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ABSTRACT

Cancer driver prioritization for functional analysis
of potential actionable therapeutic targets is a sig-
nificant challenge. Meta-analyses of mutated genes
across different human cancer types for driver pri-
oritization has reaffirmed the role of major players
in cancer, including KRAS, TP53 and EGFR, but has
had limited success in prioritizing genes with non-
recurrent mutations in specific cancer types. Sleep-
ing Beauty (SB) insertional mutagenesis is a pow-
erful experimental gene discovery framework to de-
fine driver genes in mouse models of human can-
cers. Meta-analyses of SB datasets across multiple
tumor types is a potentially informative approach
to prioritize drivers, and complements efforts in hu-
man cancers. Here, we report the development of SB
Driver Analysis, an in-silico method for defining can-
cer driver genes that positively contribute to tumor
initiation and progression from population-level SB
insertion data sets. We demonstrate that SB Driver
Analysis computationally prioritizes drivers and de-
fines distinct driver classes from end-stage tumors
that predict their putative functions during tumorige-
nesis. SB Driver Analysis greatly enhances our abil-
ity to analyze, interpret and prioritize drivers from SB
cancer datasets and will continue to substantially in-

crease our understanding of the genetic basis of can-
cer.

INTRODUCTION

Forward genetic screens using insertional mutagenesis have
been instrumental in identifying large sets of mutations that
drive cancer in mouse models of human disease (1–3). Inser-
tional mutagenesis using either retroviruses or DNA trans-
posons relies on the detection of these elements to iden-
tify loci that may contain genes or other genomic elements
that contribute to tumor development. In 2005, Sleeping
Beauty (SB) was first reported as a DNA transposon-based
somatic insertional mutagenesis system capable of driving
both hematopoietic and solid tumors in the mouse (4,5). SB
mutagenesis proved to be advantageous over classic retrovi-
ral mutagenesis approaches due to its short-acting effects
on targeted genes (through the use of minimal promoter el-
ements) and its ability to create mutations in any cell type in
the body. SB is a two-component system, consisting of an
SB transposon and an SB transposase (SBase) enzyme that
work together to facilitate mobilization of the transposon
throughout the genome. SBase binds to the transposon and
mediates its excision and reintegration at TA dinucleotides
by a cut-and-paste mechanism. Following reintegration, the
transposon can activate the expression of a downstream
proto-oncogene via the internal promoter and splice donor
site; alternatively, it can inactivate the expression of a tumor
suppressor gene by inducing premature termination of tran-
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scripts via internal splice acceptor and bi-directional polyA
sites, essentially functioning as a gene trap.

Over the past ten years, SB forward genetic screens in
both hematopoietic and solid tumor models have identified
thousands of candidate cancer genes (6). SB datasets have
evolved in both size and complexity with the use of multiple
transposon donor strains and combinations of sensitizing
mutations and tissue-specific promoter-driven Cre recom-
binase to refine SB-driven mouse models of human can-
cers. SB cancer gene discovery relies on high throughput se-
quencing of tumor genomes with accompanying statistical
pipelines designed to address the unique complexities asso-
ciated with SB insertional mutagenesis. Enrichment anal-
ysis of insertion tags in tumor cohorts statistically defines
those genomic loci, termed common insertion sites (CISs)
(7), containing insertions at a greater incidence than ex-
pected by chance, or relative to the background mutation
rate observed across tumor genomes, and therefore likely
contain one or more cancer drivers involved in promoting
the initiation and/or progression of cancer. Locus-centric
statistical approaches using Monte Carlo (MC) simulation
(5,8–10), Gaussian Kernel Convolution (GKC) (7,11), or
Poisson distribution statistics (TAPDANCE) (12,13) have
been successful in defining CIS loci that are likely to harbor
one or more candidate drivers. The GKC method is partic-
ularly effective at identifying CISs when there are densely
clustered insertions in a locus; however, this method misses
CISs when insertions are randomly distributed across loci.
Locus-centric approaches filter insertions residing on donor
chromosomes; in datasets with multiple donor chromo-
somes, computational limitations over-estimate the expec-
tations for genes residing on these chromosomes, increas-
ing the rate of false negatives. In addition, data output re-
quires manual curation to identify candidate driver genes
associated with a CIS. As the majority of CISs defined by
locus-centric methods occur within or in close proximity
to gene coding regions, Dupuy and colleagues developed
a gene common insertion site (gCIS) analysis method (14)
to statistically define drivers using transposon insertions
mapped only to genic regions. However, computational re-
quirements and the limited availability of this method pre-
cluded its widespread adoption. Importantly, all of these
approaches rely on the end-user to classify SB insertions in
CIS loci as activating or inactivating expression of candi-
date driver genes.

Given the wealth of published SB datasets (5,15–22),
there is an opportunity to perform meta-analyses across SB
cancer models and reanalyze tumors grouped by various
biological characteristics. To enable meta-analyses of SB
transposon data, we introduce a gene-centric driver anal-
ysis, SB Driver Analysis, along with its implementation
in a simple-to-run command-line application. This statis-
tical approach accommodates large datasets generated us-
ing multiple SB transposon donors by partitioning inser-
tions present on donor chromosomes on a per-tumor ba-
sis, while adjusting expectations accordingly for each gene.
This obviates the limitations of the locus-centric methods,
which require the user to either run analyses only on tumors
with the same donor chromosomes or to mask all donor
chromosomes for each analysis, thereby censoring insertion

data and limiting applicability of these methods in meta-
analyses.

Here we describe the SB Driver Analysis enhancements
that allow users to define drivers based on various mapping
criteria (such as inclusion of insertions upstream of cod-
ing regions) and stringency (based on selected method of
multiple hypothesis testing correction). We tune the strin-
gency parameters to derive different types of driver analysis
results: Discovery Drivers, which are genes statistically en-
riched with insertions in a population of tumors; Progres-
sion Drivers, a more (statistically) stringent defined subset
of Discovery Drivers; and Trunk Drivers, a set of drivers
associated with high read depth insertion sites, indicative
of early initiating events from clonally expanded popula-
tions of cells. SB Driver Analysis is available for download
at http://sbcddb.moffitt.org/software/. It relies on minimal
dependencies (e.g. SciPy, NumPy) (23) and contains em-
bedded annotations, with functionality that allows for user-
defined annotations. Due to its flexibility, SB Driver Analy-
sis is a powerful tool for prioritizing recurrent drivers across
SB studies for comparative genomic analysis in human can-
cers.

MATERIALS AND METHODS

Datasets and annotations

Tumors from transposon screens sequenced using the PCR-
based, 454 sequencing platform were mapped to TA din-
ucleotides in the mouse genome (mm9) using a previ-
ously established workflow (11). We then used more than
1 million SB insertions occurring within 17 primary tu-
mor models listed in the Sleeping Beauty Cancer Driver
Database (SBCDDB) (6) to define cancer driver genes using
SB Driver Analysis. Insertions from the myeloid leukemia
(ML) dataset are included in Supplemental Table S1, and
links to previously published BED files can be found in
the software linked on the SBCDDB website (http://sbcddb.
moffitt.org/software/). RefGene annotations in genePred
format were downloaded from the UCSC Genome Browser
(n = 24 341 genes). Genes associated with multiple chromo-
somes or strands, or those that were greater than 5 MB in
size, were removed. Additionally, we performed a liftOver
of transposon data to mm10, and downloaded the corre-
sponding mm10 reference sequences and RefGene anno-
tations (n = 24 371 genes). Note that annotations from
sources such as RefSeq, GENCODE, or Ensembl may be
used as long as they are converted to genePred format.

Defining non-redundant TA sites

SB insertions occur exclusively at TA dinucleotides (17). In
order to ascertain the significance of insertions in genes,
we tabulated every TA site in the mouse genome that maps
non-redundantly within a 20-base sequence, as this corre-
sponds to the length of sequences produced by the splink-
erette pipeline used by many published transposon screens
(Supplemental Figure S1). These TA sites were then tal-
lied across each chromosome (Supplemental Tables S2 and
S3) and in each gene (Supplemental Tables S4 and S5). For
genes with multiple isoforms, we defined the gene bound-
aries to extend from the nucleotide position at the beginning
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of the most 5′ feature (UTR/exon) to the nucleotide posi-
tion at the end of the most 3′ feature (UTR/exon). These
boundaries define the gene-coding regions for our analyses,
though it is possible that the start and end do not corre-
spond to a single known transcript. For each gene, g, the
number of bases (Bg) and unique TA sites (Tg) were tal-
lied. A small number of loci were defined by discontinu-
ous coding regions, including Mecom which encodes a com-
plex locus involving a dual-protein read-through transcript
for previously separately annotated genes Evi1 and Mds1.
All bases and TA sites contained between these well anno-
tated isoforms were included in the tally. The unique TA
dinucleotide sites across the mouse mm9 and mm10 refer-
ence genomes are shown in Supplemental Tables S2 and S3,
respectively. After application of these criteria, 24 172 an-
notated genes in the mm9 (Supplemental Table S4) or 24
218 annotated genes in the mm10 (Supplemental Table S5)
genomes remained (genome build for SB Driver Analysis
is chosen to match the reference genome used for mapping
sequencing reads).

Overlaying SB insertion data and gene annotations

SB insertion sites, stored in six-column Browser Extensi-
ble Data (BED) format and defined by established pre-
processing approaches for Splink 454 (11) were mapped to
genes, and the observed number of tumors with an insertion
in each gene was tallied. BED detail format files can be mod-
ified to contain either a seventh column or a header track re-
lating tumors to transposons and score thresholds that dis-
tinguish between low- and high-depth reads, or a tumor an-
notation file can be included when performing the analysis.
All genes beginning with ‘Gm’ (predicted genes) or known
SB or mapping hotspots (Dpp10, En2, Foxf2, Serinc3, Sfi1)
were excluded (mm9, n = 23 039 genes remain). Insertions
in genes positioned on the transposon donor chromosome
were ignored on a per tumor basis. For each gene, the total
number of tumors in which the gene was not on the donor
chromosome (Ng) and the number of unique TA sites across
all non-donor chromosomes (Ug) were tallied. The work-
flow for annotating data is summarized in Figure 1A.

Identification of statistically significant drivers: genes with
more insertions than expected by chance

In order to ascertain in a given gene, g, whether a popula-
tion of tumors contains more insertions than expected by
chance, we performed a chi-squared test for each gene. We
defined an expectation (i.e. the expected number of tumors,
Eg, with insertions in gene g), as

Eg =
∑

t

1 − (
1 − Tg/Ug

)It

where It is the number of observed non-donor transposon
insertion sites in a tumor, t, Tg is the number of unique TA
sites in a gene, and Ug is the number TA sites in the genome
as described previously. This expectation was used, along
with the number of tumors with observed non-donor inser-
tions in the gene (Og), and the total number of tumors (Ng)
in which the gene does not reside on the donor chromosome,

to calculate the chi-squared statistic

χ2
g =

∑
i∈{g,gc}

(Oi − Ei )
2

Ei
=

(
Og − Eg

)2

Eg

+
(
Ogc − Egc

)2

Egc
= Ng

Ng − Eg

(
Og − Eg

)2

Eg

where

Ogc = Ng − Og

Egc = Ng − Eg

from which a P value was determined (assuming one degree
of freedom). A multiple-testing correction procedure, either
family-wise error rate (FWER, e.g. Holm–Bonferroni) (24)
or false discovery rate (FDR) (25), was applied across all
genes. Since the P value relates to deviations from either
side of the expectation, genes with Og < Eg were flagged
as non-significant. Furthermore, genes were flagged as non-
significant when Og < 3 (Og < 2 if Ng<15) tumors or Og /

Ng < 0.05. Drivers were ordered and ranked based on � 2

value (since these were bounded in the floating point pre-
cision limit, whereas sometimes P values were below the
floating point precision limit, making it impossible to order
those genes that had equivalent P values of 0). The work-
flow for identifying drivers is summarized in Figure 1B.

Classification of oncogenes and tumor suppressors

For statistically significant genes, we tallied the number of
forward, Fg, and reverse, Rg, insertions, and calculated the
ratio of forward to reverse insertions, rg. When multiple in-
sertions were detected in a gene within an individual tumor,
only the highest-read depth site was tallied. A binomial test
was used to determine the probability, pg,bi, of detecting Fg
given Fg + Rg insertions. If there were at least three for-
ward insertions, we next evaluated the spatial distribution
of insertions by comparing the distribution of forward in-
sertions across the gene to a uniform distribution using a
Kolmogorov–Smirnov test, which determines the probabil-
ity, pg,ks, the insertions were drawn from a uniform distri-
bution. If pg,ks < 0.1, we labeled the distribution as non-
uniform. Finally, we used these metrics in a sequential deci-
sion process to assign a label, Lg, denoting whether a gene
exhibits an activating, inactivating, or indeterminate inser-
tion pattern:

Lg =
⎧⎨
⎩

Indeterminate de f ault
Activating

(
rg ≥ 0.8

)
&

(
pg,bi < 0.1

)
&

(
pg,ks < 0.1

)
Inactivating

(
Lg �= Activating

)
&

(
rg < 0.6

)
&

(
Rg > 2

)

The workflow for driver gene classification is summarized
in Figure 1C.

Detection of oncogenic insertions upstream of gene bound-
aries

We repeated the above steps, this time altering the num-
ber of TA sites associated with genes by approximating the
number of TA sites in a promoter region upstream of the 5′
end of a putative proto-oncogene gene. For this reason, a 15
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Figure 1. Overview of SB Driver Analysis pipeline. The pipeline consists of four general steps. (A) First, the number of TA dinucleotides is tallied for each
gene in a selected mouse reference genome, followed by the number of tumors in which a gene has an insertion. (B) Using the annotated genes, an expected
number of tumors is compared to the observed number of tumors with an insertion in a gene using a chi-squared test to identify whether or not more
insertions were observed than would be expected by chance. (C) Genes enriched for insertions are then further characterized based on the insertion pattern
in the gene boundaries, or in the gene boundary plus a predefined 5′-end promoter (see Table 1). (D) Drivers identified when a promoter is included in gene
definitions are merged with results when a promoter is not considered, and a list of drivers and their associated properties are produced in table form. Note
that black boxes represent user inputs and SB Driver Analysis output, while white rectangles represent processes that are performed on data. Expectations
and observations are related to the number of tumors containing insertions in a gene, and these are dependent upon dataset size (number of insertions,
number of tumors) and number of unique TA sites in a gene. Either a family-wise error rate (FWER) or false discovery rate (FDR) multiple-test correction
is applied to the gene enrichment determination step.

kb promoter was selected because this placed the transpo-
son promoter in close proximity to the 5′ end of the gene
coding region. In the case of the gene Rtl1 a 50 kb pro-
moter was used since past transposon validation studies
have flagged this extended promoter as a biologically mean-
ingful region of interest (26). The number of TA sites per
gene with promoter, Tg,p, was approximated as

Tg,p = Tg
P + Bg

Bg

where P is the number of bases used to approximate the pro-
moter, and Tg and Bg are TA sites per gene and bases per
gene, respectively, as defined previously. Gene expectations
(Eg) were re-derived using Tg,p, and observations (Og) were
re-tallied to account for the sites in promoters. The statis-
tical tests to identify drivers and classify insertion patterns
were re-applied, and drivers flagged with activating patterns
were added to the list of drivers identified in the absence of
a promoter approximation (note that insertions in the pro-
moter are not expected to influence tumor suppressive be-
havior defined by inactivating or indeterminate patterns).
The workflow for the merging of run modes (merging of 0
kb and 15 kb driver lists) and a consolidated driver list re-
port is summarized in Figure 1D.

Trunk driver analysis

Analysis was performed on a subset of insertions with read
depths above an empirically determined cutoff. The recur-
rence criterion was relaxed such that Og / Ng < 0.015, or Og
< 3 (Og < 2 if Ng < 15) were used to define non-significant
genes. The cutoffs were chosen on a per-dataset bases, and

were designed to select for as few drivers that were present
in as many tumors as possible. In practice, this meant on
the order of dozens of drivers were identified in upwards of
70% of the tumors in the datasets.

RESULTS

Defining drivers using statistical significance stringency

Driver identification from insertional mutagenesis screens
relies on the determination of statistical enrichment of in-
sertions across the genome. We applied SB Driver Analysis
across 17 independent datasets from the SBCDDB (6) to
define drivers across tumor models using a defined frame-
work. For each tumor dataset, we applied the three sta-
tistical analysis methods described in Table 1. First, we
performed driver analysis on all insertions using the FDR
or FWER multiple testing corrections to identify drivers
defined by different stringency metrics. Discovery Drivers
are determined using the FDR correction, and Progression
Drivers are defined using the more stringent FWER crite-
rion, and these represent a subset of the Discovery Drivers.
Because both of these approaches produce large gene lists,
we applied SB Driver Analysis with the FWER correc-
tion to high read depth insertion sites to identify Trunk
Drivers, as high read depths are indicative of early initiat-
ing events. These outputs demonstrate a wide range in the
number of drivers across datasets (Figure 2). The digestive
system tumors (INT-Kras, HCA, PDAC, INT-Trp53 and
GAS) contained the greatest number of drivers, while the
hematopoietic tumors (e.g. ML, LYM) have the least num-
ber of drivers. ML and LYM also contained a significant
number of activating drivers (Figure 2, blue region in pie
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Figure 2. SB Driver Analysis identifies gene sets characteristic of different tumor types. When applied to high read depth insertion sites, driver analysis using
a FWER multiple testing correction identified dozens of Trunk Driver genes (black bars). SB Driver Analysis applied to all insertions identified a larger set
of Progression Drivers (using FWER correction, dark gray bars) and Discovery Drivers (using FDR correction, light gray bars). The magnitude of drivers
varies greatly with the dataset. For each set of drivers, the breakdown of pattern types is shown in the pie charts (blue = activating, red = inactivating,
orange = indeterminate). BRCA, breast cancer; GAS, gastric cancer; HCA, hepatocellular adenoma; INT, Intestinal cancers; KA, keratoacanthoma;
LYM, lymphoma; MB, medulloblastoma; MEL, melanoma; ML, myeloid leukemia; OS, osteosarcoma; PCA, prostate cancer; PDAC, pancreatic ductal
adenocarcinoma; RMS, rhabdomyosarcoma; SCC, cutaneous squamous cell carcinoma. Note that there are four different intestine datasets, distinguished
by the sensitizing mutation used to model the tumors. * denotes datasets whose BED files are either publicly available or included with release of this paper.

chart), highlighting that these tumor types are driven by
co-operating proto-oncogenes (17). Strikingly, the solid tu-
mors (e.g., BRCA, MEL, PDAC, SCC, GAS, HCA, INT,
KA, MB, OS, PCA, RMS) have a preponderance of inac-
tivating and indeterminate drivers, (Figure 2, red and yel-
low regions of pie charts, respectively), demonstrating that
these tumors are driven by co-operating tumor suppressors.
These data support the observation from human cancers
that hematopoietic tumors require fewer cooperating events
for full transformation compared with solid tumors (27).
Notably, the lengths of genes identified by SB Driver Analy-
sis tend to be larger than the average gene length of all genes
in the mouse genome, a phenomenon we also observed in
cancer genes defined from human cancers (Supplemental
Figure S2). The application of the different analysis meth-
ods is referenced in Supplemental Tables S6–S9.

Determination of read depth cutoffs for Trunk Driver
analysis

While Trunk or early Progression Drivers have been de-
scribed for some SB screens (19,28), the empirical criteria
and statistical methods used to define these Trunk Drivers
have not been consistently applied. We investigated how
read depth cutoffs and recurrence criteria impact the over-
all number of defined high-priority Trunk Drivers in a given
dataset (Figure 3). We found that for many of the datasets,
the number of Trunk Drivers is invariant to frequency; when
there are fewer than 200 tumors, recurrence is influenced by
the N ≥ 3 criterion, whereas when there are greater than
200 tumors the Og/Ng < 0.015 criterion becomes the de-
ciding factor. However, in all of the datasets, the number
of drivers detected was highly influenced by the read depth

cutoff. Therefore, we fixed a frequency to 1.5% for all of
the datasets and chose dataset-specific read depth cutoffs
to generate a defined list of Trunk Drivers found in at least
50% of the tumors.

Comparison of SB Driver Analysis to the Gaussian kernel
convolution method

We next compared SB Driver Analysis with the Gaus-
sian kernel convolution (GKC) method, which is the most
commonly reported method for CIS detection in solid tu-
mors. Using the pancreatic ductal adenocarcinoma (PDAC)
dataset, we found statistically significant overlap of Trunk
Drivers defined by SB Driver Analysis (Figure 4A) and
genes identified by GKC using only high read depth in-
sertion sites. We then extended this analysis to each of the
17 cancer studies, comparing genes identified by GKC with
genes detected by Trunk Driver analysis (Figure 4B), Pro-
gression Driver analysis (Figure 4C) and Discovery Driver
analysis (Figure 4D). Progression and Discovery Driver
analyses utilize all insertions regardless of read depth.
Overlap between methods tended to be higher when there
were more genes identified by the methods; however, in
the INT-Apc dataset, GKC consistently identified more
drivers, as many of the genes were detected below the re-
currence threshold used by SB Driver Analysis. For each
dataset, there was a weak-to-moderate correlation between
SB Driver Analysis and GKC P-values, with a mean Pear-
son correlation of 0.40 (min = 0.08, max = 0.66). Impor-
tantly, after excluding the INT-Apc set, 91% of GKC genes
with significant P-values (P < 10−12) were also identified by
SB Driver Analysis. 9% of GKC genes were excluded by SB
Driver Analysis due to differences in reference annotations,
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Table 1. Suggested SB Driver Analysis approaches and best practices

Analysis
methoda

Analysis
method
description

Promoter
cutoffsb

Minimum read
depth filteringc

Minimum
tumor
thresholdd

Multiple
hypothesis
testing P value
correctione

Driver
classifications

Driver
applications

Discovery
Drivers

Discovery
significant
progression
drivers

0 kb No 5% or ≥3,
whichever is
larger

FDR Keep
‘activating’,
‘inactivating’,
and
‘indeterminate’

Pathway
enrichment
analysis;
co-occurrence
analysis;
comparative
oncogenomic
analysis

15 kb
or custom

Progression
Drivers

Genome
significant
progression
drivers

0 kb No 5% or ≥3,
whichever is
larger

FWER Keep
‘activating’,
‘inactivating’,
and
‘indeterminate’

Pathway
enrichment
analysis;
co-occurrence
analysis;
comparative
oncogenomic
analysis

15 kb
or custom

Trunk Drivers Genome
significant
trunk drivers

0 kb Yes 1.5% or ≥3,
whichever is
larger

FWER Keep
‘activating’,
‘inactivating’,
and
‘indeterminate’

Prioritized drivers
for co-occurrence
analysis and
validation studies

15 kb
or custom

aProgression Drivers are a subset of Discovery Drivers; Trunk Drivers are often also Progression and Discovery Drivers.
bSuggested promoter regions to include/exclude are provided; user-defined, custom cutoffs may be used, if desired. When merging statistical data from
genes with promoter regions, only SB insertions in the sense strand are considered, all anti-sense strand insertions are ignored, for driver classification. If
the 15 kb promoter analysis produces a significant driver classification of ‘activating’, then the data for the 15 kb promoter chi-square test result is reported;
if a driver classification of ‘inactivating’ or ‘indeterminate’ is produced, then the 0 kb promoter chi-square test result is reported. The custom option allows
users to define any length of promoter region to include.
cRequires empirical definition from dataset raw data using suggested methods in Figure 3.
dDefines biological recurrence.
eFWER, family-wise error rate (Holm–Bonferroni procedure) or FDR, false discovery rate (Benjamini–Hochberg procedure).

recurrence criteria between the two methods or to inherent
errors within the GKC method, such as counting multiple
insertions from the same tumor as separate events (therefore
leading to false positives), or incorrectly relating CIS calls
to flanking genes. 85% of SB Driver Analysis hits with sig-
nificant P-values (P < 10−12) were identified by GKC. The
15% of genes that did not overlap were missed GKC CIS
calls for genes with insertions spaced randomly across the
coding regions or genes that mapped to censored chromo-
somes. This latter discrepancy is observed in datasets con-
taining tumors with different transposons, and the num-
ber of missed driver genes using GKC is notable in the
MEL (Cdkn2a, Cep350, Desi2 and Setd2) and ML (Csf3r,
Cyp4x1, Ncoa2 and Chchd7) datasets. When we applied
Fisher’s exact test to gene sets identified by the different ap-
proaches (Supplemental Figure S3A–C), we always found
highly significant overlap (more genes in common than ex-
pected by chance) between the SB Driver Analysis and
GKC analysis methods (P < 10−12). Taken together, these
results indicate that SB Driver Analysis produces results
comparable to locus-centric approaches such as GKC and
makes important computational improvements to driver
gene discovery.

Classifying and visualizing SB insertion patterns within
drivers

SB Driver Analysis separately classifies drivers as activat-
ing, inactivating, or indeterminate based on the pattern of
the highest read depth SB insertions per tumor within each
gene-coding region. Analysis of the insertion patterns for
drivers across 17 tumor cohorts confirmed that drivers pre-
dicted to be inactivated in one cohort were generally in-
activated across all cohorts in which they were defined as
drivers; likewise, drivers predicted to be activated had this
designation across cohorts. There were, however, notable ex-
ceptions to this observation. Figure 5 shows a composite of
insertion patterns for Progression Drivers from all 17 tu-
mor cohorts. Activating patterns were determined for Hras,
Erg and a subset of tumors with Zmiz1 insertions (Fig-
ure 5A), while inactivation patterns were predominant for
drivers Pten and Tcf12 and a subset of tumors with Zmiz1
insertions (Figure 5B). The insertion patterns in Pten and
Zmiz1 were indeterminate in a subset of tumors, meaning
that the pattern did not deviate significantly from the ex-
pected uniform distribution (Figure 5C). Drivers with in-
determinate insertion patterns require investigator curation
to determine the most likely biological classification as a tu-
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Figure 3. Tuning SB Driver Analysis parameters in different datasets. Adjustment of read depth cutoff and recurrence frequency affects the number of
detected Trunk Drivers and the number of tumors containing at least one resulting Trunk Driver. (A) The number of Trunk Drivers as a function of driver
recurrence frequency (x-axis, in percentage) and insertion read depth cutoff (y-axis). For visualization purposes, any number of genes ≥ 60 was set to red.
The crosshairs denote the frequency and cutoff used in the SBCDDB. (B) Percentage of samples with altered trunk driver genes as a function of frequency
(x-axis) and read depth cutoff (y-axis). Dataset abbreviations are the same as in the Figure 2 legend.

mor suppressor gene (TSG) or proto-oncogene (ONC). To
facilitate this, we have developed visualization scripts that
permit the rapid drawing of global and/or individual SB
insertion patterns for each driver gene to promote new re-
search hypotheses using SB insertion data sets (Supplemen-
tal Figure S4). Importantly, a driver gene can have multi-
ple independent driver classifications depending on the tis-
sue type or biological context. The mapped insertions for
Zmiz1 highlight its role as a proto-oncogene in cutaneous
SCC (Figure 5D), a tumor suppressor in pancreatic can-
cer (Figure 5E), and of undetermined influence in myeloid
leukemia (Figure 5F).

SB Driver Analysis enables meta-analysis of Trunk Drivers
across tumor models

SB Driver Analysis applied across all tumors (n = 1852) in
the 17 datasets identified 31 Trunk Driver genes that were al-
tered in a majority (60.4%) of the tumors (n = 1119) (Figure
6). The 31 Trunk Drivers were cataloged alongside the rest
of the genes tested by Trunk Driver analysis (Supplemental
Table S8). Most of the Trunk Drivers contained inactivating
insertion patterns, indicating they are TSGs, but four exhib-
ited activating patterns (proto-oncogenes). Note that three
of these four (Erg, Ets1, Flt3) were predominantly altered in
blood (LYM, ML) tumors, while Zmiz1 was frequently al-
tered in SCC. 16 of the 31 Trunk Drivers appear in the Can-

cer Gene Census (version 83) (29), which contains a grow-
ing catalogue of 551 genes causally implicated in the initi-
ation and/or progression of cancer (30), including mouse
orthologs for Apc, Arid1b, Crebbp, Erg, Flt3, Foxp1, Kmt2c,
Lpp, Ncoa2, Nf1, Nfib, Pten, Ptprk, Smad4, Snd1, Tcf12 and
this overlap is greater than expected by chance (P<0.001,
Fisher’s exact test). Nine of the remaining 15 Trunk Drivers
that are not yet indexed by the CGC, including Cep350
(19), Ets1 (17), Nfia (16), Pard3 (31), Rere (31), Rtl1/Rian
(26), Usp9x (18,20), Wac (32), Zmiz1 (33), have been inde-
pendently implicated in contributing to cancer through rig-
orous in vitro and in vivo experiments. The remaining few
Trunk Drivers, including Ankrd11, Chuk, Ctnna1, Dennd1a,
Nipbl, Pum1, and the over 800 additional Progression and
Discovery Drivers produced by this meta-analysis (Supple-
mental Table S9), represent high-confidence candidate can-
cer drivers that should be prioritized for experimental val-
idation. Notably absent from this list are genes like Hras,
Cdkn2a or Notch1, which are significant in several different
tumor types analyzed individually but were not detected as
Trunk Drivers in this meta-analysis because they did not
meet the recurrence threshold of 1.5% of tumors.

DISCUSSION

Defining and prioritizing cancer drivers from genomics-
based data is critical to enhancing our understanding of
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Figure 4. SB Driver Analysis comparison to Gaussian Kernel Convolution (GKC). Genes associated with peaks of GKC CIS loci were compared with
genes identified by SB Driver Analysis to assess overlap in results across different tumor datasets. (A) Representative Venn diagram from the Pancreatic
Ductal Adenocarcinoma (PDAC) dataset with unique and overlapping candidate cancer genes identified by SB Driver Analysis for Trunk Driver genes
and genes associated with GKC common high-depth insertion sites, demonstrating significantly more genes overlap than expected by chance (P<0.0001,
Fisher’s exact test). (B–D) Venn bar charts for each of the 17 SB datasets using different SB Driver Analysis methods from Table 1, with dataset identifiers
on the left and P values associated with overlap on the right. (B) Highlighting the overlap between Trunk Drivers (SB Driver Analysis) and genes mapping
to GKC CIS peaks for high read depth insertions. (C) Highlighting the overlap between Progression drivers (SB Driver Analysis) with genes identified by
GKC using insertions with any read depth. (D) Highlighting the overlap between Discovery Drivers (SB Driver Analysis) and genes identified by GKC.
Dataset abbreviations are the same as in the Figure 2 legend. Expanded Venn diagrams for each SB dataset appear in Supplementary Figure S3A–C.
Fisher’s exact test was performed, assuming a total of 24 000 possible genes, and P values are shown on the right. Numbers of genes are highlighted by
the white text inside bars, bold white denotes overlapping gene number. The x-axis represents a number of genes normalized by the total number of genes
detected by SB Driver Analysis or GKC for each dataset. Datasets are sorted by the ratio of overlap to the total genes from GKC.* denotes datasets whose
BED files are either publicly available or included with release of this paper.

the molecular mechanisms underlying cancer initiation and
progression. We have developed SB Driver Analysis to en-
hance cancer driver identification and prioritization using
Sleeping Beauty (SB) insertional mutagenesis. We applied
this analysis to 17 independent SB models of human can-
cer and showed for the first time that we can define drivers
across tumor types using a single methodology, allowing

for direct comparison of the outputs. SB Driver Analysis
automates driver identification using a gene-centric rather
than locus-centric statistical approach, minimizing time-
consuming manual annotation required of existing SB anal-
ysis platforms. It is the first transposon analysis tool to au-
tomatically classify transposon insertion patterns as activat-
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Figure 5. Representative insertion patterns in driver genes. (A) Activating patterns exhibit defined groupings of forward insertions, with the transposon
providing a promoter and splice donor. Hras (green), Ets1 (purple), and Zmiz1 (red) are examples of genes that exhibit forward insertion patterns. (B)
Insertions that are scattered uniformly across the gene in both the forward and reverse orientation are indicative of inactivating patterns. These patterns are
found in some tumor models for Tcf12 (yellow), Pten (blue), and Zmiz (red). (C) Some insertion patterns cannot be determined due to a lack of insertion
data or an unclear pattern. These patterns are found in some tumor models for Pten and Zmiz1. (D–F) Insertion maps showing the locations of various
mapped SB insertions (triangles) in Zmiz1 transcripts across three primary tumor models. Right facing arrows (above transcripts) show forward insertions
(sense strand events), while left facing arrows (below transcripts) correspond to reverse insertions (antisense strand events). (D) In cutaneous squamous cell
carcinoma, Zmiz1 appears as a proto-oncogene with an activating pattern. Most insertions are on the sense strand and occur upstream of exon 9, which
may indicates oncogenic behavior. (E) In pancreatic ductal adenocarcinoma, Zmiz1 appears as a tumor suppressor. The presence of insertions across the
Zmiz1 locus, equally in both the forward and reverse orientation, indicates that this locus is selectively inactivated. F) In myeloid leukemia, the distribution
of SB insertion events represents an indeterminate pattern, as the insertions appear uniformly scattered across the gene. However, more insertions are
present on the sense strand and all occur upstream of exon 9, which may indicate oncogenic behavior, hinting that incorporation of exon annotations in
driver analysis may help to improve the pattern classification scheme.

ing or inactivating for each driver, which provides strong in-
sight into driver function.

SB forward genetic screens have identified hundreds of
genes in tumor datasets that must be prioritized for follow-
on validation studies using various parameters or biologi-
cal functions. We showed that SB Driver Analysis can pri-
oritize the driving events that occur early in tumorigene-
sis. Tumor development is considered to be an evolution-
ary process whereby early selected insertion events occur
along the main branch or trunk of the tumor evolutionary
tree (17,19,22). Thus, we applied SB Driver Analysis to high
read depth insertions present in individual tumor datasets
to define and prioritize Trunk Drivers, as clonal insertions
are likely to be represented in sequencing data by high read
depths. We then extended Trunk Driver analysis to per-
form a meta-analysis across 17 SB tumor datasets. Similar
to what has been observed in human meta-analyses for re-
current mutations, SB trunk driver meta-analysis reaffirmed
trunk drivers present in individual tumor datasets, while
missing a few key trunk drivers from individual datasets
(Hras, Cdkn2a and Notch1) that fell below the recurrence
threshold. Interestingly, many of the Trunk Drivers from
this analysis appear in intestinal tumors, this may be in part
due to the fact that there is a disproportionate number of
intestinal tumors in this analysis relative to other types of
tumors. Hras, Cdkn2a or Notch1, are not recurrently mu-
tated in intestinal tumors; therefore, these data suggest that
Trunk Driver analysis with unbalanced tumor cohort sizes
leads to under-representation of Trunk Drivers for which

there is overwhelming evidence in individual tumor cohorts.
This highlights the need to consider weighting tumor contri-
butions to the overall results, normalizing results to dataset
sizes, or comparing results from this type of meta-analysis
to results from analyses performed on various subgroupings
of tumors.

We report the application of SB Driver Analysis to
data generated from 454 sequencing of amplification based
(splinkerette PCR) libraries, and we are working to adapt
SB Driver Analysis to hybridization-based (SBCapSeq) li-
braries sequenced on Illumina or Ion Torrent deep sequenc-
ing platforms (1,11,17–20,22). Notably, we have deployed
SB Driver Analysis to conduct genome-wide cancer driver
discovery from over one million SB insertion events from
2354 tumors in 956 mice from primary cancer models se-
quenced on the 454 platform (available at http://sbcddb.
moffitt.org/) (6), demonstrating the scalability of SB Driver
Analysis to meta-analysis approaches. Based on statistical
stringency we can refine the numbers of drivers without al-
tering the types of drivers (i.e. activating versus inactivating)
across tumor types. Future works are focused on using SB
Driver Analysis to prioritize progression drivers and their
biological contexts.

While we have focused our application of SB Driver
Analysis to genome-wide approaches, the analysis frame-
work can be restricted to discrete regions of the genome,
including single or few whole chromosomes or sub-regions
of chromosomes, in order to define drivers that may re-
side within a locus/loci of interest (e.g. syntenic regions

http://sbcddb.moffitt.org/
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Figure 6. Trunk Driver incidence by tumor type. (A) Bar chart of 31 Trunk Drivers from meta-analysis of 17 tumor datasets using SB Driver Analysis.
Each stacked bar corresponds to a Trunk Driver, and bar heights denote the number of tumors in which the trunk driver gene has an insertion. Colors
within the bars denote datasets to which tumors belong, see key in panel B. (B) Oncoprint of 31 Trunk Drivers from meta-analysis of 17 tumor datasets
highlighting Trunk Driver co-occurrences across the tumor cohorts. Rows and columns represent genes and tumors, respectively. Rectangles to the right
of gene symbols denote activating (blue) and inactivating (red) SB insertion patterns, representing oncogenes and TSGs respectively. Values to the right
of each driver profile denote the percentage of tumors containing the Trunk Driver. Values in parentheses to the right of the tumor cohort key denote the
percentage of tumors in the dataset with at least one high read depth driver insertion. Across datasets, 60.4% (n = 1119/1852) tumors contain high read
depth insertions in one or more of the 31 Trunk Driver genes.

of the mouse genome that harbor a disease-associated lo-
cus in humans). More broadly, the SB Driver Analysis
framework we report may be applied to detect and deter-
mine statistical significance of any genomic feature with a
well-defined DNA motif, including non-SB transposon in-
sertional mutagenesis data from eukaryotic (e.g. piggyBac)
(34–40) and prokaryotic (41) cells or within human cancer
genomes exhibiting simple nucleotide mutational signatures
(42,43) (e.g. ultraviolet light induced cyclobutane pyrimi-
dine dimers) (44).

SB Driver Analysis described here and the companion
SBCDDB (http://sbcddb.moffitt.org/) provide a unique set
of bioinformatics and genomics tools that will be invalu-
able for understanding the tumor driver landscapes of SB-
driven models of human cancers. SB Driver Analysis greatly
strengthens our ability to detect actionable cancer drivers,
prioritize cancer drivers for validation studies, and con-
tributes positively to our understanding of the genetic basis
of human cancers.

http://sbcddb.moffitt.org/
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DATA AVAILABILITY

A Python implementation of the SB Driver Analysis source
code and documentation described in this paper is available
at http://sbcddb.moffitt.org/software/.

SBCDDB, http://sbcddb.moffitt.org/; UCSC
Genome Browser, https://genome.ucsc.edu/; Re-
fGene annotations, http://hgdownload.soe.ucsc.
edu/downloads.html#mouse; liftOver, https:
//genome.ucsc.edu/cgi-bin/hgLiftOver; genePred,
https://genome.ucsc.edu/FAQ/FAQformat.html#format9;
BED (Browser Extensible Data) format, https:
//genome.ucsc.edu/FAQ/FAQformat.html#format1; Can-
cer Gene Census, http://cancer.sanger.ac.uk/census;
RefSeq, https://www.ncbi.nlm.nih.gov/refseq/; GEN-
CODE, https://www.gencodegenes.org/; Ensembl genome
browser, https://www.ensembl.org/index.html/; SciPy,
https://www.scipy.org/; NumPy, http://www.numpy.org/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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