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Abstract
The polarization and motility of eukaryotic cells depends on assembly and contraction
of the actin cytoskeleton and its regulation by proteins called GTPases. The activity
of GTPases causes assembly of filamentous actin (by GTPases Cdc42, Rac), resulting
in protrusion of the cell edge. Mathematical models for GTPase dynamics address
the spontaneous formation of patterns and nonuniform spatial distributions of such
proteins in the cell. Here we revisit the wave-pinning model for GTPase-induced cell
polarization, together with a number of extensions proposed in the literature. These
include introduction of sources and sinks of active and inactive GTPase (by the group
of A. Champneys), and negative feedback from F-actin to GTPase activity. We discuss
these extensions singly and in combination, in 1D, and 2D static domains. We then
showhow the patterns that form (spots,waves, and spirals) interactwith cell boundaries
to create a variety of interesting and dynamic cell shapes and motion.
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1 Introduction

The dynamics of the actin cytoskeleton determines internal cell structure, cell shape,
and cell motility. By accumulating at a cell edge, filamentous actin (F-actin) produces
outwards protrusion. Actin assembly is regulated by signaling networks. Central in
those networks are the small GTPases, Rac, Cdc42, and Rho. Rac promotes assembly
of F-actin, whereas Rho activatesmyosinmotors. The interactions of Rac, Rho, Cdc42,
and other molecular players has been modeled in previous work (Mori et al. 2008;
Verschueren andChampneys 2017;Holmes et al. 2012a;Holmes andEdelstein-Keshet
2016; Zmurchok et al. 2018; Walther et al. 2012; Edelstein-Keshet et al. 2013; Jilkine
and Edelstein-Keshet 2011; Otsuji et al. 2007) both in 1D and 2D. These studies made
different modelling decisions and ranged from simple (Mori et al. 2008) to detailed
(Marée et al. 2008). It is challenging to determine parameter sensitivity and map out
regimes of behavior of the more detailed models. This motivates studying minimal
models that showcase the possible realms of predicted behavior.

It was shown previously that the biology ofGTPases permits a singlemember of this
family to spontaneously polarize (i.e. form spatial regions of high vs low activity). This
idea was the basis of the wave-pinning model (Mori et al. 2008, 2011), and depends
on the large difference in diffusion of the active (slow) and inactive(fast) forms of a
GTPase.

Several models have been examined mathematically to describe how a single
GTPase coupled to other effectors or influences could result in spatio-temporal pat-
terns. These include a GTPase with sources and sinks (Verschueren and Champneys
2017, see also Champneys et al. 2021), with feedback from F-actin (Holmes et al.
2012a; Mata et al. 2013), with mechanical tension (Zmurchok et al. 2018) and with
effects of changing cell size (Buttenschön et al. 2019). Many of these were explored
in reaction-diffusion (RD) equations within a 1D static single cell domain or with spa-
tially uniform distribution in each of many cells (Zmurchok et al. 2018). Some of the
behaviors found in such models include, traveling waves, pulses, or oscillating fronts
(Holmes et al. 2012a;Mata et al. 2013), or localized peaks and “solitons” (Verschueren
and Champneys 2017).

Here we have three main purposes: (1) to explore what happens when two distinct
minimal models are coupled, and whether this leads to new behavior, (2) to study these
systems in 2D domains to determine whether they produce spots or stripes, and (3) to
simulate the same models on a deforming 2D domain depicting the shape and motility
of a cell.

Biological motivation for this work comes from several sources. (A)Waves of actin
are observed in a number of experimental systems (Inagaki andKatsuno 2017). In some
of these, such waves are seen to cause cell edge to cyclically protrude outwards (as the
waves impinge on the cell edges). We wondered whether a model for Rac interacting
with F-actin could mimic this kind of behavior. (B) The GTPase model generalized
by the group of Alan Champneys in Verschueren and Champneys (2017) converts
the polarizing cell behaviour into multiple coexisting peaks. We wondered how such
peaks would interact with cell boundaries, and, in particular, whether they would
be associated with smaller protrusions such as filopodia. (C) In some cells, notably
the embryos of C. elegans, localized Rho-associated actin clusters are seen to “blink”

123



Spots, stripes, and spiral waves in models for static… Page 3 of 38 28

Fig. 1 Schematic diagram of the models. The original wave-pinning model consists of GTPase (circles)
in the active, (membrane-bound) form, u and inactive form v, with positive feedback (curved grey arrow)
from u to its own activation (upwards white arrow), forming a positive feedback loop. The F-actin extension
model (Holmes et al. 2012a) includes GTPase activation of F-actin assembly and GTPase inactivation by
F-actin (dashed arrow), forming a negative feedback loop. The source-sink (nonconservative) extension by
Verschueren and Champneys (2017) includes removal of active GTPase and synthesis of inactive GTPase
so that the total amount is no longer conserved

(oscillate temporally while maintaining a fixed location) (Robin et al. 2016).We asked
whether the combined F-actin-Rho model with localized sources could account for
such behavior. A schematic description of the model is provided in (Fig. 1).

We first briefly review the three classes of minimal models, show results for the
combined model, and then demonstrate the novel 2D behaviors that are observed once
these models are simulated in the deforming 2D cell.

2 Themodels

Ourmodel is a system of reaction-diffusion partial differential equations (PDEs) based
on the wave pinning model first proposed byMori et al. (2008). The model is extended
with a source and sink terms following Verschueren and Champneys (2017), and
feedback from actin, proposed by Holmes et al. (2012a).

2.1 Model equations

The dimensionless form of the model combining both extensions can be written as:

∂u

∂t
= δ∇2u + f (u, v, F) − cθu, (1a)

∂v

∂t
= ∇2v − f (u, v, F) + cα, (1b)

∂F

∂t
= ε(knu − ks F), (1c)

f (u, v, F) = A(u)v −
(

η + s
F

1 + F

)
u, A(u) = k + γ

un

1 + un
, (1d)

∂u

∂n

∣∣∣∣
∂Ω

= 0,
∂v

∂n

∣∣∣∣
∂Ω

= 0, x ∈ Ω, t ≥ 0.
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Here u(x, t) and v(x, t) represent the active and inactiveGTPase, respectively. F(x, t)
represents filamentous actin (F-actin). δ � 1 is the diffusion coefficient for the
active form, which is slow due to attachment to the membrane. The reaction function
f (u, v, F) describes the net rate of GTPase activation, with A(u) representing activa-
tion rate. Parameters k, γ, η, s are the basal activation rate, self-feedback activation,
basal inactivation and actin-feedback inactivation rates, respectively. The parameters
α and θ were introduced by Verschueren and Champneys (2017) to break conserva-
tion. These rates reflect, respectively, the degradation of GTPase when it is in an active
form, and the de novo synthesis of inactive GTPase. Neumann boundary conditions
are used to represent the fact that GTPases and F-actin do not leak out of the cell edges.

Setting c = s = 0 reduces the system to the original wave pinning (WP) model
(Mori et al. 2008), which conserves the total u + v inside the domain. The model
has been analyzed in detail elsewhere (Mori et al. 2011), but we briefly mention its
key property: under specific parameter settings, the WP model sustains waves that
decelerate and stall in the domain, leading to a stable spatially heterogeneous steady
state distribution of u (the “pinned wave”).

When c = 1, s = 0, the system corresponds to the non-conservative (NC) model
of Verschueren and Champneys (2017). When c = 0, s > 0, we have the actin
feedback (AF) model of Holmes et al. (2012a). While each of the above models has
been studied previously, here we will also be concerned with their union, i.e. the
so-called “combined model” (CM) with c = 1, s > 0. The four models of interest
are then (I) WP, (II) NC, (III) AF, and (IV) CM. These four models all have very
distinct characteristic behaviors. We will consider these models in several settings
(A) a 1D spatial domain, as previously described in the literature, (B) a static 2D
spatial domain where we can distinguish between spots and stripes, and finally (C) a
deforming domain whose boundary dynamics is coupled to the evolving solution u
(or F) of the PDE.

2.2 Domain, geometry, and initial conditions

In many previous papers, simulations were restricted to 1D (Holmes et al. 2012a;Mata
et al. 2013), but a variety of actin wave models exist in more detailed geometries,
including 2D (Doubrovinski and Kruse 2011) and 3D (Bretschneider et al. 2009).

Most of our analysis and supporting numerical results are given in 1D for simplicity.
Ultimately, we aim to show patterns stemming from the full model (1) interacting
with deforming 2D domains. Hence, at the outset, we establish a basic “default wave-
pinning behaviour” in both static and deforming circular domains for purpose of
comparison, as shown in Figs. 2 and 3, respectively. For the deforming (initially
circular) domain, we use the Cellular Potts Model (CPM) to simulate a dynamic 2D
shape,with PDEsolution influencing the boundarymotion. Themethods, assumptions,
and results are introduced in Sect. 5.3. Similar results have been shown previously by
Marée et al. (2012) for a more biologically detailed model (and elsewhere for simple
wavepinning, e.g. Vanderlei et al. 2011), but Fig. 3 makes for direct comparison with
simulations of the full model in Figs 18 – 21 in a later section.
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Fig. 2 Time sequence (left to right) of u(x, y, t) in 2D simulations of the original wave pinning model
(Eq. (1)a, b with s = 0, c = 0. The circular domain is static, with no-flux boundary conditions and various
initial conditions a–d but the same total amountw (see Eq. (3)). a stripe of high u (red) on the left,b randomly
placed peak of u, c four random peaks, d uniform random noise. Sequence shows t = 0, 50, 100 MCS and
a later steady state profile. a reaches steady state fastest. c and d take longer as multiple domains have to
merge. Ultimately all cases result in a pinned wave at various locations along the cell edge. Parameters are
from Table 4 (WP) except δ = 0.1 and θ = 4.5

As also demonstrated in the preliminary Figs. 2 and 3, pattern formation can
be initiated in many ways, including step function (A), peak(s) placed at random
locations (B,C) noisy initial levels of u (D) or other distributions (see also (Jilkine and
Edelstein-Keshet 2011)).

Further on, we adapt the appropriate ICs to the purpose at hand. In 1D we wish to
find major pattern features, such as number or spacing between peaks. In the 2D static
simulations, our purpose is to distinguish spots from stripes. In the 2D deforming
domains of the full model later on, we are interested in interactins of wave with the
boundary motion and so we use initiate conditions that have elevated u away from the
boundaries.

For the ease of analysis and identification of distinct patterns, we first discuss
and examine results in a 1D spatial version of the models. We can interpret this 1D
geometry in one of two classic ways: (1) as a cross-section along the diameter of a
cell. This cross-section neglects any variation in the cell thickness and includes both
the intracellular volume (cytosol) and the top and bottom membranes at every point.
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Fig. 3 As in Fig. 2, but with boundary deformation that depends on u(x, y, t) at the cell edge. Here u
represents the GTPase Rho, whose activity promotes retraction of the boundary into the domain. a, b The
cell quickly polarizes (wavepinning of u) and then moves in a directed fashion (blue denotes low u at the
front of the cell). c, d, edge retraction has trapped a plateau of u internally; this takes some time to resolve
into a pinned wave in c or persists for a much longer time in (d). Parameters are as in Fig. 2, with CPM
Parameters: a = 10000, λa = 0.02, p = 400, λp = 0.5, J = 60, r = 3, ξ(r) = 18, β = 10, T = 20

Neumann (no flux) boundary conditions are used for the endpoints of the interval. (2)
Alternatively, another common assumption is a 1D cell perimeter. In this case, the
region considered is close to the cell membrane, with periodic boundary conditions.
Here we adhere to the first approach. The case of 1D dynamic cell size is considered
in Buttenschön et al. (2020).

3 Methods of analysis and computational methods

We briefly describe methods used to analyse the models. We use local perturbation
analysis (LPA) to study the bifurcation behavior of each model, and compare with
results from Turing Linear stability analysis. A full description of these methods is
found in the MSc thesis by one of us (YL) (Liu 2019).

3.1 Local perturbation analysis

Local perturbation analysis is a method for examining the evolution of a localized
perturbation to a homogeneous steady state (HSS) for a fast-slow diffusion-reaction
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system. It provides a way to systematically detect certain forms of nonlinear instabili-
ties that are not detectable by the more traditional Turing analysis. LPA was first used
by Grieneisen (2009), and has been used in Edelstein-Keshet et al. (2013); Holmes
and Edelstein-Keshet (2016); Holmes et al. (2012a); Mata et al. (2013) and elsewhere
to analyze wave pinning and related models.

The basic idea of LPA is to take the limit where the slow diffusion coefficients
go to 0 and the fast diffusion coefficients go to infinity. We then consider an initial
condition where the system is at HSS with a localized perturbation in the form of a
spike of infinitesimal width but finite height. The behavior of the PDE can then be
captured with an ODE system with “global variables” representing the levels of the
PDE variables away from the spike, and “local variables” for the slow PDE variables
at the spike. For example, using subscript L to denote local variables, the LPA system
for our combined model (1) is:

∂u

∂t
= f (u, v, F) − cθu, (2a)

∂v

∂t
= − f (u, v, F) + cα, (2b)

∂F

∂t
= ε(knu − ks F), (2c)

∂uL
∂t

= f (uL , v, FL) − cθuL , (2d)

∂FL

∂t
= ε(knuL − ks FL). (2e)

In the cases where c = 0 or s = 0, we will use mass conservation to remove irrele-
vant equations and eliminate degeneracy. This allow us to easily produce bifurcation
diagrams using AUTO (Doedel 1981) and delineate parameter regimes. Notice that
the LPA system (2) contains the well-mixed system (i.e. the system without local
variables), so any features (branches and bifurcations) of the well-mixed system will
also be present in the LPA system. Hence we can obtain any information that can be
gained by analyzing the well-mixed system through LPA.

3.2 Bifurcation analysis

We refer to branches of equilibria and periodic solutions in the LPA system that are
also present in the well-mixed model as “global” branches, as they correspond to
solutions in which the local variables are equal to the global variables and the spike
disappears, i.e. a homogeneous solution. The other branches are referred to as “local”
branches; they correspond to some kind of pattern.

Weclassify the parameter regimes into three categories: (a) stable,where only global
branches are stable. In this regime, no pattern can arise from localized perturbation;
(b) polarizable, where stable global and local branches coexist. In this regime, patterns
can form only if the perturbation is sufficiently strong. Finally, (c) unstable, where all
global branches are unstable. In this regime even infinitesimal perturbations can lead
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to pattern formation. In Appendix 8, we show that this is equivalent to the classical
Turing regime.

The sets of parameters for each model are listed in Table 4. For the cases where the
total amount of GTPase is conserved, we define the total mass of GTPase in the cell,

w =
∫

Ω

(u + v)dx, (3)

as an additional constant parameter. This allow us to eliminate v from the equations
by writing it in terms of u and w.

All bifurcation diagrams follow AUTO’s conventions. On one-parameter dia-
grams, red/black curves indicate positions of stable/unstable equilibria respectively,
while green/blue indicate the range of stable/unstable limit cycles. On two-parameter
diagrams, red/light blue/dark blue curves trace the position of limit points (fold
points)/branch points (transcritical points)/Hopf points, respectively.

3.3 Computational methods in 2D

The numerical methods for static cell shapes are described in Appendix 9. For the
circular and deforming cell shapes shown in Figs. 2 and 3 and later, we use the Cellular
Potts Model (CPM), described in detail in (Marée et al. 2007) and briefly summarized
in a later section and Appendix 10. The essential feature of the CPM is its ability to
track an evolving domain shape. The model PDEs are solved on the domain, and the
values of the variables at the domain edge affect the retraction (or protrusion) of the
edge according to the changing value of CPM Hamiltonian. For example, in Fig. 3, a
high value of u is assumed to favour local retraction. For Fig. 2, the same computation
was performed without allowing the domain to deform.

4 Results

We next apply the methods to compare the behaviors of the four models of interest.

4.1 Preliminary wave-pinning simulations

The behaviour of the original WP model is shown on a static and on a deforming
domain for several initial conditions (Figs. 2, 3) including a region of elevated u on
the left part of the disk, a small peak or several peaks of high u, or a noisy initial profile
of u in the disk. The static domain rapidly develops a polarized “pinned” u profile.
The final patterns largely are qualitatively similar, with one caveat. In Fig. 3d we see
that noisy initial conditions can give rise to an internal plateau of u that persists for a
long time in a non-convex boundary. In that case, the cell develops a few protrusions
that coarsen into three lobes.
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Fig. 4 Bifurcation diagrams of the well-mixed (WM) and LPA wave pinning system with respect to the
rate of activation parameter γ . Other parameters as in Table 4 (WP) except w. The purple lines are located
at bifurcation points separating the distinct regimes. Note that the “global branches” (curves in the WM
diagrams) also appear in LPA, though their stability can be different in LPA over certain intervals. The
numerical simulation associated with this system is presented in Fig. 9

4.2 Wave pinning (WP) model regimes

Based on extensive previous analysis (Mori et al. 2011, 2008; Holmes and Edelstein-
Keshet 2016) we highlight the results in Figs. 4 and 5 merely for comparison with
the extended model variants. Distinct regimes are summarized in Table 1. We iden-
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Fig. 5 Two-parameter bifurcation plots of the wave pinning (WP) model with respect to parameters w, γ . a
Well-Mixed (WM) and b, c LPA system. Other parameters as in Table 4 (WP). Each curve in these diagrams
traces the location of a bifurcation point shown in Fig. 4, and forms the boundary of a parameter regime.
The one-parameter bifurcation diagrams in Fig. 4 correspond to vertical cross-sections of the diagrams here.
The LPA regimes I - VII match with the regimes in Fig. 4(b, d, f). See summary in Table 1. c A zoom into
the cusps in (b). (Compare (b) to LPA Fig. 3a of Holmes and Edelstein-Keshet (2016) for the same model
with different parameter values: our figures agree on the (red) fold curves but ours includes an additional
transcritical curve (light blue) separating several distinct regimes.)

tify γ (the magnitude of the only nonlinear term) and w (total concentration) as
primary parameters of interest. Extending the earlier study (Holmes and Edelstein-
Keshet 2016), we also trace a branch of transcritical bifurcation in two-parameter
continuation in Fig. 5. This allows us to identify several new regimes. We ver-
ify that LPA predictions in each regime are indeed correct with simulations of the
full PDEs.
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Table 1 Summary of the wave pinning (WP) regimes identified in Fig. 4 and 5

Regime Classification Description

I Stable One stable GB, no LB

II Polarizable One stable GB, one stable LB located above the GB

III Polarizable One stable GB, three stable LBs located on both sides of the GB

IV Polarizable Two stable GBs, three stable LBs: one above both GBs, one in
between, and one below both GBs

V Polarizable One stable GB, one stable LB located below the GB

VI Unstable The only GB is unstable, two stable LBs located on both sides
of the GB

VII Unstable Three GBs, all unstable, four stable LBs located on both sides
of the GB

GB global branch, LB local branch, Stable all stable branches are global branches, Polarizable there exist
both stable global and local branches, Unstable all global branches are unstable, so some local branches
have to be stable

4.3 Non-conservative (NC) model

In addition the main bifurcation parameter γ , we also take c, the parameter that con-
trols the magnitude of the source/sink terms. This model possesses a unique global
equilibrium:

u∗ = α

θ
, v∗ = cα + ηu∗

A(u∗)
= cα + ηu∗

k + γ
un∗

1+un∗

.

Any local branches uL∗ must satisfy f (uL∗, v∗) = θuL∗. After expanding and some
manipulations, we obtain

A(uL∗)
A(u∗)

= uL∗
u∗

. (4)

Since neither A(u) nor u∗ involve c and η, we conclude that the local branches are
independent of these parameters. Furthermore, for γ � k, the LHS of (4) ≈ 1 so
uL∗ = u∗, which means that there is no local branch for small γ .

We will show that for γ � k, there are always a high and low local branches. The
low branch is uL ≈ 0, since with γ → ∞ and uL = 0, both sides of (4) evaluate to
0. With a bit of further manipulation, we get (in the limit γ → ∞):

h(uL∗) = h(u∗), where h(u) = un−1

1 + un
.

The function h(u) satisfies h(0) = 0 = h(u → ∞), and it has a single peak at u p ≥ 1
(provided n ≥ 2). Since we focus on parameters with α < θ , that is u∗ < 1, there
exists a point uL∗ > u p > 1 such that h(uL∗) = h(u∗), which corresponds to the high
local branch.
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Fig. 6 Bifurcation diagrams for the non-conservative (NC) model, with parameter values from Table 4
(CM2) except η = 5. a WM, b, c LPA, using bifurcation parameters a, b γ , with c = 1, c c and γ . A thin
polarizable regime II is sandwiched between the stable I and Turing III regimes. In the full PDE simulations,
which can be found in Figs. 12 and 13 , the triplet of Hopf bifurcations (not present in WP) does not show
up as new behavior

In the bifurcation diagrams in Fig. 6, we use parameters from Table 4 (CM2)
but with η = 5. (These parameters yield visually optimized bifurcation diagrams
whose regimes are neither too wide nor too narrow; the same regimes are present for
parameters from Table 4 (NC) used for PDE simulations, but the resulting bifurcation
diagram is harder to read.) Fig. 6 identifies four distinct regimes in the LPA system
whose interpretation is as in the previous section. The location of the branches agrees
with earlier analysis. The regimes are summarized in Table 2.

InRegime I, no pattern forms, as expected. InRegime II a small perturbation decays,
but a sufficiently large perturbation will persist. In the full PDEs, such perturbation
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Table 2 Summary of the non-conservative (NC) model regimes identified in Fig. 6

Regime Classification Description

I Stable One stable GB, no LB

II Polarizable One stable GB, one stable LB located above the GB

III Unstable The only GB is unstable, two LBs located on both sides of the GB

IV Unstable One GB, two LBs all unstable, each enclosed by a periodic orbit

Abbreviations as in Table. 1

leads to the soliton solution shown in Fig. 12c,d. Both Regime III and IV are unstable,
and any perturbation leads to a Turing-type pattern consisting of a series of evenly
spaced, static spikes in the full PDE, as in Fig. 12a,b. The limit cycles in Regime IV
suggests that the spikes might oscillate, but this, in fact, does not occur: we found that
the PDE behavior is qualitatively indistinguishable in Regime III and IV. This suggests
that the Hopf bifurcations in the LPA diagram should be interpreted with caution. We
speculate that oscillations predicted by Hopf bifurcations in the local LPA variables
could be damped or abrogated by finite diffusion rates in the full PDES. The fact that
Hopf bifurcation is a degree 3 phenomenon, whereas fold and transcritical bifurcations
are degree 2, might also indicate why LPAmay fail to accurately reflect PDE behavior
for Hopf bifurcation. This discrepancy points to a limitation of LPA, but a rigorous
explanation remains an open problem.

4.4 Actin feedback (AF) model

We use mass conservation to eliminate v from the LPA system as before. The strength
of actin feedback s and the basal rate of activation k were our bifurcation parameters.
LPA for this model was previously discussed in Holmes et al. (2012a); Mata et al.
(2013), but here we traced more bifurcations in greater detail.

The results are shown in Fig. 7 and 8 . We only distinguish between the regimes
separated by fold and transcritical curves and omit the Hopf curves, as explained
below. We also ignore some very narrow regimes, to concentrate on six major regimes
as summarized in Table. 3.

One interesting characteristic of these diagrams is the presence of unstable peri-
odic orbits that emerge as subcritical Hopf bifurcations and exist for very narrow
parameter ranges. The unstable cycle enlarges until it collides with a saddle point,
turning into a homoclinic orbit to the saddle, and then disappearing. This is known
as saddle-loop bifurcation, or homoclinic bifurcation (see (Kuznetsov 2004, Ch.6.2)).
Parameter regimes where the periodic solutions exist are very narrow. Hence, while
Hopf bifurcations occur, they are unlikely to be playing a major role in the biological
application of this model.

We can compare our results to those of Holmes et al. (2012a) (Fig. 5, a LPA diagram
in k−s plane containing only one of the Hopf curves). The Hopf curve in Holmes et al.
(2012a) corresponds to the dark blue curve on our diagram, which traces the pair of
Hopf points on the global branch in Fig. 7d. Furthermore, our diagram (Fig. 8) traces
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Fig. 7 Bifurcation diagrams of the actin feedback (AF) model with respect to parameter s a–d and with
respect to k, s in e ,f. (In e, the Hopf curves are omitted for clarity of the diagram. They are then included
in f). The narrow regimes are not labelled. The nearly vertical blue curves indicate unstable periodic orbits.
The associated simulations are presented in Fig. 10

the fold (red) and transcritical (light blue) bifurcation points and hence identifies a
larger number of distinct regimes.

Interpreting the LPA diagrams (as in the WP model), we can conclude that a stable
local branch in LPA corresponds to a regime of pattern formation in the PDE. Unlike
WP, there are multiple possible patterns in this AF model. LPA cannot accurately
predict the type of pattern. In particular, the consequence of the subcritical Hopf
bifurcations to the full PDE is unclear, possibly suggesting some kind of (quasi-)

123



Spots, stripes, and spiral waves in models for static… Page 15 of 38 28

Fig. 8 Same as Fig. 7f with the
Hopf curves included, and with
an indication of patterns in
several regimes. A few Hopf
curves lie very close to one of
the other curves for most of their
length, creating some very
narrow regimes. The simulation
results from Figs. 10 and 11 are
identified with their
corresponding regions on the
parameter plane

Table 3 Summary of the actin feedback (AF) model regimes identified in Fig. 7

Regime Classification Description

I Stable One stable GB, no LB

II Polarizable One stable GB, one stable LB located above the GB

III Unstable The only GB is unstable, two stable LBs located on both sides of the
GB

IV Unstable The only GB is unstable, one stable LB located above the GB

V Polarizable Two stable GBs, three stable LBs: one above both GBs, one in
between, and one below both GBs

VI Polarizable One stable GB, three stable LBs located on both sides of the GB

For abbreviations see caption of Table 1

periodic behavior that we did not fully characterize. In Holmes et al. (2012a); Mata
et al. (2013), a parameter scan of the PDE systemwas includedwith the LPA diagrams.
As previously noted, PDE regimes are not exactly aligned with LPA regimes since
δ �= 0 in the full PDEs.

In summary, in our hands, LPA worked well in identifying no-pattern and WP
regimes, but was less useful for predicting the emergence of more complex patterns.
Many of those patterns involve interacting waves, which suggests that they are non-
linear, non-local phenomena, explaining why LPA cannot account for them.

4.5 Combinedmodel (CM)

The LPA diagrams for the combined model are very complex, and mostly beyond
the scope of interpretation (see Appendix 7.) This is unsurprising given the complex
behavior exhibited by the PDE. The bifurcation diagram shown in Fig. 22, which uses
parameter values from Table 4 (CM2), contains many limit cycle bifurcations, such
as torus and period-doubling. One thing the diagram can provide is the minimum
value of s required for any non-static patterns (corresponding to the first triplet of
Hopf bifurcation in Fig. 22). With s below this value, the system behaviour is the
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Table 4 The parameters in the combined model, their meanings and values for various simulations

Parameter Meaning WP NC AF CM2

δ Diffusion coefficient ratio 0.01

L Domain length 1 10

k Basal activation rate 1.5L2 1L2 − 6L2 1L2

γ Nonlinear activation rate 30L2

n Hill coefficient 3 2

η Inactivation rate 15L2 5L2 15L2 5.2L2

c NC terms on/off 0 1 0 1

α Source strength 1.5L2

θ Sink strength 4.5L2 5.5L2

s Actin feedback strength 0 0 − 50L2

ε Actin reaction rate 0.1

kn Actin activation rate 24L2

ks Actin inactivation rate 7.5L2

WP wave pinning, NC non-conservative extension, AF actin feedback extension, CM2 one of the parameter
sets used for the combined model (CM). All parameters (except L) are scaled to be non-dimensional

same as that of the s = 0 case, which reduces back to the non-conservative (NC)
model.

4.6 Comparison with linear (Turing) stability analysis

Linear stability analysis (LSA) was previously applied by Mori et al. (2008) and
Verschueren and Champneys (2017) for the wave pinning and non-conservative
models respectively. The relative merits of LSA and LPA have been described in
Mata et al. (2013); Holmes (2014) and we briefly summarize some of these in the
Appendix.

LPA is only valid in the limit of δ → 0. In this limit, LPA contains the Turing
stability properties: a branch that is LPA-unstable is also Turing-unstable. See Fig. 23,
where we show how the LPA regimes from Fig. 2b line up with Turing regimes.
LPA can detect instabilities that require a perturbation of sufficient magnitude (the
polarizable regimes), which cannot be detected by Turing analysis. This means LPA
can potentially find more types of pattern.

LPA does not predict details of the pattern. We saw this most evidently in the actin
feedback (AF) model, where many possible patterns and a large number of parameter
regimes exist. Turing analysis predicts pattern initiation, but often fails to specify the
final pattern that depends on nonlinear interactions. We give an example of this type
for the NC model in Fig. 24. We also indicate how the “minimal patch size” idea
from Painter and Hillen (2011) can be used to help predict the final pattern using
LSA.
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5 Numerical simulations

We simulated the model for a static cell in 1D (0 ≤ x ≤ 1) and 2D (0 ≤ x, y ≤ 1),
and for a motile cell in two spatial dimensions using the Cellular Potts Model (CPM).
The four main parameter sets we used for numerical simulations are summarized in
Table 4. The selection of values for most of these parameters is based on Holmes
et al. (2012a), with α, θ coming from Verschueren and Champneys (2017), and some
modifications guided by LPA and Turing analysis. In contrast to Holmes et al. (2012a)
we use a much larger domain size L , corresponding to a larger cell and allowing for
more complex patterns to develop. We used a shorter domain length L to better show
the profile of the wave front. With L = 10 for wave pinning, the pattern appears
the same, except the transition is much sharper. The parameters used for the CPM
simulations are sometimes slightly different from Table 4. They have been tuned to
ensure moderate cell protrusions.

5.1 Simulations in a fixed 1D domain

While 1D simulations for the WP, NC and AF appear in previous works (Mori et al.
2008; Verschueren and Champneys 2017; Holmes et al. 2012a; Mata et al. 2013), we
present them here as comparison to the combined model and the 2D case. Results are
shown as kymographs, with time on the horizontal axis and space on the vertical axis.
Color indicates the levels of u and v and/or F (if s > 0). For most simulations, we
start at a homogeneous steady state (HSS), and perturb the system either with small
global noise or with a localized pulse. The first leads to Turing-type patterns, while
the latter can lead to the patterns described by LPA.

Figure 9 shows the results for theWPmodel.Observe that for thefirst twocases (a,c),
the initial perturbation decays considerably, but nevertheless this results in formation
of a pattern associated with polarization. The random initial condition (e) also results
in a polarized steady state. In these simulations, u can vary greatly across the domain
while v becomes nearly uniform, as expected given its much faster rate of diffusion.

Figure 10 shows the results for the actin feedback (AF) model. The default initial
conditions are u = 0 except u = 4 for 0 ≤ x ≤ 0.01, v = 2.5, F = 0. We are not
initializingnear a stableHSSbecause doing sousually does not result in patterning.The
patterns observed are quite sensitive to initial conditions. In addition to simple wave
pinning observed at low s (not shown), the system displays four qualitatively different
behaviors: (1) wave pinning with oscillating boundary (WPO), where polarization
occurs as in wave pinning, but with an oscillating front position; (2) reflecting pulse
(RW), where a single pulse traverses the domain at constant velocity and gets reflected
back at the boundary; (3) a single pulse (SP) that is absorbed at a boundary, before the
system returns to HSS; (4) a wave train (WT), that originates either at a boundary or
in the interior of the domain, propagates with constant velocity and gets absorbed at
a boundary.

In general, the spatial profile of F lags behind u, as expected, since it is a slow
variable depending on u. The pattern in v is usually opposite that of u, i.e, v is high
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Fig. 9 Simulation of the wave pinning model (WP), with parameters from Table 4 (WP). This parameter
set corresponds to Regime IIIa as labelled in the bifurcation diagrams Fig. 4b and 5, which is classified
as a polarizable regime. The patterns produced in the other polarizable regimes are qualitatively similar.
Initial condition: v = 1, u = 0.102 with perturbation u = 6 for (a ,b) 0 ≤ x ≤ 0.1; (c ,d) 0.4 ≤ x ≤ 0.5;
(e ,f) random noise, u = 0.834 · ε(x). Note that not all initial conditions result in wave pinning: a small
perturbation from the HSS will simply decay and no pattern forms. The behaviors shown in a, b, e,f
correspond to solutions shown in Fig. 2 of Mori et al. (2008)
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Fig. 10 Simulations of the actin feedback model (AF) with parameters from Table 4 (AF) (s, k as indicated
on labels), and default initial conditions. Each row corresponds to one parameters set, showing u, v, F (left
to right). We also indicate the regimes each parameter set corresponds to in bifurcation diagram Figs. 7 and
8 . We observe four behaviors by varying k and s: a–c Wave pinning with oscillating front (WPO), within
Regime IV but near the boundary with Regime VI; d–fReflecting waves (RW), Regime IV; g–i Single pulse
absorbed at boundary (SP), within Regime I but near the boundary of Regime IV; j–l Persistent wave trains
(WT), Regime III. We used a larger domain length than Holmes et al. (2012a), leading to a richer set of
patterns
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Fig. 11 Exotic patterns observed in the actin feedback (AF)model. Parameters as in Table 4 (AF) but varying
k, s. Both of these are located near regime boundaries in the bifurcation diagram Fig. 8. a–c k = 5, s = 10,
default initial conditions. The pattern resembles WPO but with several subregions; d–f k = 5, s = 30,
default initial conditions with excitation region 0 ≤ x ≤ 0.1. The resulting pattern is similar to RW but
with a group of four pulses traversing the domain

where u is low, and vice versa. Moreover, the gradient of v tends to be much shallower
than u due to the faster diffusion of v.

Some other more complex patterns are shown in Fig. 11. These share some charac-
teristics with the simpler patterns. The patterns shown in (a–c) are similar to (WPO),
but the domain is divided into five regions instead of two, with an initial transient
reminiscent of (WT). The patterns in (d–f) can be seen as a group of four reflecting
pulses (similar to RW) rather than one. Compared to Holmes et al. (2012a), we find
a richer range of patterns using a similar parameter set (with different scaling). The
main difference is that the larger domain used here, L = 10, allows more space for
pattern to develop. (In (Holmes et al. 2012a), L = 1, so patterns are more confined
and boundary effects are prominent.)

Fig. 12 shows two typical patterns in the NC model: a static, Turing-type pattern
consisting of a series of evenly spaced spikes, and a single spike “soliton” pattern.
The final profiles of these two patterns are shown in Fig. 13a,b. The domain length,
L , must be large enough to support such patterns. If L is too small to support a full
period of the pattern, the result would be simple polarization similar to wave pinning
(Fig. 13c). Using a higher rate of inactivation η, or a smaller diffusion ratio δ can result
in spikes that split into two, as shown in Fig. 13d.

For the combined model, we use parameters from Table 4 (CM2), mostly similar
to the NC case. In Fig. 14, we show the effect of increasing s (strength of actin
feedback) on system behavior. With s low enough, the system behavior resembles the
s = 0 case of a static, spatially periodic pattern, as in the NC case. For increasing s,
the peaks begin to move with constant velocity by themselves, repelling one another
when too close. For moderate values of s, the peak repulsion is strong enough that
peaks reverse their direction of motion if on a collision course (Fig. 14a). At higher s,
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Fig. 12 Simulation of the non-conservative model (NC) with a, b default parameters (Table 4 (NC)),
corresponding to the unstable Regime III as identified in the bifurcation diagram Fig. 6; c, d γ = 15L2, η =
15L2, which corresponds to the polarizable Regime II. Initial condition: a, b u = u∗ except u = 1 on
0 ≤ x ≤ 0.1, v = v∗. c, d u = u∗ = 0.33333 except u = 10u∗ on 0.4 ≤ x ≤ 0.41, v = v∗ = 3.19298. In
a, b, the formation of a peak on the left triggers some new peaks farther away, until space runs out. Once all
peaks form, they shift slightly to be evenly spaced. In c, d, the single initial peak persists, without triggering
new peaks. We refer to this as the soliton solution

they collide (Fig. 14b). At even higher s, we observe a localized standing wave pattern
that oscillates rapidly in Fig. 14c, and even more prominently in (d).

In sumary, CM behavior is close to AF behavior only when s is large, as in Fig. 14
c,d. This is unsurprising since s controls the magnitude of actin feedback. When s is
small (Fig. 14 a,b), the effect from the nonconservative term dominates and we can
observe the same periodic spikes characteristic of the NC model. The primary effect
of increasing s is to allow the spikes to move with increasing speed, and this seems to
be true in general, as we observed under a variety of parameter sets.

5.2 Simulations in a fixed 2D rectangular domain

In two spatial dimensions, we use the same parameters as in 1D. For theWPmodel, we
start at HSS and perturb one corner of the domain. The pattern we observe (Fig. 15a,
b) is a direct analogue to the 1D case (compare to Fig. 9a, b): u initially spreads out
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Fig. 13 Final steady state pattern of the non-conservative model (NC) with most parameters from Table 4
(NC), except the parameters indicated on the labels. a and b correspond to the steady state of Fig. 12a, b and
c, d respectively. In c the shortened domain results in wave pinning; dHigher inactivation rate η = 15 results
in bifurcating peaks. a, b corresponds to Fig. 5a, d of Verschueren and Champneys (2017), respectively

from the corner as a 2D travelling wave, and that is eventually pinned along a front
determined by the initial conditions.

We use a similar initial condition for the NC model. Based on 1D simulations, we
expect evenly-spaced stripes to form around the corner as concentric rings, as happens
initially (Fig. 15c). However, these rings quickly break up into spots (Fig. 15d). The
spots spread out, and then settle into a steady state. We have not found any parameter
sets for stable ring patterns. The patterns are insensitive to the shape of the domain.
Simulations on circular, rectangular and other domains with simple shapes produced
patterns with the same qualitative characteristics (not shown).

For CM, we initialize the system at HSS and perturb with noise. Figure 17 shows
the simulation results. With a low s, the pattern is indistinguishable from the static
spots under the non-conservative model. As s increases, the spots become mobile and
repel each other as in the 1D case. In 2D, as s is increased further, the spots transitions
to spiral waves.
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Fig. 14 Simulations of the combined model (CM), where only the profiles of u are shown. The profiles
of v show mostly similar patterns. Parameters as in Table 4 (CM2) but varying s, and HSS+noise initial
condition as described in the text. As we increase the actin feedback strength s, the behavior transitions
from slowly moving, repelling peaks to colliding peaks. At higher s, there is a rapidly oscillating standing
wave pattern in some parts of the domain

We also arrived at the AF model by initializing the CM model at HSS plus global
noise and c = 1. After a pattern starts to form, we gradually decreased c to 0 to arrive
at the AF model. (In our hands, this produced more robust results, with patterns that
persisted). Figure 16 shows a few snapshot of the simulations. For low s, the pattern
resembles slowly drifting and deforming blobs. As s increases, the pattern transitions
into spiral waves with decreasing width.

5.3 Simulations in a 2D deforming domain

As a final set of numerical experiments, we simulate the revised WP models in an
evolving 2D domain. The boundaries deform in response to the chemical levels close
to the boundary. We use the Cellular Potts Model (CPM) for these examples.

The CPM is a common method for tracking an evolving shape such as morphology
of amotile biological cell (Scianna et al. 2013). (In 2D, the cell is “viewed from above”
as it migrates on a flat 2D surface.) The neighbourhood of each point inside the shape
represents a 2D projection of some small cylinder in 3D, containing both membrane
and cytosol. Hence, active and inactive GTPases (u and v) coexist at every point inside
the given shape, as they do in our fixed domain 2D simulations.)
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Fig. 15 Simulations of the wave pinning a, b and non-conservative c, dmodels in a 2D static square domain,
using the same parameters as in 1D (Table 4 (WP) and (NC)). Left: u , Right: v. For each model, two snap
shots are shown: one when the pattern begin to take shape, and another after the system reached steady state
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Fig. 16 2D simulations of the actin feedback (AF) model, with parameters from Table 4 (AF) and initial
conditions described in the text. These snapshots are taken after the patterns have fully developed. As
s increases, blobs transitions into thinner and thinner spiral waves. See movies at https://imgur.com/a/
61GwiA9

Commonly, for the CPM, a scalar Hamiltonian, analogous to a potential is assumed
to depend on the area and perimeter of the cell, as well as the interface contact with
other cells or empty space. Changes to the boundary of the cell are accepted or rejected
stochastically, according to the net changes in the Hamiltonian, as described in the
Appendix. Our simulations include the following additional features: (1) solving the
reaction-diffusion PDEs inside the evolving domain with Neumann boundary condi-
tions at the cell boundaries and (2) modifying the Hamiltonian to depend on the local
RD variables.

In real cells, actin polymerizes into F-actin, and promotes protrusion of a cell edge.
Hence, we link the F-actin variable F in the model to forces on the cell boundary,
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Fig. 17 Simulations of the combined model (CM) in 2D, with parameters from Table 4 (CM2) and HSS +
noise initial condition. There is a transition from spots to spiral waves near s = 12. See movies at https://
imgur.com/a/a0u57GQ

(by superimposing a chemically-dependent potential H0 = ±βF for retractions(+)
vs extensions(-) on the basic Hamiltonian, see Appendix). In variants of the model
that do not explicitly track F-actin, we assume that the GTPase u plays a similar role
(i.e., that u, like the GTPase Rac, locally promotes cytoskeleton assembly, creating a
protrusive force at the cell edge).

Simulations are initiated with a circular cell and internal variables close to HSS.
Other initial conditions produce similar dynamics. We first considered a parameter
regime that produced the absorbing wave simulations in the static domain. Figure 18
(left to right, top to bottom) shows a time series of the corresponding CPM simulation
with the same parameters. A peak of active GTPase, u, initiated at a random location
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Fig. 18 Snapshots of 2D CPM simulation with parameters from the absorbing waves in a static domain (AF
model). Visualized is F-actin (F) that promotes protrusions (H0 = ±βF). Arrows indicate examples of
interesting dynamics: (1) F-actin wave pushes membrane, (2)(a–c) A spot (2a) breaks into two waves (2b)
and one wave changes direction (2c), (3a–c) a spiral starts to form. Snapshots are 20MCS apart. Parameters
are: δ = 0.06, L = 1, k = 6, s = 30, and the rest from Table 4 (AF). CPM Parameters are: a = 12000,
λa = 2, p = 500, λp = 20, J = 50, r = 3, ξ(r) = 18, β = 150, T = 100. Movie link https://imgur.com/
a/7OmgctR

produces a series of circular ripple waves. Waves of F-actin or of u (here associated
with the GTPase Rac) that impinge on the cell edge (1) lead to local protrusion. A new
burst produces additional waves that split and move towards the cell edge (2a,b,c).
Colliding waves sometimes create local spiral waves (3a,b,c) in the cell interior, and
lead to continued cell shape deformations. Amovie of the same sequence can be found
at https://imgur.com/a/7OmgctR.

A new random burst appears (Arrow 2a) and produces waves in two directions
(Arrow 2b). When waves collide, they break, amplify, move left and right (Arrow 2c)
and eventually give rise to a spiral wave. Because the resulting spiral wave has a lower
magnitude, there is weaker effect on the boundary at this time. In Fig. 19, we show
a time series for parameters that produced oscillating waves in the static domain. As
before, the initial burst is in the lower right, and a new burst (Arrow 1a) breaks apart
into two waves that broaden. We find a protrusion that is much broader than in Fig. 18
(Arrow 2). Wave absorption is lower than in Fig. 18, so the cell edge is pushed further
out.

Figure 20 shows results for parameters corresponding to reflecting waves in a
static domain. Here, because the cell boundary moves outwards, the waves are usually
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Fig. 19 Snapshots of 2D CPM simulation with parameters from the oscillating waves in a static domain
(AF model). Visualized is F-actin (F) that promotes protrusions (H0 = ±βF). Arrows indicate examples
of interesting dynamics. (1)(a and b), a spot extends towards to membrane a and later breaks into two and
one wave moves inwards b, (2) a wave creates a big protrusion, (3) a wave hits the cell edge and spirals in.
Snapshots are 20 MCS apart. Parameters are as in Fig. 18, but with k = 1.5, s = 18. CPM parameters are
as in Fig. 18, but with β = 50. Movie link https://imgur.com/a/eIAjr59

absorbed, rather than reflected. Occasionally, if thewave hits the cell edge tangentially,
it is reflected (e.g. at 19 sec in the movie, upper left corner). We furthermore observe
three new wave dynamics in a moving cell with random bursts. A wave can break
apart when it hits a burst (A), waves can merge (B), or avoid each other (C).

As a last experiment, we simulate the formation of spots in the NCmodel (Fig. 21).
Since this model has no F-actin variable, we base the edge protrusion on the active
GTPase u (assumed to act like Rac in promoting local cytoskeleton assembly). The
spots are highly dynamic and, as expected, lead to the formation of small protru-
sions (“filopodia”) (C). Furthermore, edge deformation also causes the spot pattern
to change. When a protrusion forms (stochastically or by locally elevated u), the spot
in a region close to the protrusion can split into two, one of which moves into the
protrusion (A). We also see formation of new spots inside protrusions (B).

6 Discussion

In summary we have explored extensions of the wave-pinningmodel (WP) (Mori et al.
2008, 2011) that coupled the non-conservative variant proposed by Verschueren and
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Fig. 20 Snapshots of 2D CPM simulation with parameters from the reflecting waves in a static domain
(AF model). Visualized is F-actin (F) that promotes protrusions (H0 = ±βF). Snapshots in A,B,C are
10,20,20 MCS apart respectively. Arrows indicate examples of interesting dynamics. a a wave hits a spot
and breaks into two, b Two waves merge and change direction, c Part of a wave disappears as it encounters
a spot. Parameters are as in Fig. 18, but with k = 1.5, s = 27. CPM parameters are as in Fig. 18, but with
β = 50. Movie link https://imgur.com/a/FDCn3NY

Champneys (2017) (NC) and the actin feedback (AF) model of Holmes et al. (2012b).
We found that the combined model (CM) borrows features from both, with moving
peaks and wave trains, as well as more complex hybrid dynamics. At the same time,
we were unable to find blinking localized spots as observed experimentally in (Robin
et al. 2016). Despite the fact that the work of Robin et al. (2016) points to interactions
of F-actin with the GTPase Rho, other unknown factors, missing in our model, should
be considered to explain such behavior.

We used the local perturbation analysis (LPA) on each model variant. As noted
before (Holmes et al. 2015), LPA recovers Turing analysis. States that are LPA stable
are also Turing stable. LPA helps to identify potentially interesting parameter ranges,
including polarizable regimes that cannot be detected by Turing analysis. At the same
time, LPA does not predict details of patterns that emerge, nor accurate bifurcation
points in the full PDE system. LPA achieved varying degrees of success for all models
we tested. For the nonconservative model, LPA was able to distinguish the stable,
polarizable and Turing-unstable regimes. The only caveat is that the Hopf bifurcation
present in the LPA system does not necessarily correspond to a bifurcation in the
PDE system. For the AF model, LPA could identify several regimes corresponding to
distinct behaviors (Fig. 8). The complexity of the LPAODE system and the associated
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Fig. 21 Snapshots of 2D CPM simulation of the NCmodel. Visualized is Rac (u) that promotes protrusions
(H0 = ±βu). Snapshots in A,B,C are 10,5,25 MCS apart respectively. Arrows indicate examples of
interesting dynamics. a a spot breaks into two, b a new spot is created in a protrusion, c a spot leads a
protrusion to form. Parameters are: δ = 0.1, η = 60, k = 6, γ = 120, θ = 18, α = 6, and the rest
from Table 4 (NC). CPM Parameters are: a = 10000, λa = 0.02, p = 1000, λp = 0.04, J = 40,
r = 3, ξ(r) = 18, β = 200, T = 20. Movie link https://imgur.com/yUUEgQD

bifurcation diagrams meant that we could not “read off” PDE behavior from the
resulting LPA bifurcation diagrams. For CM the diagram is simply too complex to
decipher. Although we always rely on numerical simulation to match behaviors to
regimes, LPA still proves to be a handy shortcut to avoid exhaustive parameter sweeps,
and to help locate the interesting regimes in the PDEs.

We also encountered examples where LPA identified apparent bifurcations that did
not materialize as true regimes of behavior in the PDEs.

As a second innovation, we simulated all model variants in 2D on both a static and a
deforming domains, and summarized the observed patterns in Table 5. Previous work
(Verschueren and Champneys 2017; Holmes et al. 2012a) was concerned with fixed
1D domains for the PDEs. We hence showed that the patterns for the nonconservative
(NC) model were primarily spots, not bands, whereas the AF model, while appearing
to be less robust, produced a variety of moving peaks, bands, and waves, including
spiral waves. All these patterns differ significantly from the simple pinned wave of
the original model in Fig. 2

Finally, our simulations of the models in deforming domains mimicking a motile
cell allowed us to consider the connection to experimentally observed cell polarization
(Jilkine and Edelstein-Keshet 2011; Rappel and Edelstein-Keshet 2017) and waves of
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Table 5 Summary of observed patterns in static and deforming domains. The “type of pattern” applies
primarily to patterns observed in static simulations, and are not exactly the same as the corresponding
deforming domain simulations using similar parameters

Types of pattern Model Static domain figures Corresponding deforming
domain figures

Wave pinning WP 2, 9, 15a, b 3

Wave pinning with
oscillating front

AF (1D) 10a–c 19

Reflecting pulse AF (1D) 10d–f 20

Wave train AF (1D) 10j–l 18

Spiral waves AF, CM (2D) 16, 17 18, 19, 20

Stationary,periodic
spikes(1D)/Spots(2D)

NC 12a,b, 15c, d 21

Soliton (single static
spike)

NC (1D) 12c,d –

Moving
spikes(1D)/spots(2D)

CM 14, 17 –

actin (Inagaki and Katsuno 2017).We showed that the internal dynamics of themodels
(and in particular the actin feedback model) have an interesting consequence on the
motility of a “model cell”. Indeed, the waves of high and low signaling levels led to
formation of cellular protrusions, and gave rise to nontrivial motion in the deforming
cell.
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7 Appendix: LPA diagram for the NCmodel

The LPA diagram for the nonconservative model (NC) is given in Fig. 22. Due to the
many intertwined bifurcations, it is difficult to interpret this diagram, and we present
it here only to demonstrate the limitations of LPA.
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Fig. 22 LPA bifurcation diagram for the combined model (CM) with respect to the parameter s. Other
parameters as in Table 4 (CM2). There are many apparent branches of periodic solutions. In a parameter
range around s = 20, there are no stable equilibria nor stable periodic solutions even though the system
remains bounded, which suggests the presence of chaos

8 Appendix: Relation between Turing and LPA

Linear stability analysis (i.e. Turing analysis) (Turing 1952) is a more traditional
method of analyzing the stability of reaction-diffusion systems which focuses on the
stability of a HSS in response to perturbations in the form of a global noise with
infinitesimal height.

Here we examine the relation between Turing and LPA. This was previously done
by Mata et al. (2013) for the two-variable case in terms of eigenvalues, and for the
general case by Theorem 4.1 of Holmes (2014). (The proof for this theorem is quite
involved.) Here we present a much more elementary argument for the two-variable
case.

Suppose in a general reaction-diffusion PDE with a slow-diffusing quantity u and
a fast-diffusing quantity v. Assume that time has been rescaled so that the diffusion
coefficient of the fast quantity is 1.

∂u

∂t
= δ∇2u + f (u, v),

∂v

∂t
= ∇2v + g(u, v).

The corresponding well-mixed (WM) system is

∂u

∂t
= f (u, v),
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∂v

∂t
= g(u, v).

The LPA system is the above plus an additional equation for the local variable:

∂uL
∂t

= f (uL , v).

Suppose the PDE systemhas a homogeneous steady state (HSS) (u∗, v∗). The Jacobian
of the well-mixed system and LPA system at the corresponding equilibrium is given
by

JWM =
[
∂u f ∂v f
∂ug ∂vg

]
, JLP A =

⎡
⎣∂u f ∂v f 0

∂ug ∂vg 0
0 ∂vg ∂u f

⎤
⎦ =

[
JWM 0

∗ ∂u f

]
,

where the partial derivatives are understood to be evaluated at the HSS, and ∗ denote
entries that are unimportant for later analysis. Notice that eigenvalues of JLP A are the
two eigenvalues of JWM , plus ∂u f . This is due to JLP A being block-lower-triangular.
We will show that saying the HSS is Turing-unstable in the limit δ → 0 is equivalent
to saying it is a stable equilibrium for WM but unstable for LPA.

Define the relevant matrices for Turing analysis:

M(q2) = JWM − Dq2, D =
[
δ 0
0 1

]
δ→0−−→

[
0 0
0 1

]

Suppose theHSS satisfy the condition for Turing instability,which has three conditions
(see, for example, (Edelstein-Keshet 1988, Ch. 11.4)):

Tr(JWM ) < 0, (5a)

det(JWM ) > 0, (5b)

det(M(q2)) < 0 for some q2 > 0 . (5c)

Conditions (5a), (5b) are equivalent to saying that the HSS is a stable equilibrium for
WM. Next, in the limit of δ → 0, we compute

det(M) = det(JWM − Dq2) = det

(
JWM −

[
0 0
0 q2

])
= det(JWM ) − q2∂u f

Notice that by setting δ = 0, this equation is linear in q2 instead of quadratic. This
means (5c) is equivalent to ∂u f > 0 . But since ∂u f is an eigenvalue for JLP A, this
means the HSS is unstable in the LPA system.

Conversely, suppose that the HSS is stable inWM and unstable in LPA. This means
the eigenvalues of JWM all have negative real part, and ∂u f > 0, which as shown
above is equivalent to Turing-unstable.
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Fig. 23 Comparison of LPA and Turing bifurcation diagrams for the non-conservative model. a is a zoom of
the LPA diagram from Fig. 6b. b is the Turing bifurcation diagram reproduced from Fig. 5 of Verschueren
and Champneys (2017), using the same parameters. Observe that both the LPA-stable (I) and the LPA-
polarizable (II) regimes in a located to the left of γc = 16.765 correspond to the Turing-stable regime
below the blue curve in (b). The LPA-unstable regimes (III, IV) correspond to the Turing-unstable regime
above the curve. The curve passes through δ = 0, γ = γc . The bifurcation boundary between Regimes I
and II, and between III and IV cannot be detected by Turing analysis. Given that numerical simulations
have shown that the PDE produces the same behavior (Fig. 13a) in both Regimes III and IV, it is possible
that these are not distinct regimes for the PDE. Overall, the LPA diagram (a) can be seen as a vertical slice
of the Turing diagram b at δ = 0, with additional bifurcation boundaries that separates the LPA-stable and
LPA-polarizable regimes

Fig. 24 Simulations for the
non-conservative model with
random initial conditions
u = u∗(1 +
Unif(−0.01,+0.01)), v = v∗
with default parameters from
Table 4 (NC) except γ = 25.
The color range is chosen so that
the precursor pattern is more
visible. The rapid transition from
the shallower, higher frequency
precursor pattern to the final
pattern can be clearly seen

Compared to Turing analysis, LPA has several advantages and disadvantages. LPA
is essentially a “zeroth-order” expansion in δ, so it is only valid in the limit of δ → 0 and
offers no information on the effect of δ > 0, as opposed to Turing analysis. However, in
this limit, LPA contains the Turing stability of the system. In particular, LPA-unstable
is the same as Turing-unstable, whereas LPA-polarizable and LPA-stable regimes are
Turing-stable. This follows the analysis above, and also Mata et al. (2013); Holmes
(2014). This correspondence is illustrated in Fig. 23, where we show how the LPA
regimes from Fig. 2b lines up with Turing regimes.

In pattern-forming regimes, LPA does not help predict the exact form of the pattern.
This is most relevant to the actin feedback model, when there are many different
possible patterns and a large number of parameter regimes. Turing analysis also cannot
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predict the final pattern, but it does allow us to predict the initial precursor pattern that
forms and exists only for small t . In Fig. 24, we simulated the non-conservative model
with parameters chosen such that only a single wave number is unstable. This results
in a periodic, shallow precursor pattern which has the exact frequency as the unstable
wave number.

As the system continue to evolve, once a peak of the precursor pattern reaches
a certain amplitude, it very rapidly grows to the full size of the final pattern while
suppressing nearby peaks. Other precursor peaks farther away from the grown one
might survive longer and eventually transition to full size, or be suppressed by another
nearby peak which has transitioned sooner. These non-linear interactions cannot be
captured by Turing analysis.

In the special case that a static, periodic pattern forms, such as in the non-
conservative model, the “minimal patch size” idea from Painter and Hillen (2011),
which is based on Turing analysis, can give an upper bound on the number of periods
the pattern can have.

9 Appendix: Methods

Bifurcation plots were produced with XPPAUT (Ermentrout 2002; Doedel 1981) and
Matcont (Dhooge et al. 2003). PDEs in 1Dwere solved using finite differencemethods
with Crank—Nicolson time stepping inMatlab withΔx = 0.005,Δt = 0.0002. Plots
were produced with Matlab. PDEs in fixed 2D domain were solved using the FEniCS
(Alnaes et al. 2015) package in Python, plots and movies produced by Paraview. The
codes for both are published at https://github.com/liuyue002/Wave-pinning-model.

10 Appendix: Cellular Potts model simulations

In the CPM, a biological cell is represented by a set of contiguous lattice site in 2D
(or 3D) all assigned an index σ. (For a single cell, the index is 1 and the surrounding
medium is given an index of 0.)Herewe focused on a 2DCPMmodel cell, representing
a top-down view of a “biological cell” attached to a flat surface. We use the classic
Hamiltonian

H = λa(A − a)2 + λp(P − p)2 + J P. (6)

Here the three terms represent the energetic cost for change of area A (cell con-
traction/expansion) away from the preferred “rest area” a, a cost for elongation or
shortening of the cell perimeter P away from a preferred “rest perimeter” p, and a
term that describes an interfacial energy associated with the cell-medium interface.
The weighting factors, λa, λp, J are adjusted to set the relative importance of the
various energy terms.

The perimeter P is approximated as in Magno et al. (2015). For each cell site, we
calculate the number of lattice sites within a certain radius r (here r = 3) in contact
with the medium. Then we take the sum over all boundary sites and rescale by ξ(r)
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(here ξ(r) = 18) to obtain a perimeter approximation:

P = 1

ξ(r)

∑
x :σ(x)=1

∑
y:{|x−y|2<r2∧σ(y)=0}

1 (7)

At each Monte Carlo Step (MCS) in the simulation, points along the cell edge may
protrude or retract with some probability. Formally, this is achieved by N so-called
“copy attempts”. A copy attempt consists of selecting a random site (“source”) on
the lattice and copying the index into a random neighbouring site (“target”) from its
Moore neighbourhood. The change/copy is accepted with probability

P(ΔH) =
{
1 if ΔH + H0 < 0,

e−(ΔH+H0)/T if ΔH + H0 ≥ 0.
(8)

Here T ≥ 0 is denoted a cellular “temperature” and sets the intensity of random edge
fluctuations. H0 is a yield energy (force) to be overcome.

We start with a circular cell (12000 pixels). Assigning a nondimensional size
Δx = 0.005 to each pixel implies that cell area is 0.3. We rescaled the parame-
ters η, k, γ, α, θ, kn, ks with L2, where L = 10. CPM parameters a, p are in terms of
pixels (see figure captions).

The initial conditions are v = 2.5, u = 0 and F = 0 everywhere. We introduce a
randomly placed circular spot (radius 3 pixels) of u = 5 to represent an initial random
burst of active GTPase. Then every 100MCS we add another randomly placed spot of
elevated GTPase u = u + 15 (higher than the initial burst to prevent decay) to depict
stochastic bursts of GTPase activation in the cell.

For the model without F-actin, we have slightly different initial GTPase fields:
v = 1.1113, u = 0.3333, except in the upper left corner of the cell, with an area of
about 1/9 of the cell, we set u = 0.5454.

After every MCS we solve the RD equations for 0.001s, using dt = 10−6, so
1000 iterations per MCS. Within a MCS, after every accepted membrane exten-
sion or retraction we update the GTPase fields as follows. After an extension we
set u(target)=u(source) and subsequently rescale the level of u throughout the cell
to conserve mass. After retraction we set u(target)=0 and then u(target) is equally
distributed throughout the whole cell. The same operations are carried out for v. For
F-actin, we do the same but do not redistribute, i.e. F(target)=F(source) for extensions
and F(target)=0 for retractions.
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