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Abstract: The memory effect of lithium-ion batteries (LIBs) was first discovered in LiFePO4, but its
origin and dependence are still not clear, which is essential for regulating the memory effect. In
this paper, a home-made spray drying device was used to successfully synthesize LiFePO4 with
an average particle size of about 1 µm, and we studied the influence of spray drying temperature
on the memory effect of LiFePO4 in LIBs. The results showed that the increasing of spray drying
temperature made the memory effect of LiFePO4 strengthen from 1.3 mV to 2.9 mV, while the
capacity decreased by approximately 6%. The XRD refinement and FTIR spectra indicate that the
enhancement of memory effect can be attributed to the increment of Li–Fe dislocations. This work
reveals the dependence of memory effect of LiFePO4 on spray drying temperature, which will guide
us to optimize the preparation process of electrode materials and improve the management system
of LIBs.

Keywords: LiFePO4; spray drying method; memory effect; cathode materials

1. Introduction

Due to energy shortage and environmental pollution, lithium-ion batteries (LIBs) have
attracted enormous attention for their high energy density, long service life, and excellent
safety performance [1–4]. With the development of science and technology, LIBs exhibit a
lot of applications, which require superior performances [5–7]. As an important component
of LIBs, the cathode material directly affects the electrochemical performance of LIBs [8–11].
Olivine-type LiFePO4, which has a high theoretical specific capacity of 170 mAh/g, ex-
cellent thermal stability, environmental friendliness and low price, is considered to be a
promising cathode material for LIBs [12,13]. The research on LiFePO4 mainly focuses on
electronic conductive coating [14,15], ion doping [16,17], particle size optimization [18,19],
such as reducing the particle size of LiFePO4 to overcome weak ionic conductivity, using
carbon coating on active particles to improve electronic conductivity.

LiFePO4 is usually synthesized by high-temperature solid-phase method, liquid-
phase method, coprecipitation method, microwave heating and other methods [20–23].
High-temperature solid-state method is widely used and realizes industrial production
due to its simple process, easy control of preparation conditions. However, the prepared
electrode materials have the disadvantages of irregular particle shape, large grain size,
unstable electrochemical performance, etc. Wet chemical methods, such as sol–gel method,
hydrothermal method and coprecipitation method, can mix raw materials at molecular
level with low temperature [24,25]. The prepared cathode materials have good conductivity,
small particle size and uniform distribution, but high cost severely limits the output. The
spray drying method, a method for atomizing the precursor solution into fine mist droplets,
and then instantly drying them to solid particles in a high-temperature environment,
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has been widely used to prepare spherical micro powder in food, medicine, electronics,
materials and other fields [26]. This method can achieve continuous production, and the
prepared material particles have high purity and uniform and controllable size [27–31].

Eight years ago, Sasaki et al. [32] first discovered the memory effect of LiFePO4 in LIBs,
which was also found in other two-phase materials later [33,34]. The memory effect refers
to the fact that the battery memorizes the history of charge and discharge, and it can affect
the battery performance, such as reducing the specific capacity and the service time [35].
As a voltage bump or step during the charging and discharging plateau, the memory effect
can delay the two-phase transition, affect the estimation of the state of charge (SOC) and
reduce the energy efficiency of LIBs [36,37]. In recent years, the memory effect of LIBs has
been investigated from virous aspects, such as the relaxation time after phase transition and
sintering temperature [37], particle size [36], ion doping [34], memory writing process [38],
lithium excess [39], and oxygen vacancies [40].

In our previous work, the memory effect of LiFePO4 was obviously dependent on
the relaxation time after the phase transition, of which the voltage bump was actually a
delayed voltage overshooting [37], and it is also affected by the particle size of LiFePO4 [36].
Although the sintering temperature was proved to affect the memory effect of LiFePO4 [37],
there is no report about the influence of spray drying temperature on the memory effect. In
this work, a series of LiFePO4 samples were prepared by using home-made spray drying
equipment, characterized by TGA analysis, SEM images, XRD refinement and FTIR spectra,
in order to study the influence of spray drying temperature on the memory effect.

2. Materials and Methods
2.1. Preparation of LiFePO4 by Spray Drying Method

First, 0.036 mol LiH2PO4 (99.9%, Aladdin, Shanghai, China), 0.036 mol FeCl2÷4H2O
(99.9%, Aladdin, Shanghai, China), 0.00108 mol LiOH÷H2O (99.9%, Aladdin, Shanghai,
China), 15 mL hydrochloric acid (36–38%, Xilong Chemical, Guangzhou, China) and
0.85188 g sucrose (99.9%, Aladdin, Shanghai, China) were successively added into 50 mL
deionized water, diluted to 200 mL and the precursor solution was obtained after thorough
stirring. The precursor solution was atomized by the ultrasonic atomizer (402AI, Yuewell
Company, Suzhou, China) at a frequency of 1.7 MHz, and then brought into a tube furnace
(BTF-1100C-S, Anhui Bei Keke Equipment Technology Co., Ltd., Anhui, China) by 5%
H2/Ar at various temperatures (200 ◦C, 250 ◦C, 300 ◦C and 350 ◦C, respectively) after
the negative ion generator was turned on. Before this process, the air in the tube furnace
was replaced with 5 L/min of 5% H2/Ar for 15 min. After spray drying, the LiFePO4
precursor powder was ground for 1 h and placed into the tube furnace. Under the 5%
H2/Ar atmosphere, the furnace temperature was raised to 650 ◦C at a heating rate of
10 ◦C/min and kept for 8 h. The LiFePO4 samples were collected after naturally cooling to
room temperature.

2.2. Characterization of Materials

D2 PHASER with filtered Cu Kα radiation, produced by Bruker company of Germany,
was used to test the X-ray diffractometer (XRD, Bruker D8 advance, Bruker, Karlsruhe,
Germany). The high-quality XRD patterns were collected by step scanning with the
scanning range of 10◦ to 80◦ and a step width of 0.01◦ at room temperature. The Rietveld
refinement was carried out by the General Structure Analysis System (GSAS 1.00, Regents
of the University of California, CA, USA) with the EXPGUI interface [41]. The refinement
process is as follows: the background and scale factor parameters are firstly determined;
the scale factor is refined and 20 background coefficients are used for the Chebyshev
polynomial function; the following instrumental/structural parameters, zero-shift, lattice
parameters and profile parameters are refined. The thermal analysis was conducted on
Q600SDT (TA Instruments, New Castle, DE, USA) at a heating rate of 10 ◦C min−1 from
room temperature to 850 ◦C with an air flow of 20 mL/min. FTIR spectra were collected
on PerkinElmer FTIR Spectrometer (FTIR, Perkin-Elmer Frontier, Perkin-ElmER, Waltham,
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MA, USA) with a resolution of 1 cm−1. Then, the morphology of as-prepared LiFePO4
precursor powders were characterized by scanning electron microscope (SEM, Phenom
ProX, Phenom-World BV, Eindhoven, Netherlands).

2.3. Electrochemical Characterization

LiFePO4, acetylene black and binder PTFE were mixed with a mass ratio of 42.5:42.5:15
and rolled into a film. The film was cut into a disc with a diameter of 10 mm and pressed
evenly on an aluminum mesh, dried at 80 ◦C for 12 h in a vacuum drying oven, and the
cathode was prepared. The LiFePO4 film, lithium metal and Celgard 2400 microporous
polypropylene film are positive electrode, negative electrode and separator respectively,
and the electrolyte is 1 mol/L LiClO4/EC + DEC (volume ratio 1:1). The CR2025 button
cell was assembled in a glove box and tested after rest for 12 h. The galvanostatic current
charge/discharge test was carried out in the voltage range of 2.8 V to 4.0 V at 25 ◦C by the
Hokuto Denko battery test system (HJ1001SD8, Hokuto Denko Corporation, Gifu, Japan).

3. Results and Discussion

Figure 1 is a schematic diagram of a home-made spray drying device, which mainly
consists of an ultrasonic atomizer, a tubular furnace, a negative ion generator and an
air outlet pipe. Before starting the spray experiment, the airtightness of the device was
confirmed to be in good condition. The air in the device was evacuated by introducing
5 L/min of 5% H2/Ar gas for 15 min. The nebulizer and negative ion generator were
turned on at the same time, the precursor solution was atomized into fog droplets with an
average particle diameter of 3.9 microns. The fog droplets were be carried into the inclined
tubular furnace by 0.5 L/min of 5% H2/Ar gas. The fog droplets were quickly dried in
contact with the high-temperature gas in the tube furnace to form solid particles. The
gas in the tube furnace was partially ionized by the generator to generate negative ions,
in which the solid particles tend to adsorb and deposit on the negative ion generator and
the inner surface of the tube furnace. Then the gas was vented from the exhaust pipe. In
this work, we adjusted the temperature in the tube furnace (200 ◦C, 250 ◦C, 300 ◦C, 350 ◦C)
to study the influence of spray drying temperature on the memory effect of as-synthesized
LiFePO4 samples.
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Figure 1. Schematic diagram of home-made spray drying device. 

Figure 2 presents SEM photos of as-synthesized LiFePO4 precursor powder prepared 
at spray drying temperature of 200 °C, 250 °C, 300 °C and 350 °C, respectively. SEM im-
ages show that the LiFePO4 precursor particles are mainly spherical. Figure 3 shows the 
particle size analysis results of four temperatures, in which the particle size is mainly be-
tween 0.4 μm and 1.2 μm, accounting for more than 85%. The LiFePO4 precursor of 300 
°C and 350 °C have a small number of particles with a diameter of more than 1.8 μm, while 
such particles are virtually absent for 200 °C and 250 °C. In addition, the average particle 
size for 200 °C, 250 °C and 300 °C is very close at 0.79 μm, 0.77 μm and 0.78 μm, respec-
tively, while the average particle size for 350 °C is slightly larger as 0.88 μm. The precursor 
particle size in this work is concentrated below 1 micron, while the precursor particle size 
prepared by Yu F et al. is far greater than 1 micron [37,42]. In fact, the ultrasonic atomiza-
tion method that we used can produce a smaller particle size, resulting in better electro-
chemical performance [43,44]. 

Figure 1. Schematic diagram of home-made spray drying device.
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Figure 2 presents SEM photos of as-synthesized LiFePO4 precursor powder prepared
at spray drying temperature of 200 ◦C, 250 ◦C, 300 ◦C and 350 ◦C, respectively. SEM images
show that the LiFePO4 precursor particles are mainly spherical. Figure 3 shows the particle
size analysis results of four temperatures, in which the particle size is mainly between
0.4 µm and 1.2 µm, accounting for more than 85%. The LiFePO4 precursor of 300 ◦C and
350 ◦C have a small number of particles with a diameter of more than 1.8 µm, while such
particles are virtually absent for 200 ◦C and 250 ◦C. In addition, the average particle size
for 200 ◦C, 250 ◦C and 300 ◦C is very close at 0.79 µm, 0.77 µm and 0.78 µm, respectively,
while the average particle size for 350 ◦C is slightly larger as 0.88 µm. The precursor
particle size in this work is concentrated below 1 micron, while the precursor particle
size prepared by Yu F et al. is far greater than 1 micron [37,42]. In fact, the ultrasonic
atomization method that we used can produce a smaller particle size, resulting in better
electrochemical performance [43,44].
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Figure 3. Particle size distribution of as-synthesized LiFePO4 precursor powder at spray drying 
temperature of (a) 200 °C, (b) 250 °C, (c) 300 °C and (d) 350 °C. 

As shown in Figure 4, the thermogravimetric analysis (TGA) was carried out for 
LiFePO4 samples prepared at different spray drying temperatures. All samples exhibit 
very similar TGA curves, where the samples were heated from room temperature to 850 
°C at a rate of 10 °C/min with an air flow of 70 mL/min. The weight loss below 310 °C can 
be attributed to the crystal water, which is about 0.36%. When the temperature rises to 310 
°C, the LiFePO4 samples began to be oxidized to Li3Fe2(PO4)3 and Fe2O3, thus the weight 
increases by 5.07%, theoretically, based on the following reaction formula [45,46]: 𝐿𝑖𝐹𝑒𝑃𝑂 + 14𝑂 = 13 𝐿𝑖 𝐹𝑒 𝑃𝑂 + 16𝐹𝑒 𝑂  (1)

Figure 3. Particle size distribution of as-synthesized LiFePO4 precursor powder at spray drying temperature of (a) 200 ◦C,
(b) 250 ◦C, (c) 300 ◦C and (d) 350 ◦C.

As shown in Figure 4, the thermogravimetric analysis (TGA) was carried out for
LiFePO4 samples prepared at different spray drying temperatures. All samples exhibit
very similar TGA curves, where the samples were heated from room temperature to 850 ◦C
at a rate of 10 ◦C/min with an air flow of 70 mL/min. The weight loss below 310 ◦C can
be attributed to the crystal water, which is about 0.36%. When the temperature rises to
310 ◦C, the LiFePO4 samples began to be oxidized to Li3Fe2(PO4)3 and Fe2O3, thus the
weight increases by 5.07%, theoretically, based on the following reaction formula [45,46]:

LiFePO4 +
1
4

O2 =
1
3

Li3Fe2(PO4)3 +
1
6

Fe2O3 (1)

At about 580 ◦C, the carbon in the samples is oxidized into CO2 with a weight loss.
Therefore, the total weight has increased by 1.8%, and the carbon content in the sample
should be 2.91%. The carbon comes from sucrose in the precursor solution, which is used
to improve the conductivity of LiFePO4. As we expected, the TGA result indicates that the
LiFePO4 sample has standard thermal stability in air.

As shown in Figure 5, the XRD patterns of all LiFePO4 samples are consistent with
that of olivine LiFePO4 (PDF card number: 81-1173), indicating no impurity phase. All
XRD data were analyzed by Rietveld refinement with General Structure Analysis System
(GSAS) software [41], which is an important method to understand the crystal structure, cell
parameters and other information of crystal materials. Figure 6a–d shows the refinement
results calculated from Pnma phase group of LiFePO4 collected at 200 ◦C, 250 ◦C, 300 ◦C
and 350 ◦C during the spray drying process. The black line, red circle and blue line
correspond to the observed pattern, the calculated diffraction pattern and the difference
pattern, respectively. There are no sharp peaks at the Bragg position of the blue difference
curve, indicating a very successful fit. In addition, the Rietveld refinement results provide
excellent fits based on the Rwp, Rp and χ2 fitting factors, and they are concentrated in very
small ranges of 1.3% to 1.5%, 1.1% to 1.2% and 1.1 to 1.3, respectively.
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LiFePO4 samples [52]. The peak at 463 cm−1 is due to the bending harmonics of O–P–O and 
O=P–O groups. The peaks located at 547 and 638 cm−1 are assigned to the stretching vibra-
tions of the P–O–P group and the peak at 966 cm−1 corresponds to P–O–P bending modes. 
The band observed at 1043 cm−1 corresponds to vibration of (PO4)3- link metal ions [53,54]. 
As the spray drying temperature increases, the blue shift of the peak at 966 cm−1 is corre-
lated to the Li–Fe antisite defects [55,56], thus suggesting that the increase in spray drying 
temperature will increase dislocations of LiFePO4. This is consistent with the result of the 
XRD refinement. 

Figure 6. XRD spectra of LiFePO4 samples prepared at spray drying temperature of (a) 200 ◦C, (b) 250 ◦C, (c) 300 ◦C and (d)
350 ◦C, as well as Rietveld refinement of Pnma. The black line, the red circle and the blue line correspond to the observed
pattern, the calculated diffraction pattern and the difference pattern.

The cell volume of LiFePO4 samples of 200 ◦C, 250 ◦C, 300 ◦C and 350 ◦C is 293.434 Å3,
293.641 Å3, 293.7 Å3 and 293.937 Å3, respectively. By increasing the spray drying tempera-
ture, the unit cell volume of LiFePO4 increases gradually, which is caused by the disorder
of crystal structure. When Fe2+ ions in M2 position move to M1 position to replace Li
ions, this Li–Fe dislocation will destroy the most stable structure of LiFePO4, resulting in
distorted structure with larger cell volume. In fact, the Li–Fe dislocations are the most
favorable defect in LiFePO4 and have the lowest formation energy [47], in which the Fe2+

ions will expand the unit cell along a and c, due to having a larger size than Li+ ions [48,49].
However, they barely affect the unit cell along b, for there is more channel space to accom-
modate the Fe2+ ions. Consequently, the disordered Fe2+ ions will block Li+ ions in the
(101) channels that are for Li+ ions deintercalation in LiFePO4 [50,51]. Therefore, the Li–Fe
dislocations should be dependent on the spray drying temperature.

In Figure 7, the peaks of FTIR spectra locate at 469, 549, 640, 966, and 1055 cm−1 for
LiFePO4 samples [52]. The peak at 463 cm−1 is due to the bending harmonics of O–P–O
and O=P–O groups. The peaks located at 547 and 638 cm−1 are assigned to the stretching
vibrations of the P–O–P group and the peak at 966 cm−1 corresponds to P–O–P bending
modes. The band observed at 1043 cm−1 corresponds to vibration of (PO4)3− link metal
ions [53,54]. As the spray drying temperature increases, the blue shift of the peak at
966 cm−1 is correlated to the Li–Fe antisite defects [55,56], thus suggesting that the increase
in spray drying temperature will increase dislocations of LiFePO4. This is consistent with
the result of the XRD refinement.
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As shown in Figure 8a,c,e,g, LiFePO4 samples prepared at spray drying temperatures
of 200 ◦C, 250 ◦C, 300 ◦C and 350 ◦C have specific capacity of 161.15 mAh/g, 157.4 mAh/g,
155 mAh/g and 151 mAh/g, which decreases as the spray drying temperature increases
from 200 ◦C to 350 ◦C. Their memory effect is enhanced after increasing the spray drying
temperature, as the ∆U, the potential gap between memory-releasing cycle and memory-
writing cycle, is 1.3 mV, 1.7 mV, 2.5 mV and 2.9 mV for 200 ◦C, 250 ◦C, 300 ◦C and 350 ◦C,
respectively. Combining the results of FTIR and XRD refinement, the reason that the
memory effect of LiFePO4 increases with the spray drying temperature can be attributed
to the increment of Li–Fe dislocations. In olivine LiFePO4, Li–Fe dislocations can block
the [010] channel of Li-ion migration [57,58], which was proved by advanced electron
microscopy, neutron diffraction (or X-ray diffraction) and theoretical calculations [39,51,59],
so the lower specific capacity of LiFePO4 may be due to the increased Li–Fe dislocations,
consistent with previously reports [25,60].

Except for the spray drying temperature, the memory effect of LiFePO4 has been studied
by controlling the relaxation time, the voltage overshooting, the sintering temperature, the
particle size, the lithium excess, etc., in previous investigations. As to the relaxation time [37],
the memory effect is significantly dependent on the relaxation time after phase transition, and a
rest of 20 h was added into the memory writing process to enhance the memory effect, while
we also observed the evident memory effect without a rest in the memory-writing cycle for this
work. As to the voltage overshooting [37], the voltage bump of memory effect is considered
as a delayed voltage overshooting, which is overlaid at the edge of stepped (dis)charging
plateau, while the voltage bump is small compared with the voltage step owing to the
low sintering temperature of 650 ◦C in this work. As to the sintering temperature [37],
the memory effect is noticeable for the high temperature of 800 ◦C, especially for the voltage
bump at the step edge, while the increasing of spray drying temperature strengthened the
memory effect of LiFePO4 in this work, so the high temperature in the synthesis process
can lead to the strong memory effect. As to the particle size [36], the memory effect of micro
LiFePO4 is stronger than that of nano LiFePO4, which can be attributed to the fact that the phase
transition of micro particles is slower than that of nano particles, while the different spray drying
temperature can also affect the particle size in this work, and the LiFePO4 sample prepared at a
high spray drying temperature of 350 ◦C exhibits an evident memory effect, consistent with the
previous work. As to the lithium excess [39], Kyu et al. studied the effect of excessive Li on the
memory effect of LiFePO4, and the results showed that in the case of excessive Li, the memory
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effect of LiFePO4 was significantly reduced, due to the presence of LiFe and the absence of FeLi
in lithium-excess olivine LiFePO4; similarly, the spray drying temperature affects the memory
effect of LiFePO4 through changing the Li–Fe anti-site defects in this work.
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Figure 8. Determination of the memory effect during charging for LiFePO4. For memory effect
during charging, the memory-writing cycle was a half-charge from 2.8 V and a discharge to 2.8 V
(black); the memory-releasing cycle (red) and normal cycle (green) were a full charge–discharge
from 2.8 V to 4.0 V. The memory effect is shown for LiFePO4 samples prepared at spray drying
temperatures of (a,b) 200 ◦C, (c,d) 250 ◦C, (e,f) 300 ◦C and (g,h) 350 ◦C during charging, as well as
(b,d,f,h) enlarged view of (a,c,e,g), respectively. Here, the current rate was 0.1C.
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4. Conclusions

In this work, we set up a convenient home-made spray drying piece of equipment,
prepared a series of LiFePO4 with different spray drying temperatures, and studied their
electrochemical performance in lithium-ion batteries. As the spray drying temperature
varies from 200 ◦C to 350 ◦C, the memory effect of LiFePO4 was enhanced from 1.3 mV
to 2.9 mV, and the specific capacity was reduced from 161 mAh/g to 151 mAh/g. XRD
refinement and FTIR analysis show that the Li–Fe dislocations increase with the spray
drying temperature in LiFePO4 samples. The defect of Li–Fe anti-site blocked some [010]
channels of LiFePO4 structure to retard the Li-ion migration, resulting in the memory effect.
Our results show that the spray drying temperature has a significant impact on the memory
effect and specific capacity of electrode materials, which can be adopted to improve and
optimize electrode materials.
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