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Hepatitis, a major human chronic inflammation disease, has been
linked to oxidative stress, which can be initiated by radicals
produced during the oxidative metabolism. Oxidative damage has
been also observed in arthritis-induced mice. Here we evaluated
whether supplementation of a cell preparation of Enterococcus
faecalis EC-12 could induce superoxide dismutase activity and/or
damage in the livers of healthy mice or mice with arthritis.
In Experiment 1, both healthy and arthritis-induced mice were
orally given a saline solution, or a solution with a low (0.2
mg/mouse/day) or a high (2.0 mg/mouse/day) concentration of
E. faecalis EC-12 for 49 consecutive days. Manganese superoxide
dismutase activity increased in E. faecalis EC-12-supplemented
mice but with no arthritis. In Experiment 2, mice received orally
either a saline or an E. faecalis EC-12 suspension (10 mg/kg of
body weight/day) for 28 consecutive days. No changes in tissues
and levels of function markers and 8-hydroxy-2'-deoxyguanosine
were observed in mouse livers, inferring that E. faecalis EC-12
supplementation caused no damage. While mRNA expression of
copper/zinc superoxide dismutase remained unaltered, that of
manganese superoxide dismutase increased in E. faecalis EC-12
administration mice. In conclusion, at least in healthy mice,
E. faecalis EC-12 supplementation stimulated manganese superoxide
dismutase activity in liver tissues with no side effects.
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T he development of hepatitis, one of the major chronic
inflammation diseases in humans, has been linked to oxida‐

tive stress,(1) which is initiated by radicals produced during the
oxidative metabolism.(2) Indeed, while the oxidative metabolism
occurs in all living organisms and is a crucial process for the
survival of cells, it also produces nitrogen-based (e.g., nitric
oxide radicals and peroxynitrite) and oxygen-based (e.g.,
hydroxyl radicals and superoxide) radicals.(3,4) In the liver, which
plays an important role in converting and excreting toxic
substances(5) and regulating metabolic homeostasis,(6) free
radicals likely cause damage to the cellular membrane of hepato‐
cytes,(5) peroxidation of lipids and breakage of DNA strands.(7)

Dysfunction of the liver caused by its damaged cells(8) and hence
its inability to dispose of toxic compounds(5) then leads to occur‐
rence of sustained inflammation,(9) oxidative stress(10) and in the
end, diseases such as acute liver injury,(6) hepatic encephalopathy,
and non-alcoholic fatty liver.(5)

Rheumatoid arthritis (RA) is a systemic and chronic auto‐

immune disease that leads to joint inflammation and progressive
cartilage and bone erosion.(11,12) Collagen-induced arthritis (CIA)
is a T-cell dependent, induced to experimental animals suffering
from RA. CIA-induced animals develop experimental arthritis
with systemic inflammation after immunization with heterolo‐
gous type II collagen.(13) This chronic inflammation is usually
associated with the development of oxidative stress,(1,7) which
was shown to cause systemic oxidative damage, particularly in
liver and spleen CIA-induced mice.(14)

Probiotics is a general term to describe those, by definition,(15)

live bacterial strains that have been proven to confer health bene‐
fits to the host upon consumption of an adequate amount(16) for a
certain period of time. Nonetheless, at these premises we have
demonstrated that supplementing certain lactic acid bacteria,
regardless of their viability, to experimental models, induced a
number of systemic responses. Those systemic responses ulti‐
mately resulted in improving the health of the experimental
models(17–20) and ameliorating experimentally-induced disor‐
ders.(21,22) Elsewhere, probiotic-supplemented rats also showed a
low formation of lipid peroxides and a high anti-oxidant
activity.(23) Separately, in a work in which Bacillus spp. was
supplemented to rats, while it was observed a high activity of
anti-oxidant enzymes catalase and superoxide dismutase (SOD)
in liver tissues of the animals, none of them showed a deleterious
effect of Bacillus spp. supplementation, neither due to a high
dosage nor the length of the supplementation period.(24) Those
results suggested that probiotics could be used as natural anti-
oxidant supplements.(25)

In the present study, we aimed to assess whether supplementa‐
tion of a cell preparation of Enterococcus faecalis strain EC-12
(CPEF) could stimulate the activity of copper/zinc (Cu/Zn-SOD)
and manganese (Mn-SOD) superoxide dismutases even if the
bacterial strain was heat-killed. Due to SOD stimulation was
needed to be characterized in mice suffering from a chronic
inflammation condition and compare it with that of control mice,
to increase the stimulation of hepatic SOD, in the present work
we included not only healthy but also CIA-induced mice. As we
theorized that a high SOD activity could well occur, we also
aimed to assess if CPEF supplementation could cause inflamma‐
tion and/or oxidative stress in the livers of mice. Therefore, we
used 8-hydroxy-2'-deoxyguanosine (8-OH-dG) as the index of
oxidative stress,(26) and enzymes aspartate (AST) and alanine
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(ALT) aminotransferases as markers to detect liver dysfunction
and damage.(5) To achieve the experimental objectives, two
experiments were designed. In Experiment 1, we evaluated the
possible hepatic SOD activity induced by CPEF supplementation
in healthy and CIA-induced mice. To evaluate the stimulation of
hepatic SOD activity, DBA/1J mice were used. In Experiment 2,
we wanted to assess that no deleterious hepatic damage was
caused by CPEF supplementation. and hence, healthy BALB/
cCrSlc mice were used instead. To evaluate the hepatic stimula‐
tion of Cu/Zn-SOD and Mn-SOD after CPEF supplementation
for 28 consecutive days, we also measured the mRNA levels
in mice.

Materials and Methods

Bacteria preparation. The method for the cell preparation
of CPEF was the same as that previously carried out at these
premises.(27)

Experiment 1. Experiment 1 was approved in accordance
with the guidelines for animal studies of Kitasato University
(Approval number SA0524). Ninety-two 8-week-old, male DBA/
1JJcl mice, an arthritis model, were purchased from CLEA Japan
(Tokyo, Japan) and introduced to a room at Kitasato University
(Kanagawa, Japan). Mice were kept in an air-conditioned
room (temperature, 24 ± 2°C; humidity 50 ± 5%) in a 12-h light
(08:00 am–20:00)-dark cycle. All mice received an MF chow
diet (Oriental Yeast Co. Ltd., Tokyo, Japan) and water ad libitum.
After 7-day acclimatization, mice with comparable body weight
were first divided into 2 groups: non-arthritic and arthritic
mice. These groups were further divided into 3 subgroups each:
groups given a saline solution (non-arthritic control, group nC;
n = 10), a low (non-arthritic-CPEF 0.2 mg/mouse/day, group nL;
n = 10) or a high concentration of CPEF (non-arthritic-CPEF 2.0
mg/mouse/day, group nH; n = 10). The other 3 subgroups were
given the saline solution (arthritic-control, group iC; n = 23), a
low (arthritic-CPEF 0.2 mg/mouse/day, group iL; n = 19) or a
high concentration of CPEF (arthritic-CPEF 2.0 mg/mouse/day,
group iH; n = 20). All mouse groups were housed in plastic cages
throughout the study.
CPEF was suspended in sterile saline and given orally to mice

with a commercial, disposable feeding needle (Fuchigami,
Kyoto, Japan), every day at 10:00 am for 49 consecutive days
(day 0–48).
CIA-induced mice (iC, iL, and iH) were subcutaneously

injected 0.1 ml of a suspension of type II collagen (originated
from chick sternal cartilage; Sigma Aldrich Japan, Tokyo, Japan)
at the base of the tail on days 0 and 21. The collagen suspension
was prepared as follows. Type II collagen was dissolved in 10
mmol/L of acetate (2 mg/ml), and then emulsified (1:1) with
Freund’s complete adjuvant. Freund’s complete adjuvant was
prepared by adding heat-killed Mycobacterium tuberculosis
strain H37Ra into Freund’s incomplete adjuvant (Becton,
Dickinson and Co., Sparks, MD) at a concentration of 5 mg/ml.
All mice injected with the collagen suspension positively
developed CIA from day 24. Clinical observation of arthritis in
each foot was checked thrice per week from days 24 to 49.
At the end of the experiment (day 49), all mice underwent

anesthesia with isoflurane via inhalation (MSD, Tokyo, Japan)
and dissected while being under deep anesthesia. After
exsanguination, the entire livers of mice were immediately
removed and quickly stored at −80°C until analysis. SOD activity
was measured in the entire livers of mice with a commercial
assay kit (SOD Assay Kit – WST; Dojindo Laboratories,
Kumamoto, Japan). The concentration of protein in the liver
was also measured with a commercial kit (Proteostain Protein
Quantification Kit Rapid; Dojindo Laboratories). The assays
were conducted as per the manufacturer’s instructions. Cu/Zn-
SOD activity was calculated as: Cu/Zn-SOD activity = total

SOD activity − Mn-SOD activity.
Experiment 2. Experiment 2 was approved in accordance

with the guidelines for animal studies of the Kyoto Institute of
Nutrition & Pathology (Kyoto, Japan; Approval number
07047CM). Fifteen 8-week-old, male BALB/cCrSlc mice were
purchased from SLC Japan (Shizuoka, Japan). Mice were kept in
an air-conditioned room (temperature, 24 ± 2°C; humidity 45 ±
10%) in a 12-h light (08:00 am–20:00)-dark cycle at the Kyoto
Institute of Nutrition & Pathology. All mice received an MF
chow diet (Oriental Yeast Co. Ltd., Tokyo, Japan) and water ad
libitum. After 7-day acclimatization to the experimental settings,
mice with comparable body weight were divided into 2 groups
and given either a saline solution (control, group C; n = 7) or
CPEF (10 mg/kg of body weight; group T; n = 8). The amount of
supplementation for group T was approximately the same as that
for groups nL and iL in Experiment 1. Mouse groups were
housed in plastic cages throughout the study.
CPEF was suspended in sterile saline and given orally to mice

with a commercial, disposable feeding needle (Fuchigami), every
day at 10:00 am for 28 consecutive days (day 0–27).
At the end of the experiment (day 28), all mice were admin‐

istered an intraperitoneal injection of sodium pentobarbital
(Somnopentyl; Kyoritsu, Tokyo, Japan) and dissected under deep
anesthesia. Before exsanguination, blood was collected from the
abdominal vein. After exsanguination, the right medial lobes of
the livers of mice were removed, immediately soaked into RNA-
later solution (Sigma-Aldrich Japan, Tokyo, Japan), and main‐
tained overnight at 4°C, as per the manufacturer’s instructions.
Liver samples were then stored at −80°C until further analysis.
Separately, the left lateral lobes of the livers were fixed using a
10% neutralized formalin solution. The remaining of the livers
was stored at −80°C until further analysis.
The levels of AST and ALT in the serum of mice were

measured by Japan Clinical Laboratory (Kyoto, Japan) using a
consensual method.(28) The concentration of cellular oxidative
stress marker 8-hydroxy-2'-deoxyguanosine per 106 DNA bases
(8-OH-dG/106 dG) was measured by the OHG Institute Co., Ltd.
(Fukuoka, Japan). The analysis procedure was the same as
that previously described.(26) Fixed liver tissues were embedded
into paraffin wax and cut into 3-μm-thick cross-sections.
Cross-sections were then prepared and stained with hematoxylin
and eosin. A veterinarian at Kyoto Institute of Nutrition &
Pathology with histopathology expertise screened the samples
for histopathological abnormalities using a light microscopy
(BX-51; Olympus, Tokyo, Japan) in a blind manner. The methods
used for total RNA extraction, cDNA synthesis, and real-time
polymerase chain reaction (PCR) have been described else‐
where.(29) Primers and TaqMan probes used in the present study
are listed in Table 1.

Statistical analysis. First, we conducted a complete
randomized design 2-way ANOVA (factors: arthritis and CPEF
supplementation) to analyze the differences between the means
of the experimental parameters in Experiment 1. Second, for all
parameters for which an interaction effect (p<0.05) was detected,
a complete randomized design 1-way ANOVA of all 6 groups
(groups nC, nL, nH, iC, iL, and iH) was applied. When a param‐
eter in a given experimental group was different, the Tukey–
Kramer post-hoc was used instead to compare it with those in
other groups and detect statistical significances.

Depending on the results of the F-test, the Student’s t test was
or was not used to analyze the differences between the means of
samples in Experiment 2.

Data are shown as the means ± SE. In all statistical analyses,
the differences between the means were considered significant at
p<0.05. All data were analyzed with Statcel3 (OMS, Saitama,
Japan), an add-in application for Microsoft Excel (Microsoft,
Seattle, WA).
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Results

Experiment 1. Typical arthritis was observed in iC, iL, and
iH groups during this experiment. CIA was gradually severe
from days 24 to 35, whereas CIA was still observed at days 49.
On the other hands, remarkable difference of clinical observa‐
tions was not observed among the groups (data not shown).

Hepatic SOD activity (Cu/Zn-, Mn-, and total-SOD) was either
highly (p<0.01) detected in non-arthritic mice but not in CIA-
induced mice (factor arthritis; Fig. 1). Indeed, when the activity
of Cu/Zn-SOD was assessed, while no significant differences
were detected between group nC and group nH, the activity of
this enzyme in group nL tended to decrease, although this
decrease was not statistical significant (Fig. 1A). Moreover,
Mn-SOD activity was detected to be higher in groups nL and nH
(non-arthritis CPEF supplementation mice) than in the other
mouse groups (Fig. 1B). However, no statistical significance
was detected between iC, iL, and iH groups. Total SOD activity
increased in a dose-dependent manner by CPEF in CIA-induced
mice, but no statistical significance was detected between iC, iL,
and iH groups. (Fig. 1C).

Experiment 2. Commonly recognizable histopathological
abnormalities such as hepatocyte necrosis, granulocyte infiltra‐
tion, lymphocyte infiltration, macrophage exudation and capsule
hyperplasia were undetected in the livers of mice (data not
shown). With respect to the gene expression of SODs in the liver,
Mn-SOD was higher (p<0.05) in CPEF-supplemented than in
unsupplemented mice. By contrast, no significant differences in
Cu/Zn-SOD were detected between mouse groups (Fig. 2A).
This mRNA expression was very similar with that of SOD
activity in Experiment 1, therefore we concluded that CPEF also
stimulated SOD activity in the liver of BALB/c mice in Experi‐
ment 2. Apart from that, no significant differences in serum
levels of AST and ALT were found between unsupplemented or
CPEF-supplemented mice (Fig. 2B). Similarly, no significant
differences were found in the concentrations of 8-OH-dG/106 dG
in the livers of unsupplemented and CPEF-supplemented mice
(Fig. 2C).

Discussion

A surge in SOD activity in vivo is usually an indication of high
anti-oxidant activity.(30,31) In this context, we observed that in
Experiment 1, no significant differences in the Cu/Zn-SOD
activity between untreated and CPEF-treated mice were detected
regardless of whether mice was suffering from CIA or not
(Fig. 1A). In contrast, using Mn-SOD as the marker, it was
detected that SOD activity was higher (p<0.05) in the liver
tissues of CPEF-treated mice than in untreated mice in non-
arthritic mice (Fig. 1B). While Cu/Zn-SOD can be found mainly
in the eukaryotic cytoplasm,(32,33) Mn-SOD usually exists in the

mitochondrion, which is especially vulnerable to oxidation due to
over 90% of the cell’s oxygen is spent within this organelle.(34)

However, Mn-SOD is also produced in many Gram-positive
bacteria as a protective mechanism against bactericidal action,(35)

such as exogenous stress.(31,36) Since E. faecalis is also a Gram-
positive bacterium, the present data seem to confirm that the
increased gene expression of Mn-SOD observed in the livers of
mice was induced by supplementation of CPEF, but not by a
bacterial activity of E. faecalis, because CPEF cells were
heat-killed.(27) Ayyanna et al.(23) reported that SOD activity was
associated with anti-inflammatory cytokines such as IL-10, the
production of which was stimulated by ingestion of probiotics.
As CPEF supplementation has been previously shown to stimu‐
late production of IL-10 in human peripheral blood mononuclear
cells,(37) it is likely that in the present work, supplementation of
CPEF also activated SOD, which resulted in increased IL-10
production.

Qian et al.(38) and Suo et al.(39) reported that L. plantarum
CQPC11 and L. fermentum Suo upregulated both Cu/Zn-SOD
and Mn-SOD in liver tissues of mice undergoing d-galactose-
induced oxidation and in a mouse model of gastric injury, respec‐
tively. However, in Experiment 1 of the present study, while
the total SOD activity (Cu/Zn-SOD + Mn-SOD) was equally
higher in the treatment groups when compared with control mice
(Fig. 1C), when looking at the individual SOD activity, the
Mn-SOD activity was higher in the livers of mice receiving
both low and high concentrations of CPEF in healthy condition
(Fig. 1B). However, with respect to Cu/Zn-SOD, not only did it
not increase in the livers of mice, but it actually decreased in
those receiving a low concentration of CPEF (Fig. 1A). Only a
handful of animal studies have showed SOD data as separate
compounds (Cu/Zn-SOD and Mn-SOD); the majority has
reported it as the total SOD.(31–33,39,40) Therefore, of interest here,
it is the discrepancy between our data and those from studies
reporting separate measurements of both Cu/Zn-SOD and
Mn-SOD expression. A possible interpretation of our results
would lie in the fact that in the end, CPEF administration did not
cause evident hepatic dysfunction and damages on mice post-
ingestion, which would also explain the lack of significant differ‐
ences in the levels of AST, ALT, and 8-OH-dG/106 dG (Figs. 2B
and C) between untreated or CPEF-treated mice. The fact that no
physical abnormalities were observed in fixed liver tissues of
mice in Experiment 2, further supports our assumption. Taking
into consideration all this evidence, the decrease of Cu/Zn-SOD
in livers of mice receiving a low concentration of CPEF would
explain itself, as even a high concentration of CPEF would not
induce an increase in the expression of Cu/Zn-SOD. Moreover, it
is likely that the high activation of Mn-SOD observed in treat‐
ments groups was similar to that observed in Experiment 1, that
is to say, resulting from metabolic processes in hepatic mitochon‐
dria, due to CPEF administration. It can be then inferred that

Table 1. Primers and probes used in the present study

Gene name Primers 5'-3' GenBank accession number

Copper/zinc superoxide dismutase (Cu/Zn-SOD) (sod1) F ctctcaggagagcattccatcat NM_011434.1

R cagggaatgtttactgcgca

P ccgtacaatggtggtccatgagaaacaa

Manganese superoxide dismutase (Mn-SOD) (sod2) F gaacttcagtgcaggctgaaga NM_013671.3

R aacgccaccgaggagaagt

P tgtaacatctcccttggccagagcctc

Glyceraldehyde 3-phosphate dehydrogenase (gapdh) F ggtgtcttcaccaccatgga NM_008084.2

R cagaaggggcggagatgat

P aaggccggggcccacttgaa

Primers and probes were designed and synthesized by Bioreseach Technologies Japan (Tokyo, Japan).
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consecutive CPEF supplementation of 0.2 mg/mouse/day was
enough to stimulate the SOD activity in the liver of mouse at
least in healthy condition, because total SOD activity levels were
almost the same in groups nL and nH in Experiment 1. It is worth
noting that modulation of the intestinal microbiota is closely
associated with anti-oxidant activity.(37) Since not only live but
also non-viable lactic acid bacteria have been shown to modulate
the intestinal microbiota,(18) we theorize that CPEF could also
potentially be a microbiota modulator in the gut,(41) which in turn
may be associated with SOD activity in the liver. We suggest that
this scenario be further investigated in the future.
Artificially-induced arthritis typically caused a reduction of

SOD activity in the livers of mice (Fig. 1). This result was
similar to those reported in other murine arthritis models.(14,42)

Although previous studies reported that anti-oxidant administra‐

tion suppressed the oxidative stress in CIA-induced mice,(43) in
the present study, SOD production in the livers of CIA-induced
mice was not stimulated by CPEF supplementation (Fig. 1). In
contrast, CPEF supplementation either greatly induced the
production of Mn-SOD or total SOD in the livers of non-arthritic
mice. Since previous work suggested that SOD reduction was
more often detected in the spleen than in the liver,(14,42) it could be
theorize that by using spleen samples, we could have detected
changes in SOD activity. Nonetheless, as the use of spleen
samples was beyond the scope of the present work, it is strongly
suggested that spleen samples be screened for SOD activity in
future research.

In conclusion, in the present study we showed that, at least in
healthy mice, heat-killed CPEF stimulated the total SOD activity
in liver tissues. Oxidative stress caused by CIA significantly
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Fig. 1. Superoxide dismutase activity in the livers of healthy or arthritis-induced mice and untreated or treated with Enterococcus faecalis strain
EC-12 in Experiment 1. (A) copper/zinc superoxide dismutase (Cu/Zn-SOD) activity. (B) manganese superoxide dismutase (Mn-SOD) activity. (C) total
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reduced SOD activity, but CPEF supplementation had only a
limited effect on SOD production. Finally, no deleterious effect
of CPEF supplementation on mice was observed, as confirmed
by the visual inspection of the liver tissues of mice and the
measurement of circulating AST, ALT, and 8-OH-dG/106 dG
levels.
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