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The scale of the COVID-19 pandemic forced urgent measures for the development of new
therapeutics. One of these strategies is the use of convalescent plasma (CP) as a
conventional source for passive immunity. Recently, there has been interest in CP-
derived exosomes. In this report, we present a structural, biochemical, and biological
characterization of our proprietary product, convalescent human immune plasma-derived
exosome (ChipEXO), following the guidelines set forth by the Turkish Ministry of Health
and the Turkish Red Crescent, the Good Manufacturing Practice, the International Society
for Extracellular Vesicles, and the Gene Ontology Consortium. The data support the safety
and efficacy of this product against SARS-CoV-2 infections in preclinical models.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has posed
an unprecedented need for new antiviral therapeutics that are
safe, effective, and readily available for large populations. Severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the
causative agent of COVID-19, is an airborne disease targeting the
lung epithelial cells resulting in viral pneumonia in about 20% of
the infected (1, 2). This is the major cause of mortality—so far,
4.5 million worldwide—due to the development of acute
respiratory distress syndrome that involves inflammatory
cascades and endothelial damage (3). As a result, any
formulation of new treatment regimens to diminish the viral
load and control lung inflammation has been the global focus as
the mortality remains at 10% among those hospitalized (4).

Since the early days of the pandemic, many countries have
been engaged in large-scale operations to collect and store
convalescent serum from the survivors (5). This is considered
as a historical remedy, dating back to the 19th century, to provide
passive immunity when needed. In fact, successful applications
of convalescent plasma have been reported during the epidemics
Frontiers in Immunology | www.frontiersin.org 2
by the members of Coronoviridea, SARS, and MERS in the last
two decades (6, 7). Similar observations have been published
recently for the treatment of severe COVID-19 (8–12). With the
advent of monoclonal antibody technology, there has been a
changing landscape. This is mostly due to inherited difficulties
associated with crude plasma including a wide range of donor
variability for the antibody titers, fear for transmission of
infectious agents, and concern for augmenting inflammatory
and thrombotic cascades in a critically ill host (13). In rare
events, it can also induce transfusion-related acute lung injury
(TRALI), a condition likely to involve exposure to donor
autoantibodies (14).

The immunotherapeutic and biologic activities of convalescent
plasma, in addition to antiviral antibodies, have been discussed in
recent publications (15–19). In this regard, there has been a great
interest in harnessing plasma content for extracellular vesicles
(EV) including exosomes for the treatment of COVID-19 (20, 21).
EVs are ubiquitously produced by many cell types as membrane-
bound extracellular vesicles of 30 to 150 nm in size. Through
protein and RNA cargo, exosomes can convey information to
distant remote cells upon uptake by endocytosis. Elegant studies
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by Mao et al. (22) showed that the size distribution of exosomes
from patients with SARS-CoV-2 infection was similar (55 to
145 nm) but the protein content varied with infection severity.
There have been experimental models to study the
immunomodulatory (23, 24), tropic (25), and antifibrotic (26)
activities of plasma-derived exosomes. To our knowledge, the
antiviral potency of plasma-derived exosomes from COVID-19
survivors has not been reported. We now present our findings to
test this concept using preclinical models.
METHODS

Regulatory Approvals
This study was approved by the Central Scientific Review Board
of the Turkish Ministry of Health and was conducted in full
compliance with the rules and regulations of contributing
academic institutions.

The Viral Stocks
The hCoV-19/Turkey/ERAGEM-001/2020 strain was used in
this study described in detail previously (27). B.1.36 strain was
provided by the Ministry of Health, Directorate of Public Health.
All viral studies were conducted at biosafety level 3 (BSL-3)
laboratories at Erciyes University Vaccine Research,
Development and Application Center (ERAGEM) and Genetic
Engineering and Biotechnology Institutes of TUBITAK
Marmara Research Center in Gebze, Turkey.

Cell Line
Vero E6 cells (CRL-1586™, ATCC, Manassas, VA, USA) were
maintained in Dulbecco’s modified Eagle’s medium (DMEM)–
low glucose (Sigma, Germany) supplemented with 10% heat-
inactivated fetal bovine serum (FBS) (Gibco, Waltham, MA,
USA), 100 mM L-glutamine, 100 U/ml penicillin, and 100 mg/ml
streptomycin (Biological Industries, USA), i.e., a complete
medium. All assays were conducted on rapidly growing cells in
96-well microtiter plates, seeded as 2.5 × 104 cells/100 ml media
with 2% FBS/well.

Animal studies were conducted at Erciyes University after
proper approval. Sixteen-week-old male Sprague–Dawley rats
were maintained under routine conditions (room temperature,
12-h light cycle, fed ad libitum) and tested in compliance with
the institutional Animal Experiment Guidelines at Erciyes
University, Genome and Stem Cell Center (GENKOK).

Convalescent Plasma Collection
Donor selection followed the rules and regulations put forward
by the Turkish Ministry of Health and Turkish Red Crescent
(COVID-19 IṀMÜN (KONVALESAN) PLAZMA TEDARIK̇ VE
KLIṄIK̇ KULLANIM REHBERI)̇ and WHO Blood Regulators
Network (WHO Blood Regulators Network (BRN) Position Paper
on Use of Convalescent Plasma, Serum or Immune Globulin
Concentrates as an Element in Response to an Emerging Virus*,
n.d.). The donors were selected according to criteria including
adult men or women (without any history of pregnancy) with
Frontiers in Immunology | www.frontiersin.org 3
PCR or serology evidence of COVID-19 in the recent past, i.e., a
minimum of 2 weeks and a maximum of 16 weeks prior to
collection. This is in conjunction with the donor’s current status
of being negative for acute SARS-CoV-2 infection by PCR and
negative for HBsAg, HCV, HIV 1-2, and syphilis by serology.
The procedure for the collection of convalescent plasma in
Turkey has been described (28); accordingly, 200–600 ml
convalescent plasma was collected by apheresis (Trima Accel®)
and labeled as “COVID-19 Immune Plasma” using the ISBT-128
encoding system with authorization from the Turkish Red
Crescent. Witness samples were stored at −86°C as per
guidelines provided by the “National Standards for Blood
Service Units” and national legislation on traceability. For the
current studies, two different batches of COVID-19 convalescent
plasma and one batch of healthy control plasma were utilized.
These samples were in storage for a minimum of 6 months
after collection.

Purification and Characterization of
Plasma-Derived Exosomes
Two different methods were used for the isolation of exosomes:
density cushion ultracentrifugation and aqueous two-phase
system (ATPS). Density cushion ultracentrifugation was
performed by layering 10 ml of plasma samples over 1.5 ml of
1 M sucrose solution in a 12.5-ml ultracentrifugation tube.
Samples were then centrifuged at 100,000×g for 80 min using
an SW 40i ultracentrifugation rotor (Beckman Coulter,
Pasadena, CA, USA). After the centrifugation, the top layer
was removed, and 1 ml of the sucrose layer was collected from
the bottom carefully to ensure the exosome-containing phase
remained unmixed with the contaminants of the upper phase.
ATPS isolation of convalescent human immune plasma-derived
exosomes (ChipEXOs) was performed as previously described
(23, 29). Briefly, samples were mixed at a 1:1 (v/v) ratio with the
isolation solution, which consists of PEG and dextran.
Simultaneously, washing solution was prepared by diluting the
isolation solution 1:1 (v/v) with distilled water. Samples and the
washing solutions were centrifuged at 1,000×g for 10 min for
phase separation. The upper 80% volume of the samples were
discarded and then replaced with the upper 80% volumes of the
washing solution and mixed via inversion. This process was
performed twice, at the end of which the bottom phases of the
samples containing the isolated exosomes were collected. Density
cushion isolation provides exosome isolates with higher purity, at
the expense of quantity, making it preferable to the ATPS
isolation method for proteomic and transcriptomic analyses.
All studies were conducted by following Good Manufacturing
Practice (GMP) guidelines and under sterile conditions.

Structural Characterization of Exosomes
Measurements of Physical Properties
Size distribution of exosomes was measured by nanoparticle
tracking analysis (NTA) using Nanosight NS300 (Malvern
Instruments, Malvern, UK). Samples were diluted in phosphate-
buffered solution (PBS) to contain 25–200 particles in a frame
and examined by 15 captures of 20 s each. Threshold levels
March 2022 | Volume 13 | Article 824378
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were se l e c t ed for each sample accord ing to the
manufacturer’s instructions.

Scanning Electron Microscopy
Thirty microliters of air-dried exosome suspension on a glass
slide was imaged by scanning electron microscopy (Zeiss
GEMINI 500, Zeiss, Oberkochen, Germany) at the Erciyes
University TAUM Research Center.

Flow Cytometry
Exosomes were studied for surface markers by flow cytometry
after coupling with aldehyde/sulfate latex beads (A37304,
Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA).
First, 100 µl of exosome solution was mixed with 1.5 µl of
bead solution and incubated for 30 min at room temperature.
Then, 400 µl of PBS was added and the mixture was centrifuged
at 2,700×g for 3 min. The pelleted bead–exosome complex was
dispersed in 100 µl of 100 mM glycine solution to close the open
aldehyde ends of the bead and incubated for 30 min, followed by
PBS washing. Fluorescently labeled monoclonal antibodies to
CD81 (349506, Biolegend, San Diego, CA, USA), TSG101
(ab209927, Abcam, Cambridge, UK), and CANX (ab203439,
Abcam, Cambridge, UK) at 1:100 dilution in PBS with 1% BSA
(bovine serum albumin) were added and samples were incubated
overnight at 4°C. The samples were then washed twice with PBS,
dispersed in 400 µl, and analyzed with the FACSCalibur flow
cytometry instrument.

Biochemical Characterization of
Exosome Cargo
miRNA Chip Assay
MicroRNA (miRNA) expression profile was performed by
Affymetrix miRNA 4.0 GeneChip assay (Affymetrix, Santa Clara,
CA, USA) using GeneChip 4.0 miRNA array that contains 2,025
pre-miRNAs and 2,578 mature miRNA probes for humans. RNA
samples were isolated by the TRIzol method according to the
manufacturer’s RNA isolation protocol (Thermo Fisher Scientific,
Waltham, MA, USA). Total RNA samples were labeled using
Affymetrix FlashTag Biotin HSR RNA Labeling Kit. Briefly, 130 ng
of total RNA samples were poly(A)-tailed using poly A polymerase
enzyme and ATP at 37°C for 15 min, then biotinylated by ligating
biotin-labeled fragment to the 3′ end using the FlashTag Biotin
HSR RNA Labeling Kit following the manufacturer’s protocol.
Labeled samples were hybridized on miRNA 4.0 arrays at 48°C
and 60 rpm for 18 h via GeneChip® Hybridization Oven 645
(Affymetrix, Santa Clara, CA, USA). GeneChip® Fluidics Station
450 (Affymetrix, Santa Clara, CA, USA) and GeneChip® Scanner
3000 7G System (Affymetrix, Santa Clara, CA, USA) were used to
wash, stain, and scan the arrays, respectively. Differentially
expressed microRNAs among the study groups were analyzed
via Affymetrix® Transcriptome Analysis Console software (TAC,
version 4.0).

Proteomics
Proteomic profiling of ChipEXOs was performed by mass
spectroscopy. Briefly, proteins were separated via 12% SDS-
PAGE followed by cleanup and concentration using ReadyPrep
Frontiers in Immunology | www.frontiersin.org 4
2-DE Cleanup Kit (Bio-Rad) according to the manufacturer’s
instructions. SDS-PAGE gels were fixed in 40% methanol, 10%
acidic acid, and colloidal Coomassie Brilliant Blue G-250 in
distilled water (v/v) overnight. Bands of proteins were excised
for in-gel tryptic digestion (Thermo Fisher). Digested peptides
were preconcentrated and desalted in with a trap column and
separated using an Acclaim PepMap RSLC C18 high-performance
l iquid chromatography (HPLC) analyt ica l co lumn
(75 mm × 15 cm × 2 mm, 100 Å diameter, Thermo Fisher
Scientific). Peptide identification was done with nLC-MS/MS
using an Ultimate 3000 RSLC nanosystem (Dionex, Thermo
Fisher Scientific, Waltham, MA, USA) coupled with a Q
Exactive mass spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). Full spectra mass spectroscopy of the
peptides was conducted with the following settings: resolution of
70,000, scan range of 40–2,000m/z, spray voltage of 2.3 kV, target
automatic gain control of “AGC” 3 × 106, and a maximum
injection time of 60 ms. The identified peptides were matched to
proteins using Proteome Discoverer 2.2 (Thermo Fisher Scientific,
Waltham, MA, USA) with the following settings: mass tolerance of
10 ppm, MS/MS mass tolerance of 0.2 Da, mass accuracy of
2 ppm, tolerant miscarriage of 1, minimum peptide length of 6,
cysteine carbamidomethylation as fixed modification, methionine
oxidation as variable modification, and asparagine deamination.
The final results were queried in the UniProt/Swiss-Prot database
for protein identification.

Bioinformatics
miRNA was analyzed in the Transcriptome Analysis Console
(TAC) Software v4.0 program, selecting values with ±2-fold
change and significance at p <0.05. In addition, miRNAs that
were considered significant by the TAC Software v4.0 program
were ontologically analyzed in the DIANA-miRPath v3.0
software (30). Venn diagram was created using the
InteractiVenn software (31).

Data of all four donors were pooled together for the analyses.
Functional annotation of the ChipEXO’s proteomes was made
with UniProt accession numbers. Gene ontology (GO)
enrichment analyses of ChipEXO’s proteomes were made
using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(32) and Protein Analysis Through Evolutionary Relationships
(PANTHER) (33). The percentage of proteins falling under a
particular term over the total number of proteins was reported
for GO and KEGG ontology analyses.

Preclinical Assessment of
ChipEXO for Safety
Testing ChipEXO for Toxicity In Vitro
Two-fold dilutions of ChipEXO were added onto Vero E6 cells
seeded in 96-well E-plate of the xCELLigence RTCA MP device
(Agilent Technologies, Santa Clara, CA, USA) in triplicates.
Throughout the experiment, the instrument was placed in a
cell culture incubator at 37°C with 5% CO2 and was operated
through a cable-connected external control unit. The assay is
based on electrical impedance measured every 15 min; the
electrical conductivity is converted to the unitless cell index
(CI) parameter by xCELLigence RTCA Software Pro; a higher CI
March 2022 | Volume 13 | Article 824378
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value indicates increased cell viability/health, whereas a lower
value indicates cell death/unhealthy.

Testing ChipEXO for Toxicity In Vivo
Exposure of rats to ChipEXO was investigated as follows:
unsedated healthy rats (n = 4 treated and n = 2 control)—held
in upright vertical position and neck in hyperflexion—were
exposed to ChipEXO (100 µl of stock solution) through
intratracheal instillation over 2–3 s. Controls receive saline only.
On the day of treatment, rats (n = 1 control; n = 2 study) were
tested for barometric whole-body plethysmography (WBP, Buxco
Systems, USA) modified for continuous flow. A constant gas flow
input (6 L/min) is delivered with a mass flow controller (MFC-4,
Sable Systems, North Las Vegas, NV, USA) to a gas mixer
connected upstream of the chambers and gas flow output
through a hole attached to the WBP cage. This allows to isolate
and measure the changes in the chamber pressure from breathing
by input and output impedances relative to the atmospheric
pressure. For the measurement of ventilation (V), respiratory
frequency (fR), and tidal volume (Vt), the rat was weighed and
sealed into the WBP chamber. After the first 30 min to allow
acclimation to 21% O2, with a constant 0.03% CO2 balanced N2,
the rat was exposed to a constant flow of 21% O2 for 60 min.
During this period, raw data were collected every 15 min, analyzed
for fR, Vt, and V, and normalized to body mass [ml/(min*kg)] as
described in Drorbaugh and Fenn (34) and Jacky et al. (35). Rats
were then sacrificed on day 1 and day 5 post-treatment for
histopathology examination of the lung and airway.

Functional Studies to Assess the Antiviral
Properties of ChipEXO
Titration of SARS-CoV-2
The functional studies were based on the hCoV-19/Turkey/
ERAGEM-001/2020 strain as previously described (27). The
viral titer was determined as tissue culture infective dose 50%
(TCID50) and focus forming assay (FFA) per published methods
(27, 36). TCID50: Vero E6 cells were seeded in 96-well plates in
complete medium and incubated for 18–24 h at 37°C. Upon
confluency, 10-fold serial dilutions of the virus were added to the
wells in triplicates. After incubation for 1 h at 37°C with shaking,
the virus inoculum was removed and the cells were washed with
PBS. The plates were incubated for 5 days in 5% CO2, at 37°C. The
cytopathic effects (CPE) were determined by inverted microscopy
and TCID50 was calculated according to the Reed and Muench
method (Reed et al., n.d.). FFA: Cell monolayers were exposed to
the virus as described above for 1 h at 37°C, followed by removal
by PBS washing. This was followed by the addition of a fresh
medium containing 1% CMC (carboxymethyl cellulose) and
incubation at 37°C with 5% CO2 for 24 h. Cells were then fixed
with 10% neutral buffered formaldehyde at room temperature for
20 min, permeabilized with 0.1% Triton X-100 in PBS for 20 min
while gently rocking, and blocked with 5% skim milk in PBS.
Human antibody to SARS-CoV-2 nucleocapsid protein (1:2,500)
(GenScript; HC2003) in TBST (100 mM Tris–HCl pH 8.0, 1.5 M
NaCl, 1% Tween 20) was added for an hour at 37°C followed by
three washes with TBST. Goat anti-human IgG conjugated to
Frontiers in Immunology | www.frontiersin.org 5
fluorescein isothiocyanate (FITCH) (1:1,000) (SouthernBiotech,
USA) was added, and cells were incubated for another hour
followed by three washes with TBST and once with distilled
water. The antibody-labeled cells were detected and analyzed by
immunofluorescence microscopy (Leica Microsystems, Wetzlar,
Germany). The fluorescent foci in each well were counted, and the
virus titers were calculated and expressed as fluorescent focus units
(FFU) per ml as described previously (37). The results of TCID50
and FFA guided the viral dose used in the functional testing of
ChipEXO as described below.

Assessment of the Antiviral Properties of
ChipEXO by CPE
Two-fold diluted exosomes were mixed with the hCoV-19/
Turkey/ERAGEM-001/2020 strain of SARS-CoV-2 at a fixed
dose of 100 TCID50 and incubated at 37°C for 1 h. The mixtures
were then added onto the cells in triplicates. After absorption for
1 h at 37°C, the cells were washed with PBS and further
incubated (in media with 2% FBS) for 5 days in 5% CO2 at
37°C for CPE under an inverted microscope.

Assessment of the Antiviral Properties of
ChipEXO by FFA
Mixtures of ChipEXO at 2-fold serial dilutions and hCoV-19/
Turkey/ERAGEM-001/2020 strain of SARS-CoV-2 at a fixed
dose of 100 FFU were incubated at 37°C for 1 h. The mixtures
were then added in triplicate to confluent Vero E6 cell
monolayers. After absorption for 1 h at 37°C, the supernatants
were removed and the cells were washed with PBS. The cell
monolayers were overlaid with a medium containing 1% CMC
and then incubated at 37°C with 5% CO2 for 24 h. The remaining
steps of FFA were performed as described above for a final
readout under immunofluorescence microscopy (Leica, UK).
The controls included mock-infected and/or mock-treated wells.

Assessment of the Antiviral Properties of ChipEXO
by Real-Time Tracking of Viral CPE
Progression of the B.1.36 strain of SARS-CoV-2 in Vero E6 cells
in the presence or absence of ChipEXO was followed by real-time
measurement of CPE using xCELLigence RTCA MP system
(Agilent Technologies, Santa Clara, CA, USA) as described
above. Two-fold dilutions of ChipEXO from different donors
were prepared and tested individually or tested as a 1:1 mixture
(by volume) of the two. First, the cells were incubated for 24 h in
the xCELLigence RTCA MP device then exposed to
3.5 × 105 PFU/ml SARS-CoV-2 virus for 1 h. Without a
change of media, ChipEXO was added to the wells, and cells
were incubated for 160 h at 37°C with 5% CO2. Controls
included wells with virus, exosome, or media alone.

Statistical Analysis
All experimental data in this study were analyzed using
GraphPad Prism 8 software. One-way ANOVA was used to
evaluate the statistical significance of results at a p-value less than
0.05, which is considered an alpha value. Each experiment was
repeated three times.
March 2022 | Volume 13 | Article 824378
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RESULTS

Donor Information
The study utilized plasma from five donors selected according to
the Turkish Ministry of Health, Turkish Red Crescent, and
WHO guidelines. None of the subjects had comorbid
conditions or health concerns; none was on any type of
medications or supplements. COVID-survivor donors were
hospitalized for viral pneumonia and received supplemental
oxygen and oral favipiravir treatment (38). The plasma
collection was carried out between 21 and 30 days after
complete resolution of all symptoms, respectively; at that time,
two donors had negative PCR and positive anti-COVID-19
serology. None of the subjects received the COVID vaccine
prior to plasma collection.

Characterization of Convalescent
Plasma Exosomes
The exosome start solution out of 200 ml plasma was prepared in
a 20-ml volume with normal saline (0.9% NaCl). The
concentration of nanoparticles within these stock solutions was
similar among the donors with readings at 2.07–3.52 × 1011/ml.
The stock solution was stored at 4°C and tested within 2 days.
Exosomes were isolated from each plasma stock using two
different isolation methods (density cushion ultracentrifugation
and ATPS). Size distribution, SEM micrographs, and flow
cytometry results of exosomes isolated with both methods were
similar to one another. Isolated exosomes were characterized
based on MISEV criteria (39).

Physical characterization of the ChipEXOs was performed
with NTA and scanning electron microscopy for size,
concentration, and morphology. The mean size distribution of
plasma-derived exosomes of the donors was 114 ± 15.6 nm,
resulting in a 95% confidence interval (Supplementary Table 1).
The size distribution/concentration was homogeneous with a
single peak when graphed (Figures 1A, B).

The morphology of isolated exosomes was uniform and
spherical as shown by the SEM images in Figure 1C. Brownian
motion measurements of the EVs were used in determining size
and concentration measurements (Figure 1D). The bead-
assisted flow cytometry profile of the exosomes was positive for
the known exosome markers TSG101 and CD81; staining for
intracellular CANX was negative as expected (negative control)
(Figures 1E, F).

Transcriptomics
Figure 2 summarizes the results of miRNA profiles found in
ChipEXO prepared from four different donors in comparison to
plasma exosomes from a healthy control. Accordingly, the
expression profile of ChipEXO significantly differed for 13
miRNA compared with healthy control. The data on these 16
miRNAs are shown in Figures 2A, B, as heatmap and bar graph,
based on the signals generated by the present rates and fold
change rates, respectively. Furthermore, these 16 miRNAs were
associated with 16 different GO pathways that were shared by all
three miRNA databases (microT-CDS, TarBase, and TargetScan)
Frontiers in Immunology | www.frontiersin.org 6
as shown in the Venn graph (Figure 2C); these pathways are
listed in Figure 2D.

Proteomics
GO enrichment was used to analyze the proteomic composition of
ChipEXOs (33, 40). As shown in Figure 3, GO annotations showed
enrichment of proteins under threemain domains: those associated
with the biological process, molecular function, and cellular
component. The proteins under the biological process included
those associated with immune activation and modulation; terms
such as “response to symbiont” (a.k.a. response to the virus),
“cytolysis by a host of symbiont cells,” and “killing by a host of
symbiont cells” included C4b-binding protein (C4BP) alpha and
beta chains, apolipoprotein L1, histidine-rich glycoprotein, and
prothrombin (Figure 3A). The proteins under “molecular
function” annotated five proteins under “complement binding”
and four under “immunoglobulin binding,” for the enrichment of
80.39-fold and 58.72-fold, respectively, compared with the expected
number of proteins based on the PANTHER reference list of the
Homo sapiens gene database (Figure 3B). In proteins under
“cellular compartment,” GO term analysis showed enrichment of
proteins associated with extracellular vesicles, exosomes, and
plasma membrane elements (Figure 3C). Those directly under
the term “extracellular exosome” made up 26.1% of the identified
proteins. The samples did not contain any contaminants that can
be associated with exosome preparations, i.e., nuclear or
mitochondrial proteins. The complete proteome is provided in
the Supplementary Material.

In addition to PANTHER, we also used KEGG to analyze the
proteome (32). Notably, 28 KEGG Ontology (KO) terms (13.8%
of all terms) were associated with “Complement and coagulation
cascades.” Furthermore, 17 (8.4% of all terms) were associated
directly with “Coronavirus disease—COVID-19” (Figure 4A);
within these 17 KO terms, there were 64 unique proteins. Please
find the full list of these 64 COVID-19-associated proteins in
Supplementary Table 5 and the STRING relation scheme of
ChipEXO proteins’ functionally enriched pathways (Figure 4B).

Safety and Efficacy of ChipEXO in
Preclinical Models
Figure 5 summarizes the safety evaluation of ChipEXO. In vitro,
incubation of cells in the presence of ChipEXO did not cause
cellular toxicity by visual exam under the inverted microscope
for CPE (data not shown) or by automated xCELLigence system
for cell viability (Figures 5A, B). In vivo, exposure of rats to
ChipEXO did not cause immediate or delayed respiratory
distress or allergic reaction. The tissue histopathology of
airways and lung parenchyma did not show any signs
of inflammation, necrosis, or thrombosis. Interestingly, a trend
of improvement in lung functions was noted in rats treated with
high-dose ChipEXO compared with mock-treated controls.

The antiviral activity of ChipEXO was tested in vitro using the
Vero E6 cell line by two separate assay systems, each differing for
viral strains and sequence of exposure to virus and exosomes.
The common findings from these assays were as follows:
ChipEXO had potent antiviral properties, and the effects were
March 2022 | Volume 13 | Article 824378

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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dose-dependent. Briefly, Figure 6 summarizes the results of the
first assay system based on TCID50 and FFU. Here, cells were
exposed to a fixed amount of viral load premixed with varying
doses of ChipEXO for 1 h followed by the removal of virus and
exosomes by a wash and continuing incubation in fresh media
with 2% FBS for a total of 1 to 5 days. The viral titer was
significantly reduced in the presence of high-dose ChipEXO (i.e.,
1:2 dilution); this corresponded to a decline in TCID50/ml from
6.01 × 106 to 2.55 × 103 and FFU/ml from 4.3 × 106 to 1.2 × 103.
The antiviral effect was dose-dependent and there was no
detectable viral inhibition at 1/4 and 1/8 dilutions. Figure 7
summarizes the results of the second assay system using
automated xCELLigence allowing real-time data collection.
Cells were exposed to SARS-CoV-2 at a fixed dose for 1 h
prior to adding varying doses of ChipEXO in the wells; thus, both
virus and exosomes were present in the culture media during the
Frontiers in Immunology | www.frontiersin.org 7
remaining of the assay. The antiviral activity, based on CI values,
was about 40% to 50% in the presence of high-dose exosomes.
Interestingly, the effects of ChipEXOs were augmented when
exosomes from two donors were mixed suggesting donor-
specific cargo with additive bioactivities. Again, the effect was
dose-dependent.

The antiviral abilities of the ChipEXO samples of various
dilutions were monitored in real-time with a 160-h incubation.
The antiviral activity of ChipEXO was calculated using CITmed
and CPE delay hours. All samples were normalized to the time
point at which the virus was initially added, and this point was
used to create the NCI (Supplementary Figure 2A). Using the
NCI as the initial reference value, the time-lapse observed until
the readings that correspond to 50% of the maximum value (i.e.,
CITmed) was determined in the presence of the virus alone. This
allowed computing and comparing the time-lapse to reach the
A B

C D

E F

FIGURE 1 | Characterization of convalescent human immune plasma-derived exosomes (ChipEXOs). (A) Individual size distribution measurements. (B) Mean size
distribution measurements. (C) SEM micrograph. (D) Dynamic light scattering image. (E) Bead-assisted flow cytometry measurements of key exosome markers
(CD81 and TSG 101) and a negative control marker (CANX). (F) Geometric MFI values are provided above the peaks. MFI, mean fluorescent intensity.
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CIT50 value in the presence of ChipEXO. Based on CIT50
values, both ChipEXO samples delayed CPE only at 1:2
dilution, and this was for an average of 25 ± 3.8 h. The
calculated antiviral activity of ChipEXO sample 1 at CITmed
was 52%, 13%, and 10% (Supplementary Figure 2B), and that of
sample 2 was 41%, 20%, and 12% (Supplementary Figure 2C), at
1:2, 1:4, and 1:8 dilutions, respectively. The antiviral activity of
ChipEXO, however, was significantly increased (86% at 1:2
dilution) in wells treated with a 1:1 mixture of both ChipEXO
samples (Figures 7A, B).
DISCUSSION

Exosomes are ubiquitous products of many cells composed of a
diverse array of proteins and RNA cargo engulfed within a lipid
bilayer-enclosed vesicle. They are paracrine units of information
that represent a form of a dynamic adaptive complex system for
Frontiers in Immunology | www.frontiersin.org 8
intercellular communications. This is a growing field for the
diagnostic and therapeutic applications of exosomes in medicine
that has intensified recently with the advent of the COVID-
19 pandemic.

In the current study, we characterized ChipEXOs from
COVID-19 patients. The physical characteristics of the
exosomes were compatible with previous reports (23, 39).
ChipEXO samples were free of SARS-CoV-2 viral elements by
RT-PCR (data not shown). We tested for its safety in vitro and in
vivo using three different preclinical models. Most importantly,
to our knowledge, this is the first report to show the anti-SARS-
CoV-2 properties of these exosomes. ChipEXO prepared from
different donors consistently showed suppression of viral
propagation and preservation of cell viability. The biological
activities were fast, potent, and dose-dependent. These results
from three different readout assays were conducted
independently at two different virology research centers and
were found comparable to one another.
A B

C D

FIGURE 2 | miRNA analysis of ChipEXOs. (A) Heatmap demonstration of miRNA signals from two different sources of ChipEXOs and healthy-EXOs. (B) Enrichment
and depletion of different miRNAs between the ChipEXO and healthy-EXO samples. (C) Venn diagram of GO pathways from three different databases (microT-CDS,
TarBase, and TargetScan) of miRNAs. (D) GO pathway graph of miRNA found in all three databases.
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The omics data of exosomes from convalescent plasma
significantly differed from those of healthy control. The
miRNA profile of ChipEXO was similar between the four
donors and was significant for 13 isolates through orthological
and ontological studies. These 13 miRNAs led to 16 common GO
definitions. When these 16 pathways are examined in detail, they
overlap with the definitions of miRNAs found in the literature
(41). Overall, the common theme of the miRNA profile of
ChipEXO appears to center on those promoting tropism and
those involved in immune regulation, most already defined in the
literature (42, 43). Interestingly, two miRNAs, mir-3613-3p and
mir-635, found in ChipEXO are known to inhibit type I
interferon pathway (44) possibly by mechanisms involving
cytidine monophosphate kinase 1 (CMPK1) as well as JAK
kinases (JAK1 and JAK3) (45). Further studies are needed to
determine the role and potency of ChipEXO in the control
of inflammation.
Frontiers in Immunology | www.frontiersin.org 9
The proteomics data were compatible with the miRNA findings
and similar to previously published reports (46). As summarized in
Figure 4B and Supplementary Figure 3, the ChipEXO cargo
showed products involved in four main pathways with functional
continuum against COVID-19 infection. The first of these
interacting pathways is the “Immune Modulation” pathway which
included both elements of the complement cascade and regulatory
proteins. The second pathway is the “Angiogenesis” pathway and
included proteins to prevent coagulation and vasoconstriction upon
virus infection. The third pathway is the “Tissue Protection”
pathway, which included proteins involved in homeostasis, tissue
protection, and regeneration. The fourth group was compiled under
the “Antiviral Activity” pathway, which includes serine protease
inhibitors and prevents the virus from binding to receptors such as
ACE2 and PIKFYVE in the cell and blocks its entry into the cell.

To further elaborate, we found enrichment of the complement
proteins properdin, C1r, C5, C1q, C1QB, C4BPB, C4BPA, and
A

B

C

FIGURE 3 | Proteomics of ChipEXO; Gene Ontology (GO) analysis according to functional enrichment networks: (A) biological process (green), (B) molecular
function (blue), and (C) cellular component (green).
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C8A in the ChipEXO compared with exosomes from healthy
donor plasma. Similar observations have been reported by Mao et
al. (22) and Sin Man Lam et al. (47). Activation of the complement
system is necessary to induce anti-SARS-CoV-2 immunity, yet it
can also contribute to endothelial cell damage and multiorgan
failure (48, 49). ChipEXOs included protein cargo involved in
vasodilation and anticoagulation. In particular, vWF, HRG,
PROS1, GC, F2, FGA, and FGB proteins, which are responsible
for the expansion of vessels and new vessel formation, modulate
blood coagulation and mitigate against vasoconstriction and
Frontiers in Immunology | www.frontiersin.org 10
coagulation caused by virus infection (50). Furthermore, some
of the enriched proteins in the ChipEXOs, including Alpha-2-
macroglobulin and Serpin peptidase inhibitor, clade C
(antithrombin) (SERPINC1), are anticoagulants with potential
benefits to the host’s vascular health.

Another group of proteins enriched in the ChipEXOs are
those associated with tissue and organ protection. This group
included apolipoproteins (APOD, APOA2, and APOH), which
are responsible for lipid metabolism; inter-alpha-trypsin
inhibitor heavy chain (ITIH1, 2, and 4) proteins, which are
A

B

FIGURE 4 | (A) KEGG Ontology (KO) data of proteomic analysis of ChipEXO. (B) STRING relation scheme of the ChipEXO protein-enriched pathway.
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secreted by hepatocytes and have both calcium ion binding and
serine-type endopeptidase inhibitor activity; and FBL1 proteins,
which bind to fibrinogen and modulate platelet adhesion, also
play an important role in tissue homeostasis.

Antiviral activity is the fourth pathway representing some of
the proteins enriched in the ChipEXOs. Studies on exosome
uptake and half-life are important to distinguish whether
ChipEXOs inhibit viral entry and/or viral replication. The
candidates are being actively studied to further define the
mechanisms of antiviral activities of ChipEXOs. Based on
the literature review, gelsolin, an actin-binding protein that can
Frontiers in Immunology | www.frontiersin.org 11
trim and remodel the cytoskeleton, may be important (51).
Gelsolin deficiency or its overexpression has been shown to
inhibit the entry of HIV into the NKR-CCR5 cell line (52).
Another important molecule enriched in the ChipEXOs is alpha-
1-antitrypsin and alpha-1-Antichymotrypsin. Alpha-1-
antitrypsin has recently been reported to block SARS-CoV-2
infection of Vero E6 cells by blocking the processing of SARS-
CoV-2 S protein by furin and the transmembrane serine protease
TMPRSS2 (53, 54). Previous studies have demonstrated that
exosomes might have antiviral activity against some viruses as
shown by Kesimer et al., with exosomes derived from human
A

B

C ED

F HG

FIGURE 5 | Cytotoxicity of ChipEXOs from donor samples—sample 1 (A) and sample 2 (B)—on Vero E6 cells by real-time cytotoxicity assay on RTCA MP real-time
cell analysis system. The data in the figure have been adjusted to the time point when the virus was added to the experiment. Histology: (C) control and (D) day 1
and (E) day 5—the exosome-administered animal showed no pathological changes in lung tissue of hematoxylin–eosin (H&E)-stained sections; ×4 magnification.
Plethysmography: time activity for intratracheal instillation ChipEXOs. Exposure to normoxia (21.0% O2) groups does not affect respiratory frequency (fR) (F). Tidal
volume (Vt) (G) and minute ventilation (V) (H) during whole-body plethysmography measurement. Bonferroni after repeated measures two-way ANOVA; all data
presented as mean ± SEM: N = 1 for the control group and N = 2 for the exosome group. (The x-axis shows time in minutes). The difference for the
plethysmography data points between the treated and untreated control was not statistically significant.
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tracheobronchial ciliated epithelium which inhibited influenza A
virus infection of Madin–Darby canine kidney (MDCK) cells,
possibly due to the presence of sialic acids on the surface of
exosomes which can then bind and inhibit the entry of the virus
(55). The exosomes derived from HeLa cells transfected with
receptor for SARS-CoV-2 angiotensin-converting enzyme 2
(ACE2) plasmid or those isolated from COVID-19
convalescent as well as healthy donor plasma were shown to
contain ACE2 and neutralize SARS coronavirus infection in
culture (56, 57). Healthy and convalescent plasma-derived
exosomes, however, did not contain ACE2 in our study,
suggesting ACE2-independent antiviral mechanisms.

It is suggested that infusing COVID-19 convalescent plasma
(CCP) containing virus-specific antibodies might provide
antibody-dependent elimination of infected cells due to the
passive transfer of virus-specific antibodies. However, so far,
this treatment only provided minor benefits in clinical course
and outcomes (58). Recent studies revealed that two factors limit
the success of CCP treatments: the development of
autoantibodies against type-1 interferons, the main mediators
of the immune response, or the presence of non-neutralizing
antibodies, which may lead to antibody-dependent enhancement
(ADE) (59). The limited therapeutic benefits attributed to CCP
treatment could be due to the immunologically effective
Frontiers in Immunology | www.frontiersin.org 12
exosomes, derived from cytotoxic CD8 and effector Th1 T
cells, as well as from NK cells, rather than the immune
antibodies present in CCP (60). Many of these exosomes are
capable of recognizing antigens with adequate sensitivity and
specificity and can trigger an immune modulation into the cells
and act as an epigenetic inheritor response to target pathogens
through RNAs (61). In this study, we show that convalescent
human immune plasma-derived exosomes, dubbed as ChipEXO,
show remarkable antiviral, anticoagulant, and anti-inflammatory
capabilities in vitro and characterized the various proteins and
miRNA they carry. ChipEXO has the potential to be a promising
and novel therapeutic strategy for the treatment of COVID-19-
mediated lung injury and acute respiratory distress
syndrome pneumonia.

In summary, the results from current data provide evidence
that convalescent human plasma-derived exosomes have potent
antiviral properties and may offer complimentary effects to
promote tissue protection and immune modulation. Based on
these encouraging findings, there is an ongoing phase I/II trial on
the safety and efficacy of ChipEXOs for the treatment of COVID-
19 with impending respiratory failure. Further investigations are
in progress to further characterize this novel therapeutic agent
offering biological activities beyond any known plasma-derived
product during the fight against the pandemic.
FIGURE 6 | Antiviral activity of ChipEXOs. Undiluted (A), 1/2 (B), 1/4 (C), and 1/8 (D) dilutions of ChipEXOs were mixed with 100 FFU of the SARS-CoV-2 and
incubated at 37°C for 1 h. Infected non-treated (E) and mock-infected (F) controls were also included. (G) Bar graphical demonstration of green fluorescent levels of
the virus antigen. (H) Comparison of TCID50 values of the virus-infected control and ChipEXO-treated cells. (I) Comparison of FFU values of virus-infected control
and ChipEXO-treated cells. The antibody-labeled cells were detected and analyzed by immunofluorescence microscopy (Leica, DFC450C). Scale bars = 200 mm
(*p < 0.05).
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FIGURE 7 | The antiviral efficacy of ChipEXO was evaluated using the xCELLigence RTCA MP real-time cell analysis equipment.The xCELLigence system’s cell
index (CI) for Vero E6 cells in media (red line), or after viral inoculation (3.5 × 105 PFU/ml), or alone (green line) (A). CI in the presence of virus and ChipEXO from two
different concentrations, respectively (1/2 and 1/4) (B). In the top right corner, a smaller second graph displays the same data with the standard deviation added.
The bar graph and table depicted the antiviral activity rate of ChipEXO and the CITmed and CPE delay hours, respectively. Each curve was obtained from at least
three separate duplicates of normalized cell index (NCI) values.
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