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Abstract 

Background:  The segmentation of 3D cell nuclei is essential in many tasks, such as 
targeted molecular radiotherapies (MRT) for metastatic tumours, toxicity screening, 
and the observation of proliferating cells. In recent years, one popular method for auto-
matic segmentation of nuclei has been deep learning enhanced marker-controlled 
watershed transform. In this method, convolutional neural networks (CNNs) have been 
used to create nuclei masks and markers, and the watershed algorithm for the instance 
segmentation. We studied whether this method could be improved for the segmen-
tation of densely cultivated 3D nuclei via developing multiple system configurations 
in which we studied the effect of edge emphasizing CNNs, and optimized H-minima 
transform for mask and marker generation, respectively.

Results:  The dataset used for training and evaluation consisted of twelve in vitro cul-
tivated densely packed 3D human carcinoma cell spheroids imaged using a confocal 
microscope. With this dataset, the evaluation was performed using a cross-validation 
scheme. In addition, four independent datasets were used for evaluation. The data-
sets were resampled near isotropic for our experiments. The baseline deep learning 
enhanced marker-controlled watershed obtained an average of 0.69 Panoptic Quality 
(PQ) and 0.66 Aggregated Jaccard Index (AJI) over the twelve spheroids. Using a system 
configuration, which was otherwise the same but used 3D-based edge emphasiz-
ing CNNs and optimized H-minima transform, the scores increased to 0.76 and 0.77, 
respectively. When using the independent datasets for evaluation, the best performing 
system configuration was shown to outperform or equal the baseline and a set of well-
known cell segmentation approaches.

Conclusions:  The use of edge emphasizing U-Nets and optimized H-minima trans-
form can improve the marker-controlled watershed transform for segmentation of 
densely cultivated 3D cell nuclei. A novel dataset of twelve spheroids was introduced 
to the public.
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Background
Confocal fluorescent imaging has become a leading imaging method to study cell sam-
ples and imaging in 3D is essential to fully understand the cell morphology and changes 
in it. The segmentation of cells or nuclei is a critical requirement for quantitative analy-
sis. Segmentation is a prerequisite for extracting morphological shape features like vol-
ume, surface area, elongation and roundness or sphericity of individual nuclei. While 
analyses in 2D have been the standard for a long time, in recent years the interest in 3D 
modelling has been growing rapidly. 3D cell models have several advantages over 2D 
cell cultures. In the 3D model, cells start to express their natural organisational struc-
tures and extracellular matrices [1]. The complex structure also leads to nutrient and 
oxygen heterogeneity within the model, which are found also in vivo. It has been shown 
that in 3D cultured cells are in a vivo-like state, which can be seen in their gene expres-
sion and cell behaviour. One of the most commonly used 3D culture system is the sphe-
roid model, which is used in drug research [2, 3]. The blurred and sparse cell boundaries 
as well as high anisotropy of images are important challenges associated with the 3D 
segmentation.

Targeted molecular radiotherapies (MRT) allows targeting of high absorbed radiation 
doses selectively at a cell-level [4]. The importance of cell-level dosimetric modelling has 
been recognised already for a long time since the information about the dose-response 
relationships is needed to optimise MRT. The modelling has been shown to be viable 
with segmented cell nuclei [5]. If the segmentations of nuclei were available, nuclei stain-
ing could be utilised to differentiate living and dead cells, for example by Hoechst 33342 
and propidium iodide dual-staining [6].

While many approaches have been proposed for cell segmentation [7–14], one of the 
most commonly used has been the marker-controlled watershed transform [15]. This 
watershed approach transforms the input, consisting of cell masks and markers, to an 
instance segmentation which assigns different labels for the voxels of separate instances 
of nuclei [16]. In the instance segmentation each distinct nuclei is detected and deline-
ated. This is a more complicated task than semantic segmentation in which each voxel is 
classified to one of the pre-defined classes. Creating the binary cell masks is an example 
of semantic segmentation. Both the masks and markers are generated via an external 
algorithm. One of the challenges of this approach is the formulation of markers which, 
especially with densely clustered cells, is often difficult. To address this issue, the use 
of H-minima transform as a method for assigning markers from optimally suppressed 
regional minima of the input image, e.g. distance transformed cell masks, have been pro-
posed [15, 17, 18].

In recent years, approaches exploiting deep learning in the form of convolutional neu-
ral networks (CNNs) have also been used to generate markers and cell masks with state-
of-the-art results [19–28]. The most popular CNN architecture used in these approaches 
has been U-Net [29]. Deep learning based segmentation has been widely used in other 
fields, e.g. in medical imaging 3D segmentation is an extremely important task (for 
reviews, see e.g. [30, 31]). In the cell segmentation, especially the CNN-based generation 
of cell masks has been successful, addressing another problem of the marker-controlled 
watershed, a correct cell delineation. To enhance cell delineation, various approaches 
for creating edge emphasizing masks via CNNs have been proposed both in 2D [29, 32, 
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33] and 3D [34]. The aim of such masks is to separate clustered cells via edges. This, 
however, can be problematic, as a misdetection of single boundary pixel may lead to the 
fusion of touching nuclei. To alleviate this problem, various loss functions which empha-
size cell boundaries [29, 32, 34, 35] and the use of edge emphasizing masks alongside 
watershed algorithm have been proposed [25, 34, 36]. However, modified loss functions 
and improved neural network architectures proposed in the literature almost always 
include tuning of a set of hyperparameters. On the other hand, H-minima transform has 
only one parameter and is therefore straightforward to optimize. Consequently, the idea 
of combining H-minima-based marker-controlled watershed and mask and marker gen-
erating CNNs is reasonable and interesting. However, to our knowledge, such combina-
tions for 3D nuclei segmentation are yet to be investigated.

In this study, we devised several system configurations where marker-controlled 
watershed was combined with CNNs and optimized H-minima transform for 3D nuclei 
segmentation. Namely, we first constructed a baseline method where two 3D U-Nets 
[37] created binary nuclei mask and seeds. The seeds were transformed into markers via 
connected component analysis and, thereafter, markers and masks were fed to marker-
controlled watershed [22, 25] which performed instance segmentation. The target 
seeds were eroded versions of nuclei masks. The system configurations were designed 
as modifications of this method, either replacing the nuclei masking U-Nets with edge 
emphasizing 2D or 3D U-Nets, connected component analysis with H-minima-based 
marker-controlled watershed or by excluding the creation of seeds and assigning mark-
ers by applying H-minima transform on nuclei mask. The aim of edge emphasizing 
U-Nets was to create binary nuclei mask in which borderlines of clustered cells were seg-
mented as background. The depth parameter in the H-minima transform was optimized 
based on a novel metric describing an overall roundness of the instance segmentation.

The experiments were performed using densely packed twelve HepG2 nuclei spheroids 
for training and evaluation in a cross-validation scheme and also four other datasets for 
evaluation. All samples of the datasets were expanded near isotropic. In addition to the 
baseline, the system configurations were compared to other H-minima-based marker-
controlled approaches where nuclei mask were generated with traditional methods and 
also to multiple well-known reference methods or software.

Methods
Pre‑processing

First, the original slices are downsampled or upsampled, depending on the size of input 
slices, to the size of 256× 256 pixels using bi-linear interpolation. If downsampled, the 
slices are lowpass filtered by the 2D Gaussian filter ( σ = 1 pixel) before downsampling 
to prevent aliasing and to decrease noise. Thereafter, slices containing no or only mini-
mal signal are detected and zeroed to exclude background in model training. A slice is 
defined to belong to the background if the maximum intensity of the slice is less than 
10% of the maximum intensity of the whole image stack, and if it is additionally either 
the first or last slice in the stack or connected to another background slice. The detec-
tion of background is applied to the slices processed by the Gaussian filter ( σ = 3 pixels). 
The filtering is performed to decrease the effect of isolated high-intensity peaks in the 
background detection. The choice of σ = 3 pixels was experimentally discovered to be 
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large enough to attenuate isolated focal intensity peaks but small enough not to diminish 
small nuclei.

New slices between the original slices are added by interpolation to make the data 
more isotropic. The images before the interpolation of new slices define the input space 
and the interpolated expanded image stacks define the expanded space. The expansion 
is performed using odd integer factors, usually with a factor 3, instead of resampling the 
voxels precisely isotropic. In this way, the original slices are included in the expanded 
stack, which makes the transformation back to the input space straightforward. In the 
expansion, expandImageFilter of the Insight Toolkit with linear interpolation mode is 
used [38].

Masking with U‑nets

In this study, masking refers to an operation where the expanded input volume is trans-
formed into binary nuclei masks or binary seeds S. Three different nuclei mask types are 
experimented: 3D nuclei mask M3D , 3D edge emphasizing nuclei mask M3DE and 2D 
edge emphasizing nuclei mask M2DE . Examples of the 3D predictions of these masks are 
illustrated in Fig. 1. The transformation is executed with either 2D or 3D U-Nets which 
were trained using target mask types and seeds. The U-Nets with target types consist-
ing either of M3DE or M2DE are referred to as edge emphasizing U-Nets. Target mask 
types and seeds are visualized in Fig. 2 and their automatic generation from the manu-
ally defined ground truths is explained in Section Target nuclei masks and seeds.

Fig. 1  Visualization of an expanded ground truth, target nuclei masks and seeds in x-y- and x-z-planes. A: 
an expanded ground truth, B: 3D nuclei mask M3D , C: 3D edge emphasizing nuclei mask M3DE , D: 2D edge 
emphasizing nuclei mask M2DE and E: the seeds S. The actual height and width of each image are both 87 µm
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The architecture of the 2D U-Nets is essentially the same as proposed by Ronneberger 
et al. [29] but the number of encoders is set to 5 and the number of decoders to 4. More-
over, the last layer of the network is a fully connected layer. The number of filters in kth 
encoder and decoder blocks were 28k and 28(5− k) , respectively. Rectified linear unit 
activation is used after each convolutional layer, the filter size is 3× 3 and zero padding 
used to keep the sizes of the input and output of the layer the same. The input and out-
put dimensions are 256× 256.

The architecture of the 3D U-Nets follows the one in the 2D U-Nets, but 2D con-
volution layers are replaced with 3D convolution layers with 3× 3× 3 filter size. The 
input and output dimensions are 256× 256× 24 . Upsampling and max-pooling are 

Fig. 2  Volume renderings of the twelve 3D HepG2 nuclei spheroids. The unit for scale bars is µm
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performed with 2× 2× 1 factors. To ensure that the number of parameters would be 
about the same between the 2D and 3D U-Nets, and thus make the comparison 2D 
versus 3D U-Net architecture more meaningful, the number of filters in kth encoder 
and decoder blocks are lowered to 16k and 16(5− k) . The number of parameters is 
3.3× 106 and 3.2× 106 in 2D and 3D U-Nets, respectively.

Using the two architectures, we formed four model types which each had a different 
target type: UM3D , UM3DE , US and UM2DE , where the footnote refers to the target type. 
Each model performs masking patch-wise with the input image divided to the patches 
with the same dimensions as the input dimensions of the input of the model. If the 
size of the image is not divisible by the patch size, the last and the second last patch 
have overlap to ensure that the whole image is segmented. The prediction of US is 
always multiplied with the prediction of UM , where M ∈ {M3D,M3DE ,M2DE} to ensure 
that the predicted seeds would not continue outside the predicted nuclei mask. The 
predictions of UM are thresholded with 0.5 and US with 0.3. The threshold for seeds is 
lower due to the multiplication with nuclei mask and to alleviate the problem of van-
ishing of small sized seeds. The problem was encountered in our preliminary experi-
ments with the twelve spheroids discussed in Section Datasets, especially when some 
of the nuclei were only partially visible in the image.

Watershed methods

The components of the studied watershed methods are 3D morphological marker-
controlled watershed ( WSm ), H-minima-based marker-controlled watershed ( WSh ) 
and 3D connected components filter (CC). WSm requires an input consisting of mark-
ers and nuclei mask and first applies Euclidean distance transform (DT) on the mask. 
The spacings of the transform (pixel dimensions) {sxy, sxy, sz} are normalised to 
{
sxy
sxy

,
sxy
sxy

,
sz
sxy

} . Then, DT and markers are fed to a morphological watershed transform 

which produces instance segmentation. WSh operates otherwise similarly but assigns 
markers from DT, constructed either from a nuclei mask or seeds, using H-minima 
transform with a given h-value. The transform suppresses “weak” local minima in DT 
with the depth parameter, h-value, reducing oversegmentation [15, 39]. CC trans-
forms seeds into markers by assigning voxels of isolated seeds with a unique label.

The watershed methods, visualized as block diagrams in Fig. 1, are defined as

where O denotes instance segmentation. The method A is essentially WSm , but markers 
are created from binary seeds with CC. The method B is the same as WSh . The method 
C is similar to A but the markers are not assigned with a connected component analy-
sis but by applying H-minima-based marker-controlled watershed to the seeds S. In 
essence, the method C uses watershed twice, first for seeds to form markers and then for 

(1)A :O = WSm(M,CC(S)),

(2)B :O = WSh(M, h),

(3)C :O = WSm(M,WSh(S, h)),



Page 7 of 19Kaseva et al. BMC Bioinformatics          (2022) 23:289 	

these markers and a given mask. Instance segmentations are post-processed to exclude 
objects which are 5% or less of the average volume of all segmented objects.

Estimation of optimal H‑value

All watershed methods utilizing H-minima transform are computed using N different 
values for parameter h producing a set of segmentation proposals {O1, ...,ON } . The set of 
h-values is fixed to {1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 4.0, 5.0} ( N = 9 ). The minimum value 
of the range is set to 1.0 that corresponds to the size of one voxel in all data sets since the 
sizes of voxels were normalised. The choice of the maximum value is explained in Sec-
tion Experiments on the datasets.

To choose the best segmentation, the roundness value R of each segmented object 
in the given segmentation Oi is calculated. R is computed using the implementation of 
LabelShapeStatisticsImageFilter of the SimpleITK. Then, the average roundness score φR 
is calculated. The segmentation with the highest φR is chosen as the final segmentation. 
The intuition behind this score is to penalise segmentations that contain non-spherical 
segmented objects likely formed by many nuclei clumped together.

Datasets

The used datasets are referred as the twelve HepG2 spheroids and the independent data-
sets. The spheroids consist of twelve 3D HepG2 nuclei spheroids which were imaged 
with a confocal microscope and are visualized in Fig. 3. The spheroids are introduced 
to the public first time in this study. The x-y-plane resolutions varied from 0.07 to 0.1 
µ m and the step size for forming z-stack was 1.01 µ m. The original size of the image 
slices was 1024 × 1024 pixels. More detailed descriptions of the imaging parameters and 
the cultivation of the spheroids are given in Additional file  1. The essential feature of 
this datasets was the clumped nature of the nuclei, making even manual segmentation 
challenging.

The independent datasets include Neurosphere [40, 41], Embryo [40, 41], monolayer 
of induced pluripotent human stem cells (hiPSC) BBBC034v1 Thirstrup et  al. 2018, 
available from the Broad Bioimage Benchmark Collection [42] and a 3D HepG2 sphe-
roid of liver cancer cells [5]. In our study, only the nuclear staining channel of each data-
set was used. See the Additional file 1 for more details.

The ground truth segmentations of the twelve spheroids were defined manually using 
the Segment editor of 3D Slicer image computing platform [43]. The process is described 
with more details in Additional file 1. The ground truth segmentation for the liver data 
was performed by Reijonen et al. [5]. The ground truths of the other three independent 
datasets were downloaded from the public websites [40, 42].

Target nuclei masks and seeds

Target nuclei masks and seeds for neural network training were created automati-
cally using the expanded or original ground truths of the twelve spheroids. The ground 
truths were transformed from input space to expanded space via morphological contour 
interpolation method [44]. The idea of the method is to give a smooth change of shape 
between the slices. However, we found that the nuclei that were originally connected 
in z-direction were not necessarily connected after interpolation. In the between-two 
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nuclei regions, defined using a morphological closing operation, we modified the origi-
nal contour interpolation method to use nearest-neighbourhood interpolation to avoid 
extra gaps between nuclei.

Nuclei masks of type M3D , M3DE and seeds S were generated from the expanded 
ground truths. M3D masks were simply binarized versions of the expanded ground 
truths. The edge emphasized versions, M3DE masks, were otherwise the same but also 
the outer boundaries, i.e. edges, of each nucleus were set to value 0 to separate touching 
nuclei by a background stripe. The edges were computed using find_boundaries (mode 
outer) method in scikit-learn [45].

To create the seeds S for a given spheroid, a morphological binary erosion operation 
(spherical structuring element with radius r = 3 voxels) was applied to each nucleus of 
the expanded ground truth of the spheroid separately. If the erosion split an original 
nucleus into two or more parts, a lighter erosion ( r = 1 voxel) was used instead. In the 
rare cases when lighter erosion also split the nucleus, erosion was performed only on 
x-y plane (spherical structuring element r = 1 pixel). Morphological erosion was used 

Fig. 3  Segmentation of nuclei via system configurations with a demonstration using the configuration 
{C ,M2DE , S} . All the configurations utilise an input volume that is expanded near isotropic (1). The expanded 
volume is transformed with a chosen U-Net model type ( UM3D

,UM3DE
,UM2DE

 or US ) into one of the nuclei 
masks M ∈ {M3D ,M3DE ,M2DE } , where M3D denotes 3D nuclei mask, M3DE 3D edge emphasizing nuclei mask 
and M2DE 2D edge emphasizing nuclei mask, and optionally to binary seeds S (2). Instance segmentation is 
performed using one of the three different marker-controlled watershed methods A, B or C (3). The method 
A transforms binary seeds into markers via connected component (CC) analysis, and feeds markers and 
nuclei mask to the marker-controlled watershed transform, WSm , which computes distance transform (DT) of 
nuclei mask and creates an instance segmentation. The method B uses H-minima-based marker-controlled 
watershed, WSh , which input consist of nuclei mask and a h-value. Markers are determined from the nuclei 
mask via DT and H-minima transform, and similarly as in WSm , DT and markers are transformed into an 
instance segmentation. The method C is otherwise the same as A but generates markers by feeding seeds 
to WSh . Given a mask, optionally seeds and N different h-values, a chosen watershed method produces N 
different segmentation maps Oi . The segmentation Oi with the highest average roundness score φR is chosen 
as the final segmentation (3)



Page 9 of 19Kaseva et al. BMC Bioinformatics          (2022) 23:289 	

because it approximately retains the shape of the nuclei in the seeds. The seeds S were 
then computed as a binarized version of the eroded image.

Nuclei masks of type M2DE were computed from original ground truths by first bina-
rizing them and then by using the 2D version of find_boundaries. The method was 
applied to each xy-slice of given binarized ground truth and it created 2D-based edges 
which were labeled as background. Different types of target masks and seeds are illus-
trated in Fig. 2.

Training of U‑nets

A total of 12 models of each U-Net model type discussed in Section Masking with 
U-Nets were trained using the twelve expanded spheroids and the corresponding binary 
targets. In essence, a given model type UT where T ∈ {M3D,M3DE ,M2DE , S} had twelve 
different models Um

T  , where m ∈ {1, ..., 12} . When m = 1 , the validation set of a model 
was the 12th spheroid and (m-1)th spheroid otherwise. The mth spheroid was always left 
out of the training and used for evaluation as discussed in Section System configurations. 
The other 10 spheroids were used for training.

In the training of a given Um
T  with 3D U-Net architecture, training samples consisted 

of input, 256× 256× 24 sized expanded spheroid patch and target T patch with the 
same dimensions. Input patches were extracted from the expanded spheroids using a 
sliding window with 12 slices overlap. When the sliding patch window partly crossed 
the image volume boundaries, zeros were added to fill the patch. Target patches were 
extracted similarly from the expanded ground truth. The intensities of the input patch 
were normalised between [0, 1]. Keras framework [46] (version 2.3.0) was used for train-
ing the models. The number of epochs was 200, batch size 4, the loss function binary 
cross entropy, and the optimizer Adam [47]. The loss function and optimizer were ini-
tialized with default parameters of their Keras implementations. The initial learning rate 
was 0.001 which was decayed by factors of five and ten after 75 and 110 epochs, respec-
tively. Augmentation was performed on-the-fly during training: axial rotations with 360 
degrees range were performed to 67% of samples in a training set batch and mirror-
ing to 50% of samples in the batch. The final model configuration was chosen based on 
the epoch with the lowest validation loss. This training process was replicated for each 
3D-based U-Net type discussed in Section Masking with U-Nets.

The dimensions of target and input patches, or slices, were 256× 256 when training 
Um
M2DE

 models. The input slices and targets were extracted from the original spheroids 
and ground truths. The batch size was set to 16. With this choice, the number of updates 
was essentially the same as when training 3D U-Net models. Otherwise, the training 
configuration was the same as explained in the previous paragraph. Using Tesla V100 
GPU, the training time for an epoch of 3D U-Net type model was about 50 seconds and 
10 seconds for 2D U-Net type model.

System configurations

The system configurations are denoted either with {w,M, s} or with {w,M, s, ∗} , where 
w ∈ {A,B,C} , M ∈ {M3D,M3DE ,M2DE} and s ∈ {−, S} . The configurations {w,M, s} were 
evaluated on the twelve spheroids: keeping the w, M and s fixed, the masks of each mth 
spheroid were created with Um

M and, depending on the configuration, with Um
S  . The mth 



Page 10 of 19Kaseva et al. BMC Bioinformatics          (2022) 23:289 

spheroid was always left out of the training of each Um
M and Um

S  model. The evaluation 
set of the configurations {w,M, s, ∗} consisted of the independent datasets. These con-
figurations are otherwise the same as {w,M, s} but have twelve different settings with 
m ∈ {1, ..., 12}.

Deep learning baselines

The configuration {A,M3D, S} is named as U-Nets+SWS and {A,M3D, S, ∗} as 
U-Nets+SWS*. Here, we inherit the notation from [25], with SWS refering to seeded i.e. 
marker-controlled watershed. In this study, they can be considered as baseline methods 
previously introduced in the literature and similar to QCANet [22].

Additionally, we devised 3D versions of U-Net proposed in [29]. These versions, 
named as U-Net-Cell and U-Net-Cell* similarly as in [35], were similar to {B,M3DE ,−} 
and {B,M3DE ,−, ∗} but with two main differences: instance segmentations were pro-
duced using connected component analysis and the loss function used in training of 
the edge masks was a 3D version of weighted cross entropy loss introduced in [29]. In 
this loss function, voxels representing boundaries of clumped nuclei were given higher 
weight. The parameters of the loss function were otherwise the same as in [29] but 
the weights of nuclei and background classes were 3 and 1 to address class imbalance, 
respectively.

Evaluation metrics

The evaluation metrics used in this study are Panoptic Quality (PQ) [48], Jaccard Index 
(JI), Aggregated Jaccard Index (AJI) [49] and nuclei number difference percentage 
(NNDP). The first three are based on an intersection over union (IoU) which is defined 
as IoU(X ,Y ) = |(X ∩ Y )|/|(X ∪ Y )| where X and Y are the set of voxels belonging to the 
nuclei, in the segmentation and ground truth. The nuclei are considered matching nuclei 
if IoU(X ,Y ) > 0.5 . The detection quality (DQ) measure is the object-level F1 score: 
F1 = TP

TP+0.5(FP+FN )
 where TP is the number of nuclei in the segmentation that have 

match in the ground truth, FP is the number of nuclei in the segmentation that do not 
have match and FN is the number of nuclei in the ground truth that do not have match 
in the segmentation. Segmentation quality (SQ) measures how accurately the nuclei are 
delineated and it is defined as the average IoU of matched nuclei. PQ is defined as prod-
uct of F1 Detection Quality (DQ) and Segmentation Quality (SQ): PQ = DQ× SQ . We 
used PQ as main evaluation metric because it measures both the detection quality and 
segmentation accuracy in one score. Additionally, [50] presented an opinion that PQ 
should be a standard performance measure for nuclear instance segmentation methods.

Jaccard index, like SQ, is defined as the average of IoUs of matched objects. However, 
in the implementation provided by Piccinini et al. [40] the IoU was calculated for every 
nucleus of the ground truth and its matched nuclei was the one that maximized IoU. 
We use this formulation of JI to enable direct comparison with the results in [40]. The 
drawback of JI is that false positive nuclei detections are not penalised. Aggregated Jac-
card index (AJI) [49] was originally designed to be an enhanced version of JI, and it uses 
the voxel count of false positive nuclei to penalise its value. AJI is used as an evaluation 
metric in many nuclei instance segmentation studies and thus helpful to compare our 
results with the literature.
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In addition to PQ, JI and AJI, we defined nuclei number difference percentage (NNDP) 
as

where Snum is the number of cell nuclei in the segmentation and Gnum in the ground 
truth.

Experiments on the datasets

The segmentations obtained using the configurations discussed in Section System con-
figurations were compared to the ground truths using the defined evaluation metrics. 
With the twelve spheroids we used all metrics whereas with the independent datasets 
we computed PQ and JI. Before computing the evaluation metrics, the segmentations 
were always transformed from expanded space to the size of the original ground truths. 
This was performed by choosing matching slices and via 2D nearest-neighbourhood 
interpolation or extrapolation on the x-y-plane when the dimensions of this plane dif-
fered from 256× 256 . All the experiments were performed using twelve CPUs (Intel 
Xeon Gold 6248) without GPU support. Using the computationally heavy configuration 
{C ,M3DE , S, ∗} , the creation of mask and seeds, instance segmentation and computa-
tion of evaluation metrics for the 5th spheroid consisting of 141 nuclei took about three 
minutes.

Using the twelve spheroids, we made an experiment where the roundness score φR was 
replaced with AJI+PQ+JI

3
 in the estimation of the h-value. In preliminary experiments, the 

score, named as the optimal score, was used to determine the highest h-value of the esti-
mation range discussed in Section Estimation of optimal h-value using the {B,M3DE ,−} , 
{C ,M3DE , S} and {C ,M3DE , S} and the twelve spheroids. In the end, this highest optimal 
h-value was found to be 5.0 with the eleventh spheroid.

In addition to the deep learning baselines, we constructed four different H-minima 
transform-based marker-controlled watershed approaches for results comparisons: WS, 
aifWS, nlWS and blWS. The baselines were used to segment the twelve spheroids. All 
the baselines used the watershed method B discussed in Section Watershed methods and 
performed masking by Otsu’s thresholding method [51]. aifWS, blWS and nlWS used 
ITK [38] implementations of various non-linear denoising techniques: gradient aniso-
tropic diffusion filtering (aifWS) [52], bilateral filtering (blWS) [53], and patch-based 
denoising (nlWS) [54]. Moreover, 3D CellProfiler pipeline was used as one of the base-
lines. The pipeline was tested both using the expanded data (CeP) and the original data 
as input (CeP non-exp). Each baseline had twelve parameter settings, one for each sphe-
roid. Each of these settings was optimized to give the highest possible PQ score on a 
unique spheroid. More details of the optimization process are given in Additional file 1.

While we tested various system configurations on all datasets in the independent data-
sets, we used the Embryo and Neurosphere datasets to perform results comparisons 
with the software reported by Piccinini et  al. [40]. Most of the algorithms were auto-
matic but operated with human interaction, e.g. required tuning of some parameters. 
The best performing software in the paper was semi-automatic 3D-Cell-Annotator [41].

(4)NNDP =
2|Snum − Gnum|

Snum + Gnum

× 100%,
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Results
Table 1 presents the results of our experiments on the twelve spheroids using six dif-
ferent traditional algorithms, deep learning baselines and eight system configura-
tions. CeP, using expanded data, was the best performing non-deep learning-based 
algorithm in all metrics. It was outperformed by all system configurations, U-Net-
Cell and U-Nets+SWS which achieved over 20% relative improvement on all average 
scores except the NNDP.

Utilisation of the edge emphasizing U-Net models, especially the 3D ones, 
improved the results with all system configurations. The importance of the use of 
H-minima transform was slightly higher since the scores of {C ,M3D, S} were better 
than the scores of {A,M3DE , S} or {A,M2DE , S} . When comparing U-Nets+SWS and 
{C ,M3DE , S} the relative improvement of the latter in terms of average AJI+PQ+JI

3
 was 

11% and the standard deviation was smaller with all metrics. With {C ,M3DE , S} the 
NNDP was less than 15% of the NNDP of {A,M3DE , S} . While {C ,M3DE , S} performed 
the best, {B,M3DE ,−} which did not utilise deep seeds and {C ,M2DE , S} which gener-
ated 2D edge emphasizing masks reached similarly high scores. All system configu-
rations outperformed U-Net-Cell. Using the 12th spheroid, we provide visualized 

Table 1  The average evaluation scores and their standard deviations over twelve spheroids

The configurations are specified by {w ,M, S} : w denotes watershed method, M ∈ {M3D ,M3DE ,M2DE } , which denotes 3D 
mask, 3D and 2D edge emphasizing mask, respectively, and S ∈ {S,−} , which refers to use or exclusion of seeds. The scores 
in (.) brackets were obtained by replacing the maximization of roundness score φR with maximization of AJI+PQ+JI

3
 in the 

determination of the h-value. These scores represent theoretically best scores obtained in an unrealistic scenario. AJI = 
Aggregated Jaccard Index, PQ = Panoptic Quality, JI = Jaccard Index, NNDP = nuclei number difference percentage. The 
best value for each evaluation metric is bolded

Method AJI PQ JI NNDP ( %)

WS 0.47 ± 0.06 0.43 ± 0.06 0.53 ± 0.05 19.9 ± 10.9

aifWS 0.52 ± 0.07 0.50 ± 0.08 0.57 ± 0.05 16.3 ± 7.6

nlWS 0.47 ± 0.06 0.45 ± 0.05 0.53 ± 0.05 20.2 ± 10.1

blWS 0.50 ± 0.06 0.48 ± 0.07 0.56 ± 0.05 17.5 ± 8.6

CeP non-exp 0.34 ± 0.05 0.26 ± 0.06 0.41 ± 0.05 31.5 ± 19.8

CeP 0.53 ± 0.05 0.48 ± 0.06 0.58 ± 0.05 6.3 ± 5.5

U-Net-Cell 0.54 ± 0.15 0.57 ± 0.1 0.63 ± 0.09 16.6 ± 14.1

U-Nets+SWS 0.66 ± 0.09 0.69 ± 0.07 0.73 ± 0.06 11.4 ± 6.2

A,M3DE , S 0.72 ± 0.08 0.73 ± 0.07 0.76 ± 0.05 6.1 ± 4.6

A,M2DE , S 0.68 ± 0.08 0.71 ± 0.06 0.74 ± 0.05 9.9 ± 5.3

B,M3D ,− 0.63 ± 0.1 0.65 ± 0.09 0.69 ± 0.08 14.6 ± 8.1

(0.64 ± 0.11) (0.66 ± 0.09) (0.7 ± 0.08) (12.6 ± 9.4)

B,M3DE ,− 0.76 ± 0.06 0.75 ± 0.06 0.78 ± 0.04 3.3 ± 2.2

(0.77 ± 0.06) (0.76 ± 0.06) (0.78 ± 0.04) (2.4 ± 1.2)

B,M2DE ,− 0.7 ± 0.07 0.7 ± 0.07 0.74 ± 0.05 5.2 ± 3.1

(0.71 ± 0.07) (0.7 ± 0.07) (0.75 ± 0.05) (4.7 ± 3.6)

C ,M3D , S 0.73 ± 0.09 0.74 ± 0.07 0.76 ± 0.06 5.6 ± 6.4

(0.76 ± 0.06) (0.75 ± 0.05) (0.78 ± 0.04) (2.7 ± 2.3)

C ,M3DE , S 0.77 ± 0.06 0.76 ± 0.05 0.78 ± 0.04 1.8 ± 1.8

(0.78 ± 0.06) (0.77 ± 0.05) (0.79 ± 0.04) (2.2 ± 1.2)

C ,M2DE , S 0.76 ± 0.05 0.76 ± 0.05 0.78 ± 0.04 2.4 ± 1.4

(0.77 ± 0.06) (0.76 ± 0.05) (0.79 ± 0.04) (1.8 ± 0.9)
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results comparison between CeP,U-Net+SWS and two highest performing configura-
tions in Fig. 4.

The performance of the estimation of h-value was quantified by comparing to an 
approach where the roundness score φR was replaced with the optimal score AJI+PQ+JI

3
 . 

The results obtained with this score are presented in (.) brackets. The worst estima-
tion was produced with {C ,M3D, S} in which mean NNDP increased from 2.7 to 5.6 
and mean AJI decreased from 0.76 to 0.73 when using φR instead of the optimal score. 
In general, the use of the optimal score increased PQ, AJI and JI by approximately 0.01 
units.

Fig. 4  Results comparison on the 12th spheroid. A: the spheroid, B: ground truth, C: CellProfiler 
segmentation (PQ=0.51), D: U-Net+SWS segmentation (PQ=0.57), E: {C ,M2DE , S} segmentation (PQ=0.72), 
F: {C ,M3DE , S} segmentation (PQ=0.72. The configurations are specified by {w ,M, S} : w denotes watershed 
method, M ∈ {M3D ,M3DE ,M2DE } , which denotes 3D mask, 3D and 2D edge emphasizing mask, respectively, 
and S ∈ {S,−} , which refers to use or exclusion of seeds. Colors are arbitrary. The actual height and width of 
the spheroid are 86 µ m and 39 µ m, respectively. PQ = Panoptic Quality

Table 2  PQ and JI scores on the independent datasets

The configurations are specified by {w ,M, S, ∗} : w denotes watershed method, M ∈ {M3D ,M3DE ,M2DE } , which denotes 3D 
mask, 3D and 2D edge emphasizing mask, respectively, and S ∈ {S,−} , which refers to use or exclusion of seeds. We also 
report PQ and JI values of the reference software computed from the ground truth and result files provided by Piccinini et al. 
[40] for the Neurosphere and Embryo datasets. The configurations, U-Net+SWS* and U-Net-Cell* both had twelve different 
settings: the average scores and their standard deviations of these settings are illustrated. PQ = Panoptic Quality, JI = 
Jaccard Index. The best value for each dataset and evaluation metric combination is bolded

Method Neurosphere Embryo Liver hiPSC

PQ JI PQ JI PQ PQ

IF3DImageJSuite [40, 55] 0.02 0.23 0.64 0.65 NA NA

LoS [40, 56] 0.20 0.40 0.40 0.51 NA NA

MINS [40, 57] 0.51 0.56 0.79 0.79 NA NA

OpenSegSPIM [40, 58] 0.58 0.61 0.36 0.48 NA NA

RACE [40, 59] 0.03 0.39 0.00 0.15 NA NA

SAMA [40, 60] 0.00 0.12 0.40 0.49 NA NA

Vaa3D [40, 61] 0.45 0.60 0.40 0.52 NA NA

XPIWIT [40, 62] 0.59 0.62 0.73 0.74 NA NA

3D-Cell-Annotator [40, 41] 0.64 0.69 0.80 0.80 NA NA

U-Net-Cell∗ 0.51 ± 0.03 0.58 ± 0.02 0.64 ± 0.03 0.68 ± 0.02 0.67 ± 0.02 0.59 ± 0.04

U-Nets+SWS∗ 0.65 ± 0.01 0.68 ± 0.01 0.76 ± 0.03 0.77 ± 0.02 0.71 ± 0.01 0.75 ± 0.04

B,M3DE ,−, ∗ 0.66 ± 0.01 0.70 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.71 ± 0.01 0.70 ± 0.16

C ,M3DE , S, ∗ 0.67 ± 0.01 0.70 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.71 ± 0.01 0.69 ± 0.14

C ,M2DE , S, ∗ 0.66 ± 0.01 0.69 ± 0.01 0.80 ± 0.02 0.81 ± 0.02 0.71 ± 0.01 0.74 ± 0.03
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In Table  2, we illustrate the results on the independent datasets obtained by 
U-Net+SWS* and the three system configurations that achieved the three best scores on 
the twelve spheroids. Each configuration and deep learning baselines had twelve differ-
ent settings: the average scores and their standard deviations obtained with the settings 
are reported. Using the Neurosphere and the Embryo datasets, we also provide a results 
comparison with the cell segmentation algorithms discussed an results reported in [40]. 
The system configurations improved the scores of U-Net+SWS* when evaluated on 
Neurosphere and Embryo but not with Liver and hiPSC. They outperformed U-Net-Cell* 
with all datasets. The best overall performing configuration was {C ,M2DE , S, ∗} which in 
average beat or equaled the scores of the best performing algorithm, 3D-Cell-Annotator.

Discussion
In this study, we implemented several novel system configurations which utilized 
U-Nets, optimized H-minima transform and marker-controlled watershed for 3D nuclei 
segmentation. The basis of the configurations was the the deep learning enhanced 
marker-controlled watershed method (U-Nets+SWS), similar to QCANet by Tokuoka 
et al. [22]. In this method, U-Nets were used to create nuclei masks and markers for the 
watershed algorithm. One difference between our baseline implementation and the one 
used in QCANet is that we used markers following nuclei shapes whereas QCANet used 
spherical markers. This enabled us to improve marker detection by applying watershed 
transform to the seed masks generated by U-Nets. By using various system configura-
tions, we examined whether nuclei masks should be generated via edge emphasizing 
U-Nets, could the markers be defined from the nuclei masks using optimized H-min-
ima transform or from binary seeds created by U-Nets using H-minima-based marker-
controlled watershed. The depth parameter of the H-minima transform was optimized 
using overall roundness of a given segmentation.

All U-Nets were trained using standard architectures and a loss function which thus 
were not factors in the performance difference of the system configurations. Conse-
quently, all results improvements were either due to the use of deep edge emphasis, 
optimized H-minima transform or both. While these methods have been discussed pre-
viously in the literature [15, 25, 33, 34, 36], their combination has not yet been tested. 
Experimenting with the combination is relevant since deep edge emphasis can be 
applied on top of any deep learning-based approach for masking and optimized H-min-
ima transform in any postprocessing step which involves watershed algorithm.

In our experimental setup, all nuclei samples were expanded near isotropic using lin-
ear interpolation. The motivation for the expansion rose from our preliminary experi-
ments in which we observed that the performance of the watershed algorithm was 
greatly improved when the input image was transformed isotropic. A similar situation 
occurred also with 3D CellProfiler as depicted in Table 1. Morphological contour-based 
interpolation was used to convert ground truth segmentations to near isotropic for the 
training of CNNs. These choices, along with the formulation of the shape and size of 
target seeds, enhanced the performance of the deep learning baselines and made them 
more robust. However, for this study, we opted to exclude reporting the preliminary 
experiments and focused on comparing various approaches and our system configura-
tions in this fixed experimental setup.
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The system configurations were tested on the dataset of twelve spheroids and the inde-
pendent datasets. The results on the twelve spheroids in Table 1 demonstrate that the 
performance of the baseline method U-Nets+SWS was improved if U-Nets for nuclei 
masking were replaced by edge emphasizing U-Nets ( {A,M3DE , S} or {A,M2DE , S} ). 
As the NNDP decreased and PQ increased with these choices, the edge emphasizing 
U-Nets contributed for both better marker assignments and nuclei delineation. In addi-
tion, replacing the connected component analysis of the baseline with the H-minima-
based marker-controlled watershed had the same effects ( {C ,M3D, S} ). The best results 
were achieved by combining both replacements ( {C ,M3DE , S} or {C ,M2DE , S} ) with PQ 
increasing from 0.69 to 0.76 and NNDP decreasing from 11.4 to 1.8. The configura-
tion in which markers were created from 3D edge emphasizing U-Nets with the help 
of H-minima transform (({B,M3DE ,−} ) reached almost the same scores as the two best 
systems watershed C method-based systems. Consequently, the creation of seeds was 
not a necessity.

U-Net+SWS, U-Net-Cell and all system configurations outperformed the traditional 
baselines. All traditional baselines, except CeP-based systems, used watershed method 
B but performed masking via filtering and Otsu’s thresholding. The parameters of these 
baselines were chosen optimally in an unrealistic setting. However, any system config-
uration using watershed method B significantly outperformed them. This result high-
lighted the importance of the generation of nuclei masks using U-Nets.

To the best of our knowledge, we are the first to compare the performance of 2D 
U-Nets to 3D U-Nets in a 3D nuclei segmentation task. The configuration {B,M2DE ,−} 
utilized only 2D edge emphasizing U-Nets and was shown to outperform the scores of 
U-Nets+SWS which used 3D U-Nets. However, if the U-Nets of this configuration were 
replaced with 3D edge emphasizing U-Nets, the results improved. On the other hand, 
2D edge emphasizing U-Nets were as effective as their 3D counterparts with the config-
urations using watershed method C. Consequently, the results implied that relying solely 
on 2D U-Nets instead of 3D U-Nets would not be advisable, but that the former could 
be used for nuclei masking if markers were created from seeds via H-minima transform-
based watershed.

The scores in () brackets in Table 1 illustrate the values that could have been attained 
if the h-value would have been chosen to maximise score AJI+PQ+JI

3
 instead of the aver-

age roundness φR metric. In general, the use of average roundness to spsecify h-value 
was almost as effective. Even if more sophisticated methods for finding the best h-value, 
locally or globally, do exist [15, 17, 18], the use of φR metric was simple and demon-
strated the benefit of the usage of H-minima transform in our system configurations.

The three best system configurations, based on the cross-validation using the twelve 
spheroids, as well as the deep learning baselines, were also evaluated using the inde-
pendent datasets. The nuclei in these datasets were not highly clumped but their imag-
ing protocols and nuclei types, excluding the Liver dataset, differed from the twelve 
spheroids. For this reason, the main purpose of the evaluation on the datasets was to test 
the ability of system configurations to generalize to data dissimilar to the training data. 
Each system configuration and the baseline U-Net+SWS* included twelve different 
U-Net settings. We reported the average scores and their standard deviations of these 
settings in Table 2. Using all settings was necessary to quantify the variation inherent in 
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different settings trained with slightly different sets. The configurations outperformed 
U-Net-Cell* with all datasets and improved the scores of U-Nets+SWS* on Embryo and 
Neurosphere but not on Liver and hiPSC. Embryo and Neurosphere were previously 
investigated by Piccinini et al. [40] in which multiple well-known segmentation software 
were evaluated. The best performing software was 3D-Cell-Annotator [41] which scores 
we were able, in average, to outperform or equal using the configuration {C ,M2DE , S, ∗} . 
This outcome is meaningful since 3D-Cell-Annotator was semi-automatic and required 
human interaction whereas the configuration operated fully automatically and was 
trained with dissimilar data. The edge emphasizing U-Nets, especially the 3D ones, were 
shown to fail to some extent with hiPSC. In this dataset the nuclei were not clustered 
and the U-Nets mistakenly assigned edges to individual nuclei and wrongly separated 
them. An obvious reason for this result is the disrepancy between the test and training 
sets.

Another highlight of this study was the comparison of 3D version of U-Net-Cell 
[29, 35] against {B,M3DE ,−} configuration. The configuration was otherwise the same 
as U-Net-Cell but did not utilize weight maps during training and produced instance 
segmentation using H-minima transform-based watershed algorithm. The configura-
tion greatly outperformed U-Net-Cell on twelve spheroids as the average AJI improved 
from 0.54 to 0.76. Similar results were achieved over independent datasets with average 
PQ improving from 0.61 to 0.71. In a previous study with 3D nuclei dataset, U-Net-Cell 
was compared to an approach similar to U-Net-Cell but which used an enhanced loss 
function during training [35]. The use of the enhanced loss function led only to modest 
improvements as average AJI score improved from 0.63 to 0.66. In this perspective, our 
focus on using optimized H-minima transform to improve watershed algorithm instead 
of trying to enhance edge emphasizing U-Nets with different architecture or loss func-
tion solutions seemed justified.

A limitation of machine learning based methods is the uncertainty of generalizability 
to other types of data sets or to datasets acquired at other sites. In our tests, the inde-
pendent datasets included three datasets in which the imaging protocols and the cell 
cultures were different than in our training sets. We achieved satisfactory results on 
these datasets. However, only datasets having visually similar image contrast and image 
features were chosen for this study. It is likely that if applied to datasets that differ sub-
stantially from the data used in training, the models will fail. Another limitation is the 
tedious work to create manually segmented ground truths, especially in the case of 3D 
volumetric data. The use of synthetic data [24] and sparse or weak annotations [37, 63] 
are examples of research directions that may alleviate the burden. However, manually 
annotated data is required for the quantitative evaluation of the methods.

Conclusions
Our study provided evidence that marker-controlled watershed for 3D nuclei segmen-
tation could be improved via using edge emphasizing U-Nets for mask and optimized 
H-minima transform for marker generation. The methods of deep edge emphasis and 
the use of H-minima transform are not tied to any specific neural network architec-
ture or training procedure and can be exploited alongside virtually any deep learning-
based nuclei segmentation approach in the future. The software and thirteen cell nuclei 
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spheroids with manually segmented ground truths were made publicly available. Inter-
esting future work directions could be the estimation of h-value locally instead of glob-
ally and the replacement of the roundness score with some other metric or a set of 
metrics. The training and evaluation sets should be enlarged to ensure the functionality 
of the system configurations with more diverse imaging protocols and cell cultures.
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