specifically, the
BLM/TREP group showed reduced JNK and IkBa phos-
phorylation. This is in agreement with previous findings,
supporting inhibition of NF-kB by treprostinil in human
alveolar macrophages57 and in murine dendritic cells.58

Importantly, a study showing that intestinal inflammation
is mediated by periostin through NF-kB activation59 adds a
link between molecules and functions investigated in our
study. Another PGI2 analogue was also able to suppress
MAPK phosphorylation in human monocytes,60 and inhib-
ition of NF-kB activation in mouse lungs was previously
shown to be effective in preventing BLM-induced pulmon-
ary Ebrosis.61

Other published results revealed that PGI2 analogues
could also protect from pulmonary dysfunction by preser-
ving endothelial barrier integrity; these effects involved IkBa
degradation, as well as MAP kinase activity.31 Overall,
it appears that in BLM-induced fibrosis studied here,
apart from exerting anti-fibrotic effect, treprostinil also
interferes with key inflammatory processes.

Conclusion

Our experiments show that daily administration of trepros-
tinil via inhalation performed in the preventive treatment
manner attenuated BLM-induced lung injury and fibrosis

in mice. Respiratory function was preserved at a large
degree, and less affected histopathological areas were
observed. BLM-induced pulmonary vascular remodeling
was attenuated by treprostinil, implying potential thera-
peutic efficacy in PH related to pulmonary fibrosis and
other diseases related to Group 3 PH. Finally, inflammation
and fibrosis were decreased, thus suggesting new insights in
potential pharmacological treatments for severe and still
incurable pulmonary fibrosis.
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