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Abstract: Cardiac hypertrophy, initiated by a variety of physiological or pathological stimuli (hemo-
dynamic or hormonal stimulation or infarction), is a critical early adaptive compensatory response
of the heart. The structural basis of the progression from compensated hypertrophy to pathological
hypertrophy and heart failure is still largely unknown. In most cases, early activation of an inflam-
matory program reflects a reparative or protective response to other primary injurious processes.
Later on, regardless of the underlying etiology, heart failure is always associated with both local and
systemic activation of inflammatory signaling cascades. Cardiac macrophages are nodal regulators
of inflammation. Resident macrophages mostly attenuate cardiac injury by secreting cytoprotective
factors (cytokines, chemokines, and growth factors), scavenging damaged cells or mitochondrial
debris, and regulating cardiac conduction, angiogenesis, lymphangiogenesis, and fibrosis. In con-
trast, excessive recruitment of monocyte-derived inflammatory macrophages largely contributes to
the transition to heart failure. The current review examines the ambivalent role of inflammation
(mainly TNFα-related) and cardiac macrophages (Mϕ) in pathophysiologies from non-infarction
origin, focusing on the protective signaling processes. Our objective is to illustrate how harnessing
this knowledge could pave the way for innovative therapeutics in patients with heart failure.

Keywords: inflammation; TNFα; resident macrophages; monocyte-derived macrophages; adaptive
cardiac remodeling; heart failure; aging

1. Introduction to Short-Term Adaptive Cardiac Remodeling and Transition to
Heart Failure

Clinical studies have clearly established that any abnormal change in left ventricu-
lar (LV) geometry (concentric (thickening) or eccentric (dilation)) is associated with an
increased risk of cardiovascular disease [1]. Cardiac hypertrophy, initiated by a variety of
physiological or pathological stimuli (hemodynamic or hormonal stimulation or infarction),
is a critical early adaptive compensatory response of the heart [2]. Development of either
physiological or pathological hypertrophy depends both on the nature of upstream stimuli
and associated signaling mechanisms as well as the duration of cardiac stress [3]. Concen-
tric hypertrophy (elevated h/r geometric parameter: diastolic wall thickness to radius ratio,
associated with an increase in heart weight) has been described as an early adaptive re-
sponse to maintain a normal systolic function [4], as recently illustrated in Flamant et al. [5].
The ability of the myocardium to successfully compensate for and adapt to environmental
stress ultimately determines whether the heart will decompensate and fail or conversely
maintain preserved function [2]. Age, gender, increased blood pressure and body mass
index are key clinical risk factors of dynamic worsening. Data in humans regarding the
development of LV geometric pattern over time are relatively scarce. However, there is
substantial evidence for a potential temporal sequence of transient concentric hypertrophy
evolving over the long term toward eccentric hypertrophy, dilation, and the development
of heart failure (HF) [6,7], as already suggested in animal studies [5].
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Physiological hypertrophy (during development, pregnancy, or endurance training)
is totally reversible, characterized by mild heart growth (10–20% higher than that of
a normal heart), absence of fetal gene program reactivation, an increase in individual
cardiomyocyte growth in both length and width, angiogenesis, and the absence of apoptosis
and interstitial fibrosis [8]. In contrast, chronic cardiac hypertrophy will eventually progress
into HF, arrhythmia, and sudden death, following associated induction of apoptotic and
fibrotic responses and the disruption of coordinated tissue growth with angiogenesis [9–12].
Adaptative concentric LV hypertrophy is also observed during aging, even in apparently
healthy individuals [13]. Moreover, the left atrium enlarges and increases in volume
roughly 50% between the third and eighth decade [14], predisposing elderly subjects to
atrial fibrillation (AF).

Of note, physical exercise has a protective effect on the heart, and endurance training
improves cardiac performance in hypertensive rats by converting pathologic hypertrophy
into a more physiologic hypertrophy associated with lower apoptosis and fibrosis and
higher angiogenesis [15,16].

In case of HF, the heart is unable to pump the blood efficiently due to ineffective muscle
contraction (systolic HF) or relaxation or filling abnormalities (diastolic HF). Based on the
ejection fraction, HF patients can be classified into two major groups. Patients with impaired
systolic function are categorized in HF with reduced ejection fraction (HFrEF), whereas
patients with diastolic dysfunction, often characterized by normal systolic function, are
classified in HF with preserved EF (HFpEF). HFpEF has emerged as a critical health problem.
Its prevalence increases with aging, obesity, diabetes, and hypertension. For example, in the
setting of normal aging, HFpEF is promoted by an impairment of ventricular compliance
due to the expansion of myocardial fibrosis, and disturbances of calcium homeostasis
in hypertrophied cardiomyocytes, leading to a delayed relaxation [17]. In these elderly
patients, the contribution of atrial contraction to ventricular filling is enhanced but atrial
contractility is impaired, increasing the risk of the development of HF [18].

In most cases, early activation of an inflammatory program reflects a reparative or
protective response to other primary injurious processes [19]. Later on, regardless of
underlying etiology, HF is always associated with both local and systemic activation of
inflammatory signaling cascades [19–21]. The structural basis of the progression from well-
compensated hypertrophy to pathological hypertrophy and HF is still largely unknown [22].
Therefore, a better understanding of cellular mechanisms elicited during early remodeling
is necessary to prevent the progression to HF or favor recovery [23,24]. To achieve this goal,
there is accumulating evidence that advances in understanding the role of inflammation
in tissue remodeling are essential [25].The current review examines the ambivalent role of
inflammation (mainly TNFα-related) and cardiac macrophages (Mϕ) in pathophysiologies
related to hypertension, aortic stenosis, genetic cardiomyopathies, and sepsis or aging, with
a special focus on related protective signaling processes.

2. Cardiac Remodeling, HF, and Inflammation

The link between HF and inflammation was first recognized in 1990 by Levine [26].
Since then, proinflammatory cytokines have emerged as determinant factors for initiating,
integrating, and maintaining the myocardial response to stress [2], and there is evidence
of an ongoing inflammatory response in all the manifestations of clinical HF [27]. For
example, activation of the NLRP3 inflammasome is important for severe pressure overload-
induced myocardial remodeling [28]. Inhibition of NLRP3 signaling reverses transverse
aortic constriction (TAC)-induced pathological remodeling by attenuating hypertrophy,
inflammation, and fibrosis via inhibition of calcineurin and MAPK activities, thereby
improving contractile function [29]. Similarly, with age, high levels of oxidative stress
and associated tissue damage (including cell death and fibrosis) trigger an inflammatory
response, which importantly contributes to atrial and ventricular remodeling [30–33].

The prevailing concept has long been that inflammation, like one of its master reg-
ulator tumor necrosis factor alpha (TNFα), is harmful and precipitates transition from
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early cardiac remodeling to HF. In support for this concept, dysregulated cytokines expres-
sion (sustained and excessive), e.g., cardiac targeted TNFα overexpression, is sufficient
to produce injury and provoke overt cardiac decompensation [34–39]. Elevated levels of
TNFα have been associated with HF [26,27,40–42] and a progressive increase in serum
TNFα correlated with disease progression (according to the New York Heart Association
classification) [43,44]. By using TNFα-knockout mice, Sun et al. have demonstrated that, in
the pressure-overload TAC model, TNFα contributes to adverse cardiac remodeling [45].
Accordingly, a series of multicenter clinical trials have been conducted in HF patients
using compounds that trap TNFα, comprising infliximab, an antibody directed to TNFα,
and etanercept, a soluble recombinant receptor of TNFα. Surprisingly, outcomes were
disappointing, leading at best to no benefit, and at worst to HF worsening [46–49]. This
highlighted the revisited cytokine hypothesis of a long-term deleterious but potentially
beneficial short-term impact of inflammation [43,49,50]. In fact, a growing body of evidence
supports the notion that short-term low-level expression of pro-inflammatory molecules is
beneficial and acts as an early warning system (review in Mann [2] and Sacks [51]). This
literature reporting beneficial effects of inflammation in the early stages of cardiac injury
offers novel insights [52,53]. Interestingly, clinical studies have suggested the potential
adaptive role of TNFα in early cardiac remodeling showing that myocardial TNFα gene ex-
pression is significantly higher in patients with compensated aortic stenosis than in patients
with decompensated stenosis [54] and that elevation of circulating TNFα is associated with
concentric left ventricular remodeling [55].

Figure 1 illustrates some of TNFα signaling pathways.

Figure 1. TNFα downstream signaling pathways mediated by the two receptors, TNFR1 and TNFR2.
sTNFα, soluble tumor necrosis factor α; mTNFα, membranous tumor necrosis factor α; TACE, tumor
necrosis factor α converting enzyme; TNFR1, Tumor necrosis factor receptor 1; TNFR2, tumor necrosis
factor receptor 2; TRADD, TNFR1-associated death domain; FADD, fas-associated protein with death
domain; RIP1/3, receptor interacting protein 1/3; ROS, reactive oxygen species; MLKL, mixed lineage
kinase domain like pseudokinase; MAPK, mitogen-activated protein kinase; JNK, c-Jun N-terminal
kinases; TRAF2, TNFR-associated factor 2; JAK, Janus kinase; ETK, epithelial and endothelial tyrosine
kinase; PI3K, phosphoinositide 3 kinase; Akt, protein kinase B; STAT3, signal transducer and activator
of transcription 3.

Since its discovery in 1975, the pro-inflammatory cytokine TNFα has been a subject
of intense study [56]. TNFα is primarily produced by immune system cells, but also by
all cell types in the heart, including cardiomyocytes. TNFα signals through two distinct
membrane receptors, TNFR1 and TNFR2 [57]. TNFα exists as a membrane-bound form
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protein (mTNFα) that can be cleaved by a TNFα-converting enzyme (TACE) and released
from cells as a soluble form of TNFα, sTNFα (Figure 1). The biological effects of sTNFα and
mTNFα are not identical, with sTNFα and mTNFα preferentially activating TNFR1 and
TNFR2, respectively [58]. Both receptors require the recruitment of adaptor molecules to
initiate signaling, such as TNFR1-associated death domain (TRADD) and ubiquitin ligases
and TNFR associated factors (TRAFs). TNFR1 and TNFR2 not only function independently,
but also can influence each other via cross-talk between the different signaling pathways.
A key player in TNFR1- and TNFR2-induced signaling is the RING finger protein TRAF2,
which is recruited to both receptors upon their stimulation [59]. TRAF2 mediates cross-talk
between TNFR1 and TNFR2, dictating the outcome of TNFα stimulation [59,60] (Figure 1).
Membranous TNFR1 and TNFR2 can also be shed via cleavage by TACE and soluble
truncated forms of TNFR1 and TNFR2 may lower the concentration of TNFα available for
binding to functional cells [61,62].

2.1. TNFα, Early Adaptive Remodeling and HF

TNFα treatment has been shown to induce hypertrophy in isolated adult and neonatal
cardiomyocytes, via ROS production, NFκB, MAPK and/or Akt signaling [63–67] (Figure 1).
In line with this, TNFα overexpressing mice undergo ventricular hypertrophy, altered
cardiac contractility and develop dilated cardiomyopathy [34,36,68,69], as illustrated in
Figure 2.

Figure 2. Physiopathological impact of TNFα signaling mediated by TNFR1 and TNFR2 on cardiac
remodeling. sTNFα, soluble tumor necrosis factor α; mTNFα, membranous tumor necrosis factor α;
TACE, tumor necrosis factor α converting enzyme; TNFR1, tumor necrosis factor receptor 1; TNFR2,
tumor necrosis factor receptor 2. Macrophages are represented in blue and inflammatory monocytes
in red (inflammation panel).

In TNFα overexpressing mice, disruption of TNFR1 limits cardiac hypertrophic remod-
eling and preserves cardiac function [68]. The remaining hypertrophic response observed
after TNFR1 ablation was suggested to be driven by TNFR2 [68]. By contrast, disruption of
TNFR2 exacerbates dilation and HF [68]. In accordance, whereas cardiac restricted overex-
pression of mTNFα favors concentric hypertrophy that does not evolve towards dilated
cardiomyopathy after 24 weeks, cleavable TNFα overexpression elicits a dilated cardiac
phenotype [70,71] (Figure 2). Thus, interaction between mTNFα and TNFR2 may contribute
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to the beneficial effect of TNFR1 KO. In contrast, the interaction between sTNFα and TNFR1
may relay the deleterious effects of TNFR2 KO (Figure 2). In mice overexpressing cleavable
TNFα, TACE inhibition abrogates the LV dilation and results in an increase in LV wall
thickness, mimicking the effects observed in mice with non-cleavable mTNFα [68]. This
suggests that posttranslational processing of TNFα is responsible for the dilated cardiac
phenotype in mice with targeted cardiac overexpression of TNFα [70,71]. In addition, by
using global KO mice or AAV9-mediated troponin C targeted deletion in cardiomyocytes,
a recent study by Miao et al. demonstrates that transmembrane TNFα (mTNFα) attenuates
pressure-overload TAC cardiac hypertrophy via TNFR2 [72] and suggests that preventing
mTNFα cleavage by targeting the TNFα converting enzyme (TACE) rather than inhibiting
TNFα signaling might be a valuable approach in HF [73]. TNFα signaling contributes to
in vivo β-AR-mediated cardiac remodeling in a receptor-specific manner [74]. Unopposed
TNFR1 activation is pro-inflammatory, pro-hypertrophic, and promotes functional decline.
However, co-activation of TNFR2 during β adrenergic stress is anti-inflammatory and
counterbalances these deleterious effects [74]. As proposed by Higuchi et al. [68], the
opposite effects of TNFR1 and TNFR2 on cardiac remodeling and HF progression could
rely on their opposite regulation of Akt, a pro-survival kinase, potently inhibited by the
TNFR1-induced second messenger ceramide [75], as illustrated in Figure 3.

Figure 3. Determinant role of lipid signaling in TNFα–induced regulation of contractility, cell survival
and hypertrophy. Synergistic action of TNFα and CX3CL1 drives a concentric hypertrophic response.
sTNFα, soluble tumor necrosis factor α; mTNFα, membranous tumor necrosis factor α; TACE, tumor
necrosis factor α converting enzyme; TNFR1, tumor necrosis factor receptor 1; TNFR2, tumor necrosis
factor receptor 2; CX3CL1, fractalkine; GSH, glutathione; ROS, reactive oxygen species; FAN, factor
associated with neutral sphingomyelinase activation; N-Smase, neutral sphingomyelinase; RASSF1,
ras association domain family member 1; cPLA2, cytosolic phospholipase A2; AA, arachidonic acid;
LOX, lipoxygenase, PI3K, phosphoinosisitde 3 kinase; Akt, protein kinase B; ERK, extracellular signal-
regulated kinase; MSK1, mitogen- and stress-activated kinase 1; CamKII, calmoduline kinase II; PKC,
protein kinase C; Pi-PLB, phosphorylated phospholamban.
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TNFα also impacts intermediate filament remodeling (Figure 1). TNFα has been
reported to play a central role in end-stage HF in humans and mice, due to desmin (Des)
cleavage by activated caspase 6 [76]. Des cleavage triggers aggregates formation, leading
to intercalated disk destabilization, mitochondrial defects, cell death, and HF [77]. In TNFα
overexpressing mice also expressing a caspase cleavage-resistant Des mutant (D263E),
cardiac myocyte apoptosis was attenuated, LV wall thinning was prevented, and cardiac
function was improved. This reveals an important role for Des cleavage in the development
of TNFα-induced dilated cardiomyopathy and HF [77]. However, surprisingly, crossing
the following two genetic HF models, namely TNFα overexpressing and Des−/− mice,
results in a considerable rescue of the typical Des−/− extensive myocardial degeneration:
mice display early cardiac hypertrophy, but prevention of adverse dilated remodeling and
alteration of fractional shortening [78]. TNFα overexpression exerts a cardioprotective
function through NF-κB-mediated cardiomyocyte ectopic expression of keratin 8 (K8) and
keratin 18 (K18), two simple epithelia-specific intermediate filament (IF) proteins at the
IDs [78]. The global nature of K8 and K18 ectopic protective induction was confirmed in
stressed or failing cardiomyocytes by using experimental models of HF such as TAC or
infarction, or in cardiomyocytes from human failing hearts, and associated with TNFα
upregulation [78]. The mechanism of protection by TNFα through formation of a potential
de novo alternative IF cytoskeletal system allowing to compensate for Des deficiency, could
be through maintenance of mitochondrial function and intercalated disks integrity [78].

2.2. TNFR and NF-κB Signaling, Cell Survival and HF

NF-κB plays an essential role in cardiac remodeling and HF, essentially driven by
two main pathways: the canonical pathway (involving p65, p50 and/or cRel protein
members) and the non-canonical pathway (involving p52 and/or RelB) [79]. Activation
of NF-κB relies on the nuclear translocation of homodimer or heterodimer forms of its
members [79]. Increased activity and/or expression of NF-κB may participate in both
cardioprotection (e.g., anti-apoptotic) [80,81], or in the development of heart diseases,
as detailed in [79]. For example, the transition of cardiac hypertrophy to HF may be
accompanied by NF-κB-mediated suppression of the sarcoplasmic reticulum Ca2+ ATPase 2
(SERCA2) transcription in ventricular myocytes [82]. NF-κB activation also mediates aging
in the heart [83–85]. Different translocation patterns of NF-κB protein members were
observed in aged murine models, but inhibition of NF-κB was generally suggested as
protective [83–85]. In patients with valvular disease, higher NF-κB activity, higher TNFα
levels, and more fibrosis characterized those with atrial fibrillation as compared to patients
with sinus rhythm [86]. However, in other clinical studies, a loss of function mutation of
NF-κB was considered either to confer susceptibility to left ventricular dysfunction [87], or
to facilitate the onset of HF or worsen its prognosis [88]. These opposing findings suggest
contrasting regulatory effects of the different NFkB members with complex outcomes.

TNFR1 is a death receptor, as its structure includes a death domain [60]. TNFR1
activates the canonical NF-κB pathway and the JNK/p38 MAP kinase pathway leading
to either 1) inflammatory cytokines production or survival or 2) apoptosis or necroptosis,
depending on receptor interacting protein 1/3 (RIP1/3) ubiquitination [60,80,89] (Figure 1).
TNFR2 (lacking the death domain) can activate both the canonical NF-κB pathway (but
to a lower extent as compared to TNFR1) and the non-canonical NF-κB pathway, mostly
resulting in cell survival and proliferation [60]. A pro-survival signaling pathway termed
the SAFE pathway (for survivor activating factor enhancement), involving TNFR2/STAT3
signaling, has also been identified to protect against MI [90]. The scaffolding protein TRAF2
may facilitate cytoprotective signaling downstream of both TNFR, playing a prosurvival
key role to transduce activation of kinases and transcription factors [91–93] and promoting
mitochondrial autophagy [94] (Figure 1).
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2.3. TNFα, Contractile Function and HF
2.3.1. The Neutral Sphingomyelinase, a Determinant of TNFR1 Deleterious Signaling

Lipid signaling plays a determinant role in TNFα-induced regulation of cardiac re-
modeling, as illustrated in Figure 3.

TNFα is essentially considered as a cardio-depressant mediator [95–97]. It has been
shown to induce oxidant stress [98], to cause a drop in glutathione (GSH) levels, and to
increase ceramide production through neutral-sphingomyelinase (N-Smase) activation (en-
zyme that converts sphingomyelin to ceramide). These mechanisms precede and regulate
its depressant effects [95,99,100].

In control cardiac myocytes, TNFR1-dependent responses are predominant, over-
whelming TNFR2 signaling but seem to be under the yoke of TNFR2, acting as a limiting
factor [101]. TNFα exerts a dual positive and negative action on cell fractional shortening
and alters cell survival [101–105]. The negative inotropic effect exerted by TNFα is thought
to be mediated by TNFR1 [57,101,106]. In cardiomyocytes, activation of the N-Smase medi-
ates TNFα-induced apoptosis and negative contractile effect [99,100,102,107]. This TNFα
depressant effect is reproduced by sphingosine and suppressed by a specific inhibitor of
ceramidase (enzyme that converts ceramide to sphingosine) [107] (Figure 3).

Glutathione is the physiological inhibitor of the neutral sphingomyelinase [99]. Ad-
ministration to rats of the GSH precursor N-acetylcysteine (NAC) abrogates TNFα-induced
N-Smase activation, oxidative stress, and negative effects on contraction in isolated car-
diomyocytes [102]. One can speculate that glutathione status determines the adverse effects
of TNFα in cardiac failure and that TNFα antagonism may be achieved by glutathione
supplementation. In agreement, NAC, given orally as a curative treatment, replenishes
cardiac GSH content, normalizes serum TNFα, and prevents morphological and functional
cardiac injuries in the hypertensive high salt/L-NAME rat model. Of note, the NAC effect
likely derives both from GSH-induced N-Smase direct inhibition [99,108] and from GSH
anti-oxidant action [99] (Figure 3).

Treatment with a neutralizing anti-TNFR1 antibody or the GSH precursor, NAC,
favors the emergence of the TNFR2 signaling, driving a positive effect on cell fractional
shortening [101]. Thus, NAC treatment is proving a valuable anti-inflammatory tool to
neutralize TNFR1-dependent signaling [101,102] and promote the emergence of TNFR2
pathways. In contrast, neutralizing anti-TNFR2 antibodies exacerbates TNFα-induced ROS
production, negative inotropic impact and cell death, arguing for a protective role of the
TNFR2 pathway and a TNFR1 and TNFR2 signaling interplay [101].

2.3.2. The Cardiac cPLA2, a Determinant TNFR2 Protective Signaling Pathway:
Involvement in β2-Adrenergic Signaling and Relationship with PI3Kinase Activity

Phospholipase A2 enzymes (PLA2s) catalyze the hydrolysis of the sn-2-fatty acyl ester
bonds of membranous glycerophospholipids, leading to the liberation of lysophospho-
lipids and free fatty acids including arachidonic acid (AA) [109,110].There is accumulating
evidence for the determinant role of the cytosolic PLA2 (cPLA2)/AA pathway in cardiac
TNFα signaling. AA activates N-Smase activity [111] (Figure 3). Thus, the TNFR1-induced
negative contractile effect of TNFα is reproduced by high concentrations of AA [112]. In
contrast, low concentrations of AA mediate TNFR2 signaling, leading to an improvement of
the contractile function [108] (Figure 3). MacEwan’s group highlighted distinct regulations
of the cPLA2 phosphorylation, proteolysis and activation by TNFR subtypes [113]. In addi-
tion, Mohamed et al. demonstrated the essential role of the RASSF1 (Tumor Suppressor
Ras-Association Domain Family Protein 1A) adaptor protein in regulating downstream
TNFα signaling via cPLA2 [103]. In adult rat cardiomyocytes, the study by Defer et al.
identified a TNFR2-dependent activation of the cPLA2 together with the phosphorylation
of ERK, MSK1, PKCζ, CAMKII, and phospholamban (Thr17 residue), leading to a positive
action on calcium cycling and cell fractional shortening [101] (Figure 3).

Accumulating evidence highlights the cross-talk between inflammatory cytokines and
sympathetic systems [61,114]. The sympathetic nervous system serves as one of the first
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mechanisms of compensation in response to cardiac injury. β-adrenergic receptor (β-AR)
signaling defects are central features of human HF, with a selective decrease in β1-ARs
number, and an impairment of the coupling of both β1-ARs and β2-ARs to Gs and adenylyl
cyclase (AC) [115]. In a manner similar to TNFR2 signaling, the cPLA2 pathway has also
been reported to play an important cardioprotective role in β2-AR signaling [116–120].
In homeostatic conditions, in embryonic chicks [117], and in adult rats [116] ventricular
myocytes, β2-AR stimulation activates cPLA2/AA signaling, supporting calcium cycling
and cell contraction. In the context of HF, the recruitment of the cPLA2 by β2-AR in the
human heart has been evidenced in situations of altered β-AR (both β1-AR and β2-AR
subtypes) coupling to AC/cAMP/PKA signaling [119]. Importantly, this suggested that
cPLA2 signaling might compensate for impaired cAMP/PKA signaling occurring in aging
or failing hearts [118,119]. In line with this, the group of Lipsius recently demonstrated that
inhibition of PKA by phosphatidylinositol-3-kinase (PI3kinase) favors β2-AR stimulation of
cPLA2 [121]. This study illustrates the potential association between cPLA2 signaling and
activation of the PI3Kinase [121], a downstream target of β2-AR signaling initially identified
by Xiao et al. [122] driving a strong cell survival signal in adult rat cardiomyocyte [123,124].
Similarly, the TNFR2 pathway has been associated not only with cPLA2 activation but also
with PI3K stimulation [125]. Whether TNFR2-dependent activation of PI3Kinase favors
cPLA2 signaling remains to be investigated.

By using cPLA2 knockout mice, the group of Bonventre and Force has shown that
cPLA2 mitigates both normal and TAC-induced cardiac pathological hypertrophy, limiting
growth factor IGF1 signaling, via AA-induced translocation to the membrane and activation
of PKCζ and PDK1, pivotal players in cardiac hypertrophy [126,127]. However, cPLA2
metabolites have also been implicated as positive regulators of cardiac growth [128,129].
Concerning the TNFα signaling, the cPLA2 pathway also plays a role in modifications of
Ca2+ handling remodeling that drive TNFα-protective hypertrophic and anti-apoptotic
responses in hypertrophied cardiomyocytes [130,131] (Figure 3). Our group highlighted a
TNFα/TNFR2-dependent signaling leading to ORAI3-dependent Ca2+ channel activation
promoting early adaptive cardiac hypertrophy (ECH) and resistance to oxidative stress in
rats subjected to isoproterenol infusion or abdominal aortic banding [130,131]. Of note,
the regulation of ORAI3 by TNFα is detected in hypertrophied cardiomyocytes but not in
normal counterparts. ORAI3-driven store-independent Ca2+ influx relies on cPLA2 activa-
tion [131], initial AA production and further AA metabolism via the lipoxygenase (LOX)
pathway [131–133] (Figure 3). ORAI3 pharmacologic or molecular (siRNA) neutralization
inhibits protective GSK3β phosphorylation, impairs early adaptive cardiac hypertrophy
and accelerates HF [131].

2.4. Combined Signaling of TNFα with the CX3CL1 Chemokine

Unrelated to this previously identified TNFR2-ORAI3 pathway, our recent study
shows that synergistic action of TNFα with the chemokine CX3CL1 promoted adaptive
cardiac concentric hypertrophy in response to early β-AR chronic stimulation and limited
transition toward eccentric dilated remodeling (low h/r geometric parameter) and HF [5].
This newly identified compensatory TNFα signaling relied on binding to TNFR1 (Figure 3).
These results illustrated the protective role of the CX3CL1/CX3CR1 axis in early cardiac
remodeling. Other studies have reported that CX3CL1 increases endothelial and smooth
muscle cell migration and proliferation and acts as a proangiogenic factor that favors
neovascularization [134]. Importantly, our results suggested the participation of TNFα,
CX3CL1-cosecreting Mϕ and their crosstalk with CX3CR1 expressing cardiomyocytes to
delay HF [5].

3. Innate Immunity, Cardiac Remodeling and HF

Recent developments in the field of innate immunity have further advanced our un-
derstanding of the major role of inflammation in the pathogenesis of HF [27] or aging [135].
In particular, cardiac remodeling is a complex inflammatory syndrome where Mϕ play
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a determinant role. Mϕ reside in the tissue in the absence of injury and inflammation,
but also play a major role following myocardial stress, where they can be protective or
harmful [136,137]. Mϕ influence tissue homeostasis, repair and regeneration in response to
injury and modulating cardiac hypertrophy and HF [138–140]. These plastic cells adapt
their physiology in response to cardiac and systemic stimuli. They are crucial in controlling
and regulating the local tissue microenvironment, the matrix, oxygen content, acidification,
and other molecular components (e.g., cytokines, growth factors, and chemokines) associ-
ated with micro-environmental shifts [141]. Mϕmetabolism, including lipid metabolism,
not only provides energy but also greatly influences Mϕ phenotype and function, for
example modulating signal transduction and gene regulation [142]. Dysregulation of lipid
metabolism in Mϕ is associated with various diseases [142].

Mϕ have been extensively implicated in the inflammatory response to myocardial
infarction (MI) [143]. A growing body of evidence suggests that they also play a critical role
in the pathogenesis of chronic non-ischemic heart remodeling, e.g., after TAC [144–147].

Striking increases in the accumulation of recruited inflammatory Mϕ in the heart
within days to weeks following TAC, are linked to fibrosis and adverse LV remodel-
ing [148,149]. In agreement, clodronate-induced Mϕ depletion decreases infiltration of
inflammatory Mϕ and reduces LV hypertrophy in a model of hypertensive heart disease
elicited by angiotensin II [150]. These studies are consistent with and further support the
notion that inhibition of inflammatory signals is effective at preventing HF development
after an increase in mechanical overload [28,147].

However, other studies have shown that the inflammatory response induced by the
innate immune system can be physiological and results in the upregulation of cytoprotective
responses that allow the heart to adapt to stress in the short term [2]. For instance, the
study by Keck et al. points out inflammation arising from cardiac resident CD11b/c cells
as a potential trigger of TNFR2- and ORAI3-dependent protective signaling pathways in
cardiomyocytes, promoting early adaptive hypertrophy, improving resistance to oxidative
stress, and delaying transition to HF, in response to TAC-induced pressure overload or
β-adrenergic chronic infusion [131].

Therefore, cardiac Mϕ are an emerging focus for therapeutic strategies aimed at
strengthening adaptive responses, minimizing cardiomyocyte death, ameliorating patho-
logical cardiac remodeling, and for treating HF [151].

4. Macrophages Subsets and Cardiac Remodeling

Metchnikov first described Mϕ as phagocytic cells and key mediators in the phagocy-
tosis theory in the late 1880′s [152] and received the Nobel prize in Physiology or Medicine
for his work in 1908. Cardiac Mϕ comprise 5–10% of total myocardial cells and are the most
abundant leukocyte species in the heart [153,154]. In mice, their identification is based on
“classical” surface markers (F4/80, CD64, CCR2, CX3CR1, MERTK, Ly6C, MHCII, CD206),
novel markers (LYVE1 and TIMD4) or intracellular (CD68) molecule expression [155,156].

For years Mϕwere thought to derive exclusively from circulating monocytes becoming
tissue-resident after infiltration and differentiation [157]. We now know that many Mϕ
from embryonic origin integrate tissues prior to the onset of hematopoiesis [158,159]. Thus,
cardiac tissue Mϕ, either derive from embryonic origin independent of hematopoiesis
(CCR2

−/Ly6Clow/MHCIIlow/high) and persist in adultwood through in situ proliferation,
or originate from monocyte infiltration (CCR2

+/Ly6Chigh/MHCIIhigh) and replenish by
circulating monocyte seeding [160]. Equivalent Mϕ subpopulations (CCR2

− and CCR2
+)

were identified in the human heart [161]. During aging, the number of fetal liver-derived
cardiac resident Mϕ decreases and a substantial pool of adult cardiac Mϕ is replenished
by Mϕ derived from bone marrow or spleen monocytes, suggesting an age-associated
decrease in the local self-renewal capacity of resident CCR2

− Mϕ [135,160,162].
Current knowledge gives clear evidence that the different cardiac Mϕ populations are

plastic, display various responses to injury, and differentially regulate repair processes. It
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thus appears that a timely planned targeting of specific subsets of Mϕ will probably be
necessary to achieve beneficial results in HF.

Strikingly, recent mapping and genetic depletion studies allowed to begin to decipher
the functional roles of various Mϕ populations and identify functions far beyond a phago-
cytic and immunologic role, e.g., maintaining mitochondrial function, facilitating cardiac
conduction, and promoting coronary development and lymphangiogenesis [136,163].

Figure 4 illustrates the impact of cardiac resident Mϕ in adaptive cardiac remodeling.

Figure 4. Induction of adaptive cardiac remodeling by resident CCR2
− Ly6Clow macrophages. CCR2,

C-C motif chemokine receptor 2; Ly6C, lymphocyte antigen 6 complex; IL4, interleukin 4; IL10, inter-
leukin 10; GDF15, growth differentiation factors 15; CX3CL1, fractalkine; KLF4, Kruppel-like factor 4;
MERTK, myeloid-epithelial-reproductive tyrosine kinase; MYDGF, myeloid derived growth factor;
IGF1, insulin-like growth factor-1; TGFβ, transforming growth factor β; MMPs, metalloproteinases;
PDGF, platelet-derived growth factor; VEGF, vascular endothelial growth factor; FGF2, fibroblast
growth factor 2; AREG, amphiregulin; EGFR, epidermal growth factor receptor; Cx43, connexin 43.
Resident macrophages are represented in blue and inflammatory monocytes in red (inflammation
and lymphangiogenesis panels). Positive (green line) and negative (red line) regulations.

4.1. Resident Mϕ Are Requisite for the Adaptive Response to Pressure Overload or Hypertension

An increase in pressure overload (e.g., TAC model) triggers an early concentric hy-
pertrophic response of the myocardium. Cardiac-resident Mϕ with low expression of
Ly6C, generally considered as predominantly anti-inflammatory, were identified as crit-
ical mediators of this adaptive response by cardiomyocytes [164] (Figure 4). In contrast,
a consensus seems to indicate that recruited pro-inflammatory CCR2

+ Mϕ, rather than
resident CCR2

− Mϕ, mediate pathological hypertrophy during the late phase of pressure
overload [147,165,166].

Global depletion of Mϕ in the setting of hypertension worsens cardiac function but
improves fibrosis suggesting dual protective and pathological functions of diverse Mϕ
populations [165,167–169]. Monocyte-derived Mϕ (CCR2

+) promote tissue damage and
fibrosis in hypertension [170,171], as illustrated in Figure 5.
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In contrast, a potential protective role of self-renewing resident-Mϕ (CCR2
−) has

emerged from recent studies [137,156,169,172,173] (Figure 4).

Figure 5. Induction of heart failure by monocyte-derived CCR2
+ Ly6Chigh macrophages. CCR2, C-C

motif chemokine receptor 2; Ly6C, lymphocyte antigen 6 complex. Positive (green line) and negative
(red line) regulations. Monocyte-derived inflammatory macrophage represented in red.

4.1.1. Protective Growth Factor Secretion by Resident Mϕ
IGF1

Adaptive cardiomyocyte growth allows the myocardium to withstand hypertensive
stress. Fate-mapping approaches, genetic ablation of resident Mϕ or specific deletion of
IGF1 in resident Mϕ recently highlighted that the ability of the heart to adapt to hyper-
tension is dependent on local IGF1 produced by resident Mϕ [169]. Selective reduction
of resident Mϕ abolishes adaptive cardiomyocyte growth and leads to adverse remodel-
ing (fibrosis), dilation, and severe cardiac dysfunction [128,129]. Of note, IGF1 was also
previously identified as a potential mediator of the proangiogenic properties of embryonic-
derived Mϕ [174] (Figure 4).

In a mouse model of chronic dilated cardiomyopathy harboring a causative human mu-
tation of the troponin T2 gene, Wong et al. demonstrate that CCR2

− Mϕ, that interact with
neighboring cardiomyocytes through focal adhesion complexes, sense mechanical stretch.
This triggers their activation through a transient receptor potential vanilloid 4 (TRPV4)-
dependent pathway and enhances their growth-factor expression, notably IGF1 [175]. This
mechanism supports the determinant early protective role of CCR2

− Mϕ in adaptive re-
modeling, coronary angiogenesis, cardiac output maintenance, and mice survival [175].
Wong et al. confirmed the CCR2

− Mϕ-induced adaptive protection in a TAC model [175].

AREG/EGFR

The group of Manabe elegantly demonstrated that Ly6Clow Mϕ, upregulated in
the TAC model, secrete amphiregulin (AREG), which directly induces hypertrophy of
neonatal cardiomyocytes in vitro [164]. In addition, AREG, produced by resident Mϕ,
controls connexin-43 (Cx43) phosphorylation and localization in cardiomyocytes, and there-
fore regulates cardiac impulse conduction [176] (Figure 4). The involvement of EGFR, a
low-affinity receptor for AREG, and activation of a MEK/ERK pathway is suggested by
Sugita et al. [176]. Thus, AREG is proposed as a potential therapeutical target for the pre-
vention of arrhythmogenicity and sudden death after right ventricle or acute β adrenergic
stress [176]. Notably, Son et al. describe a decrease in LV Areg mRNA expression in patients
who suffered sudden cardiac death [177]. This points out a new protective mechanism in
addition to the direct capacity of resident Mϕ to connect to cardiomyocytes through Cx43-
containing gap junctions that influences propagation of electrical signals and contributes
to cardiac conduction in the AV node, previously identified by Hulsman et al. [178–180]
(Figure 4).
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However, activation of the AREG/AKT/mTOR pathway by using a chronic treatment
with a GABA2R agonist has been shown to increase MHCIIhigh vs. MHCIIlow Ly6Clow

Mϕ, and favor not only hypertrophy but also the development of cardiac fibrosis and the
transition from concentric adaptive to eccentric remodeling. This suggested, in the long
term, a potential participation of the pathway in cardiac decompensation and HF [181].

MYDGF

In contrast, some anti-hypertrophic inflammatory stimuli are beneficial and mediate
adaptation to pressure overload [52]. By using the TAC model, the group of Wollert recently
demonstrated that myeloid-derived growth factor (MYDGF), secreted by both CCR2

high

and CCR2
low Mϕ, attenuates LV hypertrophy and dysfunction via activation of the Pim1

proto-oncogene (PIM1) kinase and enhancement of SERCA2a expression [52,182]. Of
note, MYDGF expression by both CCR2

high and CCR2
low subsets of Mϕ is in line with the

notion that these subsets exert distinct and partially overlapping functions [147,165,182,183].
MYDGF is a paracrine protein produced by bone marrow- and spleen- derived mononuclear
monocytes and Ly6Clow cardiac Mϕ, as initially demonstrated [184], but also by endothelial
cells, as more recently suggested [185]. MYDGF reduces scar size and improves heart
function after MI via the MAPK-STAT3 signaling pathways, favoring endothelial cell
proliferation and angiogenesis and limiting cardiomyocytes apoptosis [184] (Figure 4).
MYDGF also promotes post-MI heart regeneration in neonates and adults by favoring
cardiomyocyte proliferation and expansion via the c-Myc/FoxM1 pathway [185]. MYDGF
is a promising target to reverse cardiac remodeling and HF because, in mice models,
recombinant MYDGF protein improves heart regeneration both in neonatal and adult heart
after MI or TAC injury [182,184,185]. Of note, MYDGF levels are increased in both heart
and plasma post-MI patients [184].

GDF15

GDF15 is a particularly interesting growth factor, described as protective in cardio-
vascular diseases. This cardiac-inducible factor is upregulated with aging or after various
cardiovascular events linked to inflammation and oxidative stress [186] and is secreted
by different cell types including cardiomyocytes and Mϕ [187]. Exposure of Mϕ to pro-
inflammatory cytokines such as TNFα and TGFβ upregulates GDF15 expression [188].
Although GDF15 was reported to be induced in a pressure-overload murine model, its
cardiac-specific overexpression antagonizes the hypertrophic response and the loss of
ventricular performance [189]. GDF15 exerts anti-inflammatory effects by 1) limiting the re-
cruitment of infiltrating pro-inflammatory cells through direct interference with chemokine
signaling and integrin activation [190] and 2) promoting the M2 polarization of Mϕ [191]
(Figure 4). Chronic increase in circulating GDF15 levels have been reported both in HFpEF
and HFrEF patients [187], and GDF15 has recently emerged as a strong and independent
biomarker for identifying patients displaying HF with midrange or preserved EF with a
worse prognosis [192].

VEGFc-d and FGF2

The lymphatic system has recently emerged as an important regulator of the interstitial
fluid compartment, the immune cell transport and tissue remodeling during cardiac pathol-
ogy and is under the control of Mϕ populations [163,193,194]. A dysfunctional lymphatic
system promotes exacerbation of chronic inflammation and long-term deterioration of
cardiac function after MI [195]. Inversely, stimulation of lymphangiogenesis by VEGFc
treatment after MI was found to reduce fibrosis and inflammation and to improve cardiac
function [195]. A peculiar CCR2

low FLT3
low Mϕ population (L+), that renews by in situ

proliferation, and secretes pro-lymphangiogenic growth factors VEGFc-d and FGF2, has
been identified in a TAC model and was shown to be associated with preservation of the
lymphatic network during cardiac remodeling [163] (Figure 4). The lymphatic system’s
ability to recruit and transport immune cells to drain lymph nodes during pressure over-
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load depends on LYVE-1 expression on lymphatic endothelial cells, acting as a docking
receptor for hyaluronic acid-coated leukocytes [163,195]. The reduction of CCR2-dependent
monocyte recruitment during TAC using a CCR2 antagonist abrogates the loss of LYVE-1 on
lymphatic endothelial cells, enhances L+ Mϕ proliferation, reduces fibrosis, and improves
cardiac function [163] (Figure 5).

In addition, VEGF secreted by resident Mϕ is a well-known key mediator of angio-
genesis, e.g., in response to TAC [172,173] (Figure 4).

We have recently performed a transcriptomic analysis comparing genes expressed by
Mϕ isolated from early compensated (ECH) or failing (HF) hearts [141]. Interestingly, we
identified panels of hypertrophy-related genes selectively regulated in ECH Mϕ (Rcan1,
Pik3ip1) or HF Mϕ (Adam22, Tet2, Map3k2, Sik1) and thus potentially associated with
compensated or failing hypertrophy remodeling, respectively. In addition, ECH Mϕ
were characterized by an induction of Egfr mRNA expression, whereas HF Mϕ displayed
upregulated Igfbp4 (insulin-like growth factor binding protein 4), a negative regulator of
IGF1 signaling [141]. Such genomic or proteomic approaches may constitute the basis for
future, more in-depth studies to identify important Mϕ-related pathways interfering in
cardiac remodeling as well as to characterize biomarkers associated with early vs. late
disease progression [141,196–199].

4.2. Protective Phagocytic Activity of Cardiac Mϕ

Overwhelming evidence from both preclinical and clinical studies indicates bioener-
getics insufficiency in HF [200]. Thus, mitochondrial dysfunction seems to be an important
target for therapy to directly improve cardiac function [200]. Interestingly, cardiac Mϕ reg-
ulate myocardial homeostasis through effects on mitochondrial homeostasis [201]. MERTK
expression is associated with anti-inflammatory and phagocytic Mϕ functions. A recent
study recently described that defective mitochondria debris are routinely ejected from car-
diomyocytes as particules whose elimination is ensured by resident MERTK+ Mϕ, enabling
to preserve metabolic stability and ventricular function [201] (Figure 4).

With aging, cardiac cells that express senescence markers and display a so-called
senescence-associated secretory phenotype (SASP) accumulate in the myocardium, [202,203].
To maintain tissue homeostasis, the removal of senescent cells in a timely manner is crucial
and pharmacological senolytic treatment using navitoclax has been shown to reduce hy-
pertrophy and fibrosis in hearts from aged mice [204]. The SASP cells secrete a complex
combination of growth factors such as GDF15, proteases, chemokines such as monocyte
chemoattractant protein (MCP)-1, -2 and -4 and Mϕ inflammatory protein (MIP)-1a and
-3a, matrix metalloproteinases, and pro-inflammatory cytokines. They perpetuate a pro-
inflammatory signaling loop and play a role in their own death, promoting the recruitment
of immune cells, including Mϕ which function collectively to clear the senescent cells
(Figure 4). However, the immune response declines with age (“immunosenescence”), and,
as a result, the clearance of senescent cells is impaired [205].

4.3. Protective Signals Favoring Proliferation of Resident Mϕ

In the TAC model, resident Mϕ initially proliferate and support angiogenesis in a
KLF4-dependent manner [165]. This process has been proposed to be driven by renal CSF2
(colony stimulating factor 2) [164,165] (Figure 4).

In contrast, in response to β adrenergic-induced cardiac remodeling, our group re-
cently reported that an early activation of the CX3CL1/CX3CR1 axis supported cardiac
resident Mϕ proliferation and delayed transition to HF [5] (Figure 4). This transient ben-
eficial impact relied on the emergence of CX3CL1- and TNFα-cosecreting resident Mϕ
and their crosstalk with CX3CR1-expressing cardiomyocytes, leading to compensatory
concentric hypertrophy [5]. Of note, CX3CL1 has also been previously described as a
proangiogenic factor [134] (Figure 4).
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4.4. Exosomes, Mir and Cardiac Mϕ

Paracrine intercellular communications between cardiac cell types also occur via
exosomes (secreted extravesicular vesicles) and the exchange of miRNAs (small noncoding
RNAs that inhibit gene expression of complementary target genes at the posttranscriptional
level). For example, Mϕ exosome-derived miR-155 suppresses fibroblast proliferation,
decreases collagen production promoting function alteration and cardiac rupture after
MI [206]. It also favors pro-inflammatory Mϕ polarization and cardiac monocyte infiltration
inducing hypertrophy and failure in hypertensive models [207]. Mϕ exosome-derived
miR-21 drives pressure overload-induced cardiac fibrosis and dysfunction [208].

In contrast, recent literature highlights the concept that M2-exosomes-derived miR-
24-3p targets the TNFα superfamily member Tnfsf10 (TRAIL) to reduce myocardial injury
after sepsis, improving cardiac function [209] (Figure 4).

Promising results from preclinical studies point out treatments with miRNAs or
antagomir deliveries as new potential therapeutic approaches to limit HF. For example, the
use of a specific miR-21 antagomir allowed researchers to achieve indefinite cardiac allograft
survival abrogating chronic allograft vasculopathy. Treatment with MiR-21 antagomir also
led to a reprogramming of Mϕmetabolism, with a shift toward oxidative phosphorylation,
resulting in an increase in M2-like Mϕ [210]. Similarly, miR-21 antagomir was shown to
limit inflammation and attenuate histological and echocardiographic effects of experimental
autoimmune myocarditis [211].

4.5. Immune Response and Fibrosis in Aging and Myocardial Diseases

Fibrosis may reflect activation of reparative or maladaptive processes. Because the
adult mammalian heart has negligible regenerative capacity, death of a large number of
cardiomyocytes results in reparative fibrosis, a process that is critical for preservation of the
structural integrity of the infarcted ventricle. Pathophysiologic stimuli, such as pressure
overload, volume overload, metabolic dysfunction, and aging may cause interstitial and
perivascular fibrosis in the absence of infarction [212]. The potential protective role of
replacement fibrosis to maintain cardiac function during the first steps of aging has been
documented in EMMPRIN−/− aged mice, (a matrix metalloprotease (MMP) inducer), that
develop an aberrant extracellular matrix remodeling characterized by a loss of collagen
deposition associated with a dilated cardiopathy as early as 12 months of age [213].

However, excessive cardiac fibrosis becomes a key driver of HF, a common patho-
physiologic companion of most myocardial diseases, associated with systolic and diastolic
dysfunction, aging, arrhythmogenesis, and adverse outcome [212].

For example, with aging and its associated evolution towards a low-grade oxygen
environment, cardiomyocytes release pro-inflammatory cytokines and chemokines, stimu-
lating an immune response. This leads to the increase in cardiac monocyte-derived CCR2

+

Ly6Chigh Mϕ [31,214,215], referred as “inflammaging” [31,162,216], promoting fibrosis
(Figure 5).

Cardiac Mϕ secrete stromal cell proteins and are directly involved in ECM remodeling
by producing inflammatory cytokines, TGFβ, PDGF, osteopontin, MMPs, and their in-
hibitors. They actively participate in the process of transformation of quiescent fibroblasts
to myofibroblasts [135,212,217,218]. Anti-inflammatory cytokines, e.g., IL4 mainly secreted
by resident Mϕ, are also associated with profibrogenic properties. In the TAC model, IL4
neutralization attenuates fibrotic changes [219]. IL4 may exert direct fibrogenic actions
by stimulating collagen synthesis in cardiac fibroblasts through activation of STAT6 [220].
Data concerning IL10 are conflicting with reported anti- and pro-fibrogenic related effects.
It has been suggested that the final impact of IL10 may depend on the balance between anti-
inflammatory and pro-fibrotic actions. For example, during the resolution phase of injury,
“resolving” Mϕ can secrete IL10 that exerts protective roles against cardiac fibrosis [212].

In patients with cardiomyopathy, CCR2
− Mϕ seem to locate near the coronary vascu-

lature, similarly to what has been reported for mice, whereas CCR2
+ Mϕ occupy fibrotic

areas [161]. Cardiac-resident Mϕ were reported to limit cardiac fibrosis in a pressure
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overload model [172] (Figure 4). Interestingly, Deniset et al. describe the pericardial cavity
as an important source of resident Gata6+ Mϕ that migrate into the heart, limit fibrosis
of healthy myocardium, and improve functional cardiac recovery after ischemic injury,
preventing detrimental repair caused by excessive fibrosis [221].

5. Future Directions

The overall analysis of the literature related to cardiac remodeling and transition to HF
clearly outline the Janus nature of the inflammatory response, being either cytoprotective
or detrimental, as well as the dynamic aspect of its impact. Therapeutic targeting of the
NLRP3 inflammasome or of downstream IL1β signaling in patients with HF have been
evaluated in clinical trials, making this pathway a promising target [222]. For example, the
CANTOS study showed a significant reduction in HF-associated risk of hospitalization
or HF-related mortality in patients treated with the IL1β inhibitor canakinumab [222,223].
In contrast, following the failure of global anti-TNFα strategies in HF patients, the devel-
opment of novel classes of drugs selectively targeting TNFRs, e.g., selective blocking of
sTNF/TNFR1 signaling which will preserve functional mTNF/TNFR2 signaling, or com-
bination therapies using sTNF/TNFR1 antagonists together with TNFR2 agonists, might
represent a novel superior therapeutic concept to treat a multitude of inflammatory and
degenerative diseases including HF [224,225]. Supplementation in glutathione (with NAC)
and/or inhibition of TACE activity might constitute additional valuable strategies to limit
deleterious sTNF/TNFR1 signaling and promote TNFR2 pathways [72,73,101,108,226].

Cardiac Mϕ are an emerging focus for therapeutic strategies aiming at strengthening
adaptive responses, minimizing cardiomyocyte death, ameliorating pathological cardiac
remodeling, and for treating HF [151]. Current knowledge clearly shows that the different
cardiac Mϕ populations are plastic, display various responses to injury, and differentially
regulate inflammation and repair processes. Therapeutically, accumulating evidence indi-
cates that strategies that will preserve or enhance the functions of CCR2

− Mϕ and/or limit
infiltration of CCR2

+ monocytes, may provide additive benefit to established medications
for HF. However, from studies examining cardiac remodeling after infarction, it clearly ap-
pears that keeping a time-dependent balance in the work of different subtypes of immune
cells is crucial for successful heart healing and remodeling. In fact, the maintenance of
early inflammatory activity is as important as the subsequent promotion of resolution and
repair mechanisms after infarction [227]. In keeping, a timely planned targeting of specific
subsets of Mϕwill probably be necessary to achieve beneficial results in all types of cardiac
pathologies. In this context, recent studies suggest that achieving the optimal recruited
monocyte/resident Mϕ loading after cardiac injury represents a therapeutic opportunity
that might be achieved by targeting the cardiac lymphatic system to spatiotemporally
constrain the innate immune response [163,195].

Recent transcriptomic and single-cell RNA sequencing studies allowed an evalua-
tion of the progressive reprogramming of Mϕ during cardiac remodeling. This led to the
uncovering of potential specific properties of Mϕ isolated from early adaptive vs. late
failing hearts and to identify clusters of phagocytes with distinct gene expression profiles
among which some are characterized by a mixed expression of pro-inflammatory and
anti-inflammatory marker-genes, further emphasizing oversimplification of Mϕ catego-
rization into M1 and M2 cells [141,196,227–229]. Early adaptive resident Mϕ amplified in
response to β-AR stimulation were characterized by an induction of anti-inflammatory,
pro-phagocytic and pro-angiogenic gene markers [141]. There is accumulating evidence
that growth factor secretion plays a cardinal role in their protective impact in cardiac
remodeling [230,231]. One of the modern concepts is that metabolic reprogramming of
immune cells is a major factor of immune modulation, with oxidative phosphorylation
and glycolysis promoting anti- and pro-inflammatory profiles, respectively [232–234]. In
response to β-AR stimulation, early adaptive resident Mϕ were characterized by an enrich-
ment in genes related to oxidative mitochondrial phosphorylation, glucose and fatty acid
oxidation, lipophagy, and Arginine signaling [141]. In addition, combined transcriptomic
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and lipidomic results showed a typical lipid remodeling with induction of genes coding for
enzymes potentially leading to AA production and eicosanoid signaling [141]. In contrast,
HF Mϕ presented with an enrichment in glycolysis genes [141]. Among the many avenues
that are suggested, such overall analyses may constitute the basis for more in-depth stud-
ies to further identify important Mϕ-related pathways interfering in cardiac remodeling
and/or characterize biomarkers associated with early vs. late disease progression. Current
approaches using Mϕ as therapies have essentially been developed in preclinical models
mainly for rheumatoid arthritis and cancer uses, but some seem promising [235]. Targeting
Mϕ polarization might lead to novel intervention strategies in HF.
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