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Abstract

Purpose: To develop and test a three‐dimensional (3D) deep learning model for pre-

dicting 3D voxel‐wise dose distributions for intensity‐modulated radiotherapy (IMRT).

Methods: A total of 122 postoperative rectal cancer cases treated by IMRT were

considered in the study, of which 100 cases were randomly selected as the train-

ing–validating set and the remaining as the testing set. A 3D deep learning model

named 3D U‐Res‐Net_B was constructed to predict 3D dose distributions. Eight

types of 3D matrices from CT images, contoured structures, and beam configura-

tions were fed into the independent input channel, respectively, and the 3D matrix

of dose distributions was taken as the output to train the 3D model. The obtained

3D model was used to predict new 3D dose distributions. The predicted accuracy

was evaluated in two aspects: (a) The dice similarity coefficients (DSCs) of different

isodose volumes, the average dose difference of all voxels within the body, and 3%/

5 mm global gamma passing rates of organs at risks (OARs) and planned target vol-

ume (PTV) were used to address the spatial correspondence between predicted and

clinical delivered 3D dose distributions; (b) The dosimetric index (DI) including

homogeneity index, conformity index, V50, V45 for PTV and OARs between pre-

dicted and clinical truth were statistically analyzed with the paired‐samples t test.

The model was also compared with 3D U‐Net and the same architecture model

without beam configurations input (named as 3D U‐Res‐Net_O).

Results: The 3D U‐Res‐Net_B model predicted 3D dose distributions accurately. For

the 22 testing cases, the average prediction bias ranged from −1.94% to 1.58%, and

the overall mean absolute errors (MAEs) was 3.92 ± 4.16%; there was no statisti-

cally significant difference for nearly all DIs. The model had a DSCs value above 0.9

for most isodose volumes, and global 3D gamma passing rates varying from 0.81 to

0.90 for PTV and OARs, clearly outperforming 3D U‐Res‐Net_O and being slightly

superior to 3D U‐Net.

Conclusions: This study developed a more general deep learning model by consider-

ing beam configurations input and achieved an accurate 3D voxel‐wise dose
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prediction for rectal cancer treated by IMRT, a potentially easier clinical implementa-

tion for more comprehensive automatic planning.

K E Y WORD S

3D deep learning architecture, dose prediction, IMRT, rectal cancer

1 | INTRODUCTION

Intensity‐modulated radiotherapy (IMRT) has been widely used for

treating many cancers.1‐3 The design process of the inverse IMRT

treatment plan is very complex due to a large number of parameters

related in particularly to the optimized objective functions.4,5 Since

the patient‐specific dose distributions are unknown, the objective

functions are usually defined by the treatment planner according to

standard clinical protocols. Such protocols are based on population‐
average data without considering individualized dose information. In

designing the treatment plan, the planner has to make adjustment

repeatedly in a trial‐and‐error manner until the dose distributions are

deemed to meet the clinical specific criteria. However, the experi-

ence, skill, and time available to the planners vary drastically among

different medical centers, resulting in variable treatment plan quali-

ties.6,7

Clearly, the ability to accurately predict dose distributions will

bring the opportunity to improve the quality of the treatment plans

in busy Chinese clinics, including the First Affiliated Hospital of

USTC (The University of Science and Technology of China, Hefei,

China) where more than 300 patients are treated each day on the

average.

Researchers have devoted a considerable amount of efforts in

achievement the dose prediction as part of the treatment planning

process. The most widely reported approach is the so‐called knowl-

edge‐based planning (KBP) which builds a geometry‐dosimetry corre-

lation prediction model based on prior patient databases of high‐
quality treatment plans8‐19 and this approach is currently available

in the commercial software, RapidPlan (Varian Medical Systems, Palo

Alto, CA).20 These KBP methods have been shown to improve the

plan quality, consistency, and efficiency. However, the methods have

two limitations. First, most of these predicted dose distributions are

expressed as one‐dimensional dose‐volume histogram (DVH) or zero‐
dimensional dosimetric endpoints that may correspond to nonunique

3D dose distributions. As a result, the final plans with acceptable

DVH objectives can still contain unacceptable dose distributions.

When that situation occurs, the planner needs to manually add plan-

ning‐auxiliary contours and reoptimize plan in order to refine the

spatial dose distributions. Second, these methods usually rely on the

extraction of handcrafted features, such as overlapping volume his-

togram,21,22 and distance to target histogram.23,24 However,

handcrafted features on the patient plan do not cover all inherent

structure characteristics, so the quality of dose distributions predic-

tion cannot be easily improved. Meanwhile, the extraction process

of handcrafted features is complex and tedious, making it difficult to

implement in a busy clinic like ours. For these reasons, it is attractive

to develop an algorithm that can automatically extract features from

the patient contoured structures for the purposes of achieving more

accurate and effective prediction of 3D dose distributions.

The advent of advanced computer hardware and deep learning

(DL) tools has brought breakthroughs in medical informatics in recent

years.25,26 The convolutional neural network (CNN), in particular, is

the most common DL‐based tool for image analysis.27,28 Convolu-

tional neural network models can automatically extract hierarchical

features from the image data and achieve the end‐to‐end prediction

without omissions and tediousness of many manual processes. To

date, CNN‐based methods have been used to achieve excellent per-

formance in radiotherapy workflows including automatic segmenta-

tion,29‐31 deformable registration,32,33 and synthetic computed

tomography (CT) generation from magnetic resonance (MR)

images.34

In this paper, we proposed a 3D CNN model (called 3D U‐Res‐
Net_B) based on 3D U‐Net35 and Residual network36 to achieve

voxel‐wise dose prediction for postoperative rectal cancer patients

treated by IMRT. First, eight types of 3D matrices were extracted

from the CT images, contoured structures and beam configurations.

The matrices were then put into different input channels of the 3D

U‐Res‐Net_B model, and the 3D matrix of clinically delivered dose

distributions was used as the output. The 3D U‐Res‐Net_B can learn

multiple‐scale and multiple‐level features of anatomy and beam con-

figurations, and then map these features to 3D dose distributions.

In next sections, we introduce the patient data processing meth-

ods in Section 2.A, the 3D CNN model and training methods in Sec-

tion 2.B, and the evaluation methods in Section 2.C. Then, we

present experimental results in Section 3 and discuss the experimen-

tal results and related researches in Section 4.

2 | MATERIALS AND METHODS

2.A | Patient database and data processing

A total of 122 postoperative rectal cancer patients undergoing IMRT

between the years 2015 and 2018 were enrolled in this study, of

which 100 cases were randomly selected and divided into the train-

ing and validation sets with a ratio of 4:1. The remaining 22 cases

were used to test the model. The study protocol was approved by

the review board of our institution. Patients were immobilized in a

vacuum bag in the supine position, the bladder was emptied and

then filled with 500 mL of water 1 h before the enhanced CT scan-

ning was performed on a GE CT590 simulated localization machine
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(GE Healthcare, Waukesha, USA). The scanning range was from the

lower edge of the L‐2 vertebra to 5 cm below the ischial tubercle

with a slice thickness of 5 mm. The images were reconstructed to

2.5 mm and transmitted to the Pinnacle3 treatment planning system

(Philips Radiation Oncology Systems, Fitchburg, WI, USA). The clini-

cal target volume (CTV) and organs at risk (OARs) were delineated

and checked by radiation oncologists, and a margin of 7 mm was

applied around CTV to create the planned target volume (PTV) in

consideration of the organ motion and positioning uncertainties. The

IMRT plans were designed to deliver a prescription dose of 50 Gy to

the PTV using 6‐MV, five to seven coplanar beams in the “step and

shoot” mode, and direct machine parameters optimization (DMPO)

technique.

The original CT images, contoured structures, beam configura-

tions information, and delivery dose of the IMRT plan were

exported from Pinnacle system and then converted to 3D matrices

using a developed in‐house python software program, as shown in

Fig. 1. The CT images were extracted as a 3D CT matrix where

the CT values were first truncated to range between −200 and

300 HU and then normalized to the range of −1 to 1. Every

patient has six contoured structures including the PTV, bladder,

small intestine, left femoral head, right femoral head, and body,

each being converted to a respective 3D matrix of binary mask.

Three‐dimensional matrix of beam configurations was represented

by cumulative dose distributions of 3D conformal radiotherapy (3D‐
CRT). The aperture of the PTV projection in beam's eye view, with

an isotropic margin of 5mm, was generated for each beam with

the same weight proportion, and using the same beam orientation

as IMRT. Convolution superposition (CS) dose calculation method

was employed to compute the nonmodulated 3D dose of each

beam. Final dose distributions were given by summing up the

doses of all beams. The 3D dose matrix was derived from the

delivered dose distribution of the IMRT plan. All 3D matrices were

resampled to the same resolution of 2.5 × 2.5 × 2.5 mm3. To

reduce the unimportant background area, these 3D matrices were

cropped into the size of 128 × 128 × 128.

2.B | 3D U‐Res‐Net_B architecture and model
training

The adopted network in this study is based on a 3D U‐Net and

Residual network, named as 3D U‐Res‐Net_B. As shown in Fig. 2,

our proposed network consists of an encoder which extracts image

features and a decoder which performs a voxel‐wise regression to

achieve dose prediction. The encoder contains five encoding mod-

ules, each of which is stacked by different numbers of Res_block.

The Res_block is made up of four convolution layers where the size

of the convolutional kernel is 1 × 1 × 1, 3 × 3 × 3, 1 × 1 × 1, and

3 × 3 × 3, respectively. At the end of the first four encoding mod-

ules, a convolution layer with the kernel of 3 × 3 × 3 and the stride

of 2 × 2 × 2 is used for the downsampling. Each convolution layer

in the encoder is followed by a batch normalization and a rectified

linear unit (ReLU) operation. The decoder contains five decoding

modules, each including a Conv_block except the first module which

contains only one 3 × 3 × 3 convolution layer. The Conv_block is

made up of three convolution layers where the size of the convolu-

tional kernel is 1 × 1 × 1, 3 × 3 × 3, and 3 × 3 × 3, respectively. At

the end of the first four decoding modules, a deconvolution layer

with the kernel of 3 × 3 × 3 and the stride of 2 × 2 × 2 is used for

the upsampling. Each convolution layer in the decoder is followed by

a ReLU operation. Four dashed arrow lines in the figure indicate four

conveying paths that copy and reuse early feature maps as the input

to later layers having the same feature map size by using a concate-

nation operation. Finally, a 3 × 3 × 3 convolution layer followed by

a ReLU operation is used to predict the final dose maps.

The inputs of the 3D U‐Res‐Net_B model are eight channels of

3D matrix in the form of 128 × 128 × 128 × 8, the output is the

dose matrix with the shape of 128 × 128 × 128 × 1. The delivered

F I G . 1 . Three‐dimensional (3D) matrix (128 × 128 × 128) of (a) computed tomography images; (b) body; (c) bladder; (d) right femoral head;
(e) left femoral head; (f) small intestine; (g) planned target volume; (h) beam configurations, and (i) 3D dose distribution.
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clinical dose distribution was regarded as ground truth. The mean

squared error between the predicted and clinical delivered dose for

each patient was selected as the loss function. The Adam optimiza-

tion algorithm was used to minimize the loss function and the batch

size was set to be 1 due to the limitation of GPU memory. In the

training stage, the weights of the network are initialized randomly

from scratch. At each epoch, the validation loss is monitored and the

weight is updated. The learning rate starts from 0.0005 and is

divided by 10 when the validation loss do not significantly become

smaller in successive 10 epochs. The training process stops automat-

ically when the validation loss do not become smaller in successive

30 epochs.

The Python deep learning library Keras37 with TensorFlow38 as

backend was employed to achieve the 3D U‐Res‐Net_B architecture.

An Nvidia Geforce RTX 2080 GPU card with 8G memories was used

to train the model. Once the model has been fully trained, it takes

only a few seconds to predict 3D dose distribution for a new case.

An overview of the training and predicting process is illustrated in

Fig. 3.

2.C | Prediction evaluation

To evaluate the performance of the proposed 3D U‐Res‐Net_B

model, the 3D dose distributions, and DVH parameters of OARs and

PTV were compared between the prediction and clinical truth.

For 3D dose distributions, voxel‐wise dose difference was evalu-

ated using δD ¼ Dc �Dp, where Dc and Dp denote the clinical and

predicted dose of each voxel within the body, respectively. The

F I G . 2 . The proposed three‐dimensional (3D) U‐Res‐Net_B architecture. Each box denotes the 3D feature maps. The number and the size of
feature maps are showed on the top and the left of the box, respectively. The arrows indicate different operations, the red numbers above the
red arrows denote the number of Res_block, and the k and s after the Conv3D denote the kernel size and the stride of the convolution layer.

F I G . 3 . Flowchart showing training and
prediction of three‐dimensional (3D) dose
prediction based on the 3D U‐Res‐Net_B
model.
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mean and standard deviation of δD were calculated to evaluate the

prediction bias and precision. Mean absolute errors, MAE ¼ 1
n∑

n
i δDj j

were also calculated, where i stands for the voxel point and n is

overall number of voxels within the body. Also, the performance of

our model was evaluated using three commonly used metrics, includ-

ing dice similarity coefficients (DSCs), Hausdorff distance 95%

(HD95), and mean surface distance (MSD). Dice similarity coefficients

provides spatial overlap information, while HD95/MSD measure

boundary similarity of different isodose surfaces between prediction

and corresponding clinical truth, according to the following formulas,

respectively.

DSC ¼ 2 � Viso�p � Viso�c

Viso�p þ Viso�c
; (1)

HD95 ¼ max
k95%

min
x∈ Siso�p

x� Siso�ck k2; min
y∈ Siso�c

y� Siso�p

�� ��
2

� �
; (2)

MSD¼ 1

Siso�p

�� ��þ Siso�cj j ∑ min
x∈Siso�p

x�Siso�ck k2þ∑ min
y∈Siso�c

y�Siso�p

�� ��
2

� �
;

(3)

where Viso‐p and Viso‐c denote the certain isodose volume of prediction

and clinical truth, respectively, and Siso‐p/Siso‐c denote boundary sur-

face of the corresponding isodose volume; MaxK95% represents 95th

percentile of the maximum, and |Siso‐p|/|Siso‐c| denote all voxel points of

isodose surface. Isodose volumes are defined as 3D binary masks

where the voxel is assigned 1 if the dose of a voxel is above certain

dose threshold and 0 otherwise, while isodose surface is boundary of

the isodose volumes. The DSC values were calculated with the dose

threshold from 5 to 50 Gy with an interval of 1 Gy, and HD95/MSD

were calculated from 20 to 50 Gy with an interval of 5 Gy.

A global 3D gamma analysis, which is used as a tool for IMRT

plan dose verification, was employed to further evaluate the accu-

racy of voxel‐wise dose distribution prediction for OARs and PTV.

Dose difference and distance‐to‐agreement criterion were set to be

3% and 5 mm, respectively, and the gamma passing rates were cal-

culated above the threshold of 5% prescription dose.

With respect to DVH parameters, first of all, the overall DVH

curves of PTV and different OARs were presented between the pre-

diction and clinical truth. Second, the clinical interested dosimetric

indexes (DI) were calculated, including the mean dose (Dmean), D2, D50,

D98 for PTV (here Di means the dose received by i% of PTV volume),

and Dmean, V45, V50 for OARs (here Vi means volume fraction of OARs

irradiated by i Gy); homogeneity index (HI)39 and conformation index

(CI)40 for PTV were further calculated as following formula:

HI ¼ D2 �D98

D50
; (4)

CI ¼ Vref � Vref

Vptv � Vpres
; (5)

where Vptv and Vpres are the volume of PTV and the prescription

dose region, respectively, and Vref is the irradiated PTV volume of

the prescription dose.

In order to further evaluate the performance of our 3D U‐Res‐
Net_B model, the model was compared with 3D U‐Net35 on some

performance metrics. In addition, the model was also compared with

the 3D U‐Res‐Net_O model, not having the beam configurations input.

3 | RESULTS

3.A | The performance of the 3D U‐Res‐Net_B
model

3.A.1 | 3D dose distributions

Figures 4(a), 4(b), and 4(c) show clinical dose distributions, corre-

sponding predicted dose distributions, and voxel‐wise dose distribu-

tion difference map in four trans‐axial slices of a postoperative rectal

cancer case. It is observed from Figs. 4(a) and 4(b) that the shape of

predicted dose distributions is similar to the clinical ground truth at

each of the dose levels, and the dose differences of all voxels are

below 5 Gy [as can be seen in Fig. 4(c)].

The mean and standard deviation of 3D dose differences of all

voxels within the body for each testing patient are shown in Fig. 5(

a). The red squares indicate the mean value ranging from −1.94% to

1.58%, and the blue error bars indicate the standard deviations vary-

ing from 1.70% to 5.79%. The overall averaged dose difference for

all voxels of the 22 testing patients is 0.01 ± 3.28%. The MAEs

including all voxels within the body for each testing patient are

shown in Fig. 5(b). The largest MAE is 5.19 ± 4.78%. The smallest

MAE is 2.63 ± 3.17%. The overall average MAE of the testing set is

3.92 ± 4.16%.

3.A.2 | Statistics of DVH dosimetric index

The overall DVH comparisons of PTV and OARs for four randomly

selected testing patients between clinical and predicted results are

presented in Fig. 6. The visual inspection indicate that the clinical

and predicted DVHs of PTV and OARs have an acceptable agree-

ment for each patient.

Table 1 shows that the mean and standard deviation of the clini-

cally interested DI for PTV and OARs in 22 testing patients. It is

found that the average absolute dose differences of D2, D50, D98,

Dmean for PTV and Dmean for OARs are within 2.2%, and the average

absolute volume differences of V45, V50 for OARs are <5%. The pre-

dicted results are comparable to clinical truth without statistical sig-

nificance (P > 0.05), except for Dmean of bladder (P = 0.046).

3.B | Comparison of model performance

The DSCs for 3D U‐Res‐Net_B, 3D U‐Net and 3D U‐Res‐Net_O are

presented in Fig. 7. The 3D U‐Res‐Net_B model has a DSCs value

above 0.9 for most isodose volumes, clearly outperforming 3D U‐
Res‐Net_O by 5% on average, and being slightly superior than 3D U‐
Net on average, with a value up to 3% higher. Additionally, a notice-

able decline of DSCs at about 30 Gy isodose volumes is observed

for all models, much most pronounced for 3D U‐Res‐Net_O model.
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Table 2 shows Hausdorff Distance 95% (HD95) and Mean Sur-

face Distance (MSD) of different isodose surfaces for 3D U‐Res‐
Net_B, 3D U‐Net, and 3D U‐Res‐Net_O model. The 3D U‐Res‐Net_B

reduces by around 0.4 and 0.2 cm for HD95 and MSD on average,

respectively, with respect to 3D U‐Res‐Net_O model. Compared

with 3D U‐Net model, the 3D U‐Res‐Net_B reduces by around 0.1

and 0.05 cm for HD95 and MSD on average, respectively. These

results are consistent with those of DSCs.

Figure 8 shows the box‐and‐whisker plot of global 3D gamma

passing rates of OARs and PTV for 3D U‐Res‐Net_B, 3D U‐Res‐
Net_O, and 3D U‐Net model. The averaged gamma passing rates

(the black diamond) in the 3D U‐Res‐Net_B model for bladder,

small intestine, left femoral head, right femoral head, and PTV are

90%, 83%, 81%, 82%, and 87%, respectively. These are 10%–20%
better than 3D U‐Res‐Net_O model, and 2%–5% better than 3D U‐
Net.

F I G . 4 . (a) clinical dose distribution, (b) predicted dose distribution, and (c) dose difference map in four trans‐axial slices of a postoperative
rectal cancer case. The unit of color bar is Gy.
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F I G . 5 . (a) Three‐dimensional dose differences; (b) mean absolute errors, including all voxels within the body for the 22 testing cases.

F I G . 6 . The overall dose‐volume histogram comparison of organs at risks and planned target volume between clinical (solid line) and
predicted (dashed line) results for four randomly selected testing cases. Femoral‐Head‐L, left femoral head; Femoral‐Head‐R, right femoral
head.
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4 | DISCUSSION

It is challenging to predict 3D voxel‐wise dose distributions for IMRT

plan of the rectal cancer, due to the great variability in shape, size, and

location of OARs and PTV. In this study, a 3D U‐Res‐Net_B model was

proposed to address the challenge. This is the first time that a 3D

CNN model was used to extract hierarchical features, including beam

configurations, to predict the 3D dose distributions. This model

directly utilizes 3D matrices from CT images, contoured structures,

and beam configurations as inputs, instead of single slice or multiadja-

cent slices as is done when two‐dimensional (2D) models were used.

Since the dose distributions are closely related to 3D anatomical struc-

ture and beam configurations, our model has the potential to cover

more features and achieve more accurate dose predictions than the

existing 2D methods. Furthermore, although the model was trained

with rectal cancer IMRT plans, it has the potential to be used for other

treatment sites and radiation therapy techniques, such as volumetric

modulated arc therapy (VMAT) of nasopharyngeal cancer, however,

more verification studies are needed.

The model was trained with the randomly initialized weights, and

the whole training process took about 3 days using the hardware

described earlier. However, once the training process completed, a

3D voxel‐wise dose distributions prediction of a new patient could

be obtained in few seconds. For all the 22 testing cases, the average

3D dose prediction bias ranges from −1.94% to 1.58%, and the

overall average MAE is 3.92 ± 4.16% relative to the prescription

dose. The average MSD of all considered isodose surfaces is

0.32 ± 0.24 cm. There is no significant statistical significance for

DVH dosimetric index between clinical truth and prediction. All

these results show that 3D dose distributions prediction using 3D U‐
Res‐Net_B are accurate.

Our model clearly outperforms the 3D U‐Res‐Net_O in all consid-

ered evaluated metrics, such as the DSCs and the global 3D gamma

passing rates, being superior by 5% on average and 10%–20% with

respected to the 3D U‐Res‐Net_O, respectively. These results suggest

that 3D matrix of beam configurations can provide the model with

some valuable information about the variable beam arrangement.

However, it may need to be further improved. The DSCs for isodose

volumes from 25 to 30 Gy with the downward trend may be related

to incomplete characteristic of beam configurations.

In contrast to the 3D U‐Net model, although the structures of

both the neural networks are very similar, our model is more supe-

rior in all considered evaluated metrics, such as global 3D gamma

passing rates being better by 2%–5%. These results suggest that

adding residual modules to the 3D U‐Net may cover more features

and further improve prediction accuracy.

Using voxel distance and angle relative to PTV as the inputs, Shi-

raishi and Moore employed artificial neural network (ANN) to

achieve dose distribution prediction, and their results showed that

the average prediction biases were less than 10% and 8% for pros-

tate and SRS, respectively.41 McIntosh and Purdie applied the atlas

regression forests method to predict dose distributions of three

treatment sites, and the results showed the overall gamma pass rates

of 5 mm/5% were 78.68%, 64.76%, and 86.83% for the whole

breast, breast cavity, and prostate, respectively.42 In contrast to

these methods by others, our method did not need to extract the

features manually. Instead, 3D CNN model was used to automati-

cally learn multiscale and multilevel features to achieve dose

TAB L E 1 Mean and standard deviation of dosimetric index for
planned target volume (PTV) and organs at risks (OARs).

DI Clinical Prediction |bias|(%) P‐value

PTV

D98 (Gy) 48.18 ± 0.56 47.59 ± 0.65 1.82 ± 1.23 0.237

D50 (Gy) 52.29 ± 0.49 52.58 ± 0.34 0.88 ± 0.78 0.564

D2 (Gy) 54.27 ± 0.40 54.46 ± 0.61 1.52 ± 1.40 0.412

Dmean (Gy) 52.01 ± 0.40 51.98 ± 0.59 0.74 ± 0.98 0.301

HI 0.10 ± 0.03 0.12 ± 0.08 0.03 ± 0.05 0.213

CI 0.91 ± 0.02 0.90 ± 0.02 0.01 ± 0.01 0.229

Bladder

V50 (%) 30.64 ± 10.43 32.40 ± 10.79 2.49 ± 1.58 0.120

V45 (%) 69.46 ± 16.19 68.14 ± 11.93 2.09 ± 2.27 0.453

Dmean (Gy) 46.53 ± 2.00 47.03 ± 1.64 2.00 ± 1.32 0.046

Small intestine

V50 (%) 7.07 ± 4.63 6.53 ± 4.12 1.94 ± 1.36 0.297

V45 (%) 16.90 ± 9.04 16.89 ± 8.41 2.64 ± 2.15 0.991

Dmean (Gy) 28.32 ± 7.52 28.77 ± 6.56 1.60 ± 1.48 0.534

Left femoral head

V50 (%) 1.21 ± 1.26 2.31 ± 3.07 1.78 ± 2.13 0.059

V45 (%) 11.42 ± 8.62 12.32 ± 12.43 4.29 ± 5.90 0.569

Dmean (Gy) 31.54 ± 5.18 31.30 ± 7.03 2.18 ± 1.03 0.774

Right femoral head

V50 (%) 0.55 ± 0.89 0.76 ± 1.35 0.76 ± 0.11 0.489

V45 (%) 7.35 ± 6.94 7.55 ± 7.04 2.96 ± 2.05 0.874

Dmean (Gy) 29.09 ± 5.42 28.81 ± 5.55 2.08 ± 1.31 0.685

F I G . 7 . The average (dashed line) and standard deviation (color
wash) of dice similarity coefficients of the isodose volumes from 5
to 50 Gy for three‐dimensional (3D) U‐Res‐Net_B, 3D U‐Net, and
3D U‐Res‐Net_O model, respectively.
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prediction. Thus, our method has eliminated monotonous and com-

plex feature extraction work at least, while achieving the same or

better results.

There have been some researches on 3D dose distribution pre-

diction using deep learning.43‐47 Nguyen et al employed Hierarchi-

cally Densely Connected U‐Net model to implement dose prediction

for IMRT treatment plan of the prostate, and the results showed

that the averaged Dmax and Dmean of dose differences for all con-

toured structures were within 5.1% of the prescription dose and the

average DSC between the predicted and clinical truth was 0.91.43

Liu et al used 2D residual network to achieve dose prediction for

helical tomotherapy of nasopharyngeal cases, which reported the

mean absolute differences of Dmax and Dmean for OARs were within

4.2% and 2.4%, respectively, and averaged 3D dose prediction bias

ranged from 2.0% to 2.3%.44 It is difficult to directly compare the

CNN models developed by us with those by these researchers, since

different patient databases and treatment modality were used. How-

ever, judging from the results, our dose prediction accuracy is within

the same range or even better.

The predicted dose distribution can be taken as a quality control

tool for clinical treatment plan, by which the planners can know

whether or where the dose distributions can be improved, and the

physicians can immediately view 3D dose distributions to adjust

OARs dose constraint requirements. Meanwhile, the planners can

take advantage of these OARs DVH from dose distributions to

define optimization objective function which may improve the qual-

ity and consistency of treatment plans, and reduce planning time.

Also, we can perform voxel‐wise dose optimization by taking advan-

tage of the accurately predicted 3D voxel‐wise dose distributions as

input to generate an executable plan.

TAB L E 2 Statistical comparison for HD95 and mean surface distance (MSD) of different models.

Index isodose surface (Gy) 3D U‐Res‐Net_B (cm) 3D U‐Net (cm) 3D U‐Res‐Net_O (cm) P1 P2

HD 20 0.82 ± 0.46 0.89 ± 0.44 1.58 ± 0.35 0.131 0.012

25 1.22 ± 0.49 1.39 ± 0.53 1.69 ± 0.32 0.034 0.022

30 1.53 ± 0.88 1.52 ± 0.76 1.99 ± 0.67 0.884 0.035

35 1.40 ± 1.12 1.49 ± 0.79 1.63 ± 0.77 0.401 0.046

40 1.10 ± 0.81 1.15 ± 0.56 1.28 ± 0.47 0.373 0.048

45 0.74 ± 0.49 0.85 ± 0.26 1.08 ± 0.35 0.244 0.028

50 0.60 ± 0.39 0.70 ± 0.16 0.95 ± 0.18 0.043 0.036

MSD 20 0.20 ± 0.13 0.26 ± 0.11 0.48 ± 0.12 0.028 0.001

25 0.36 ± 0.16 0.42 ± 0.13 0.57 ± 0.12 0.053 0.000

30 0.45 ± 0.23 0.48 ± 0.17 0.65 ± 0.16 0.228 0.003

35 0.39 ± 0.30 0.45 ± 0.18 0.53 ± 0.16 0.061 0.001

40 0.35 ± 0.26 0.38 ± 0.14 0.44 ± 0.10 0.373 0.021

45 0.25 ± 0.21 0.32 ± 0.86 0.38 ± 0.68 0.020 0.023

50 0.24 ± 0.44 0.28 ± 0.53 0.36 ± 0.54 0.075 0.012

Statistical significance, p1: 3D U‐Res‐Net_B vs 3D U‐Net; p2: 3D U‐Res‐Net_B vs 3D U‐Res‐Net_O.

F I G . 8 . Box‐and‐whisker plot of three‐
dimensional (3D) globe gamma passing
rates of organs at risks and planned target
volume for the 22 testing cases with
different models. Femoral‐Head‐L, left
femoral head; Femoral‐Head‐R, right
femoral head.
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However, there are some limitations to address in this study.

First, the 3D U‐Res‐Net model can only predict one type of dose

distributions, which does not meet some specific preferences, such

as patient 9# having an increased dose prediction bias range, per-

haps due to the use of clinical special dose objectives. Second,

the number of trained patients and the depth of the 3D U‐Res‐
Net are insufficient due to clinical and computer hardware limita-

tions. Furthermore, these 3D matrices were extracted from the

manual contours, while the errors for contour variations in voxel‐
wise dose regression were not considered in the study.

5 | CONCLUSIONS

In this study, we developed a 3D U‐Res‐Net_B model by adding addi-

tional beam configurations input and the results demonstrate that the

model can producemore accurate dose prediction for rectal cancer trea-

ted by IMRT, with respect to the other models. The accurate predicted

dose can be used for rigorous quality control of radiotherapy plan, and a

potentially easier clinical implementation for automatic planning.
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APPENDIX: EFFECTS OF DIFFERENT
TRAINING ‐VALIDATION SETS ON MODEL
PERFORMANCE

In order to evaluate effects on performance of the 3D U‐Res‐Net_B

model by different combinations of training‐validation set, a fivefold

cross‐validation method was employed for training–validation set,48

splitting itself into 80 cases for training and 20 cases for validation,

alternating the latter along the fivefold [shown in Fig. A1(a)], and the

first combination of training–validation set (fold 1) for the aforemen-

tioned model performance presentation and comparison. The obtained

models were tested on the aforementioned testing set, and their own

validation set, respectively. Figure A1(b) shows the box‐and‐whisker

plot of MAEs in the validation sets and the testing set. The average

MAEs are 3.94 ± 4.07%, 3.61 ± 3.74%, 3.87 ± 4.24%, 4.16 ± 4.68%,

and 4.12 ± 4.83% in the validation sets and 3.92 ± 4.16%,

4.13 ± 4.67%, 3.94 ± 4.49%, 4.22 ± 4.50%, and 4.15 ± 4.55% in the

testing set, respectively. The two‐tailed paired t test was used for pair-

wise comparison analysis of the testing set MAEs and the results show

that differences are not statistically significant (P > 0.05).

F I G . A1 . (a) Fivefold cross‐validation method; (b) The box‐and‐whisker plot of dose prediction mean absolute errors for fivefold cross‐
validation model in the validation set and testing set.
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