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In digital pathology, deep learning has been shown to have a wide range of applications, from cancer grading to
segmenting structures like glomeruli. One of the main hurdles for digital pathology to be truly effective is the size of
the dataset needed for generalization to address the spectrum of possiblemorphologies. Small datasets limit classifiers’
ability to generalize. Yet, when we move to larger datasets of whole slide images (WSIs) of tissue, these datasets may
cause network bottlenecks as eachWSI at its original magnification can be upwards of 100 000 by 100 000 pixels, and
over a gigabyte in file size. Compounding this problem, high quality pathologist annotations are difficult to obtain, as
the volume of necessary annotations to create a classifier that can generalize would be extremely costly in terms of
pathologist-hours. In this work, we use Active Learning (AL), a process for iterative interactive training, to create a
modified U-net classifier on the region of interest (ROI) scale. We then compare this to Random Learning (RL),
where images for addition to the dataset for retraining are randomly selected. Our hypothesis is that AL shows benefits
for generating segmentation results versus randomly selecting images to annotate.We show that after 3 iterations, that
AL, with an average Dice coefficient of 0.461, outperforms RL, with an average Dice Coefficient of 0.375, by 0.086.
Background and motivation of the work

Labeled training data in computational pathology

Deep learning (DL) can achieve state-of-the-art performance on a wide
variety of computer vision tasks related to computational pathology.1–3

One of the most challenging areas of computational pathology is the
multi-class segmentation of brightfield hematoxylin and eosin (H&E)-
stained tissue images, where each pixel in the image is assigned to a
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class, as shown in Fig. 1. For cancer, the list of segmentation classes
may include tumor, lymphocytic response, and normal stroma or
epithelial tissue, all of which may indicate the aggressiveness of the
tumor and likely treatment or outcome predictions. The results of
segmentation can then be leveraged for quantifying tumor growth
patterns, like lymphovascular and perineural invasion, or measuring
important morphological or architectural features.4–6

DL algorithms require a large amount of labeled training data to be
successful. The total number of samples for a given problem are difficult
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Fig. 1. An example of semantic segmentation on oral cavity cancer.
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to estimate a priori, but are dependent on the complexity and variation of
class appearances, number of classes, and the size of the input data.7

As these factors increase, the dataset size must grow accordingly.
Furthermore, to prevent overfitting and demonstrate generalizability of a
controlled DL experimental setup, the fully annotated dataset of images
must be divided into disjoint training, validation, and testing groups,
which further increases the total number of required labeled samples.8,9

It is challenging to obtain a large and comprehensively labeled dataset,
both at the data level (i.e., whole-slide scanning) and at the annotation
level. While “natural” image datasets are amenable to crowd-sourced
generation and annotation,10 pathological images require highly specific
training to accurately annotate, as in Fig. 1. Annotating data for segmenta-
tion involves pixel-level delineation of multiple classes, which is
time-consuming and difficult, particularly as some pathological classes of
interest (e.g., lymphocytic host response) do not have precisely defined spa-
tial boundaries. Variation among annotators is common, particularly for
classes with confounders or those that are difficult to precisely identify on
a digital whole slide image. The “type” of annotation (bounding box,
pixel-level, etc.) can also vary, leading to differences in the amount of
time required for generating labeled datasets. Due to these challenges,
publicly available datasets for pathology segmentation are task-specific,
focusing on cellular structures,11 architectural structures,12 or tissue
compartments.13 This means that thework of generating new segmentation
datasets is time-consuming, expensive, and must be done from the ground
up for each pathological process.
Fig. 2. An example of a less informative sample (left) vs a more informative sample
(right) in looking for worst pattern of invasion. The image on the left has very sparse
lymphocytic infiltration and little tumor, whereas the image on the right showcases
tumor and tumor satellites aswell asmore distinct and dense regions of lymphocytic
infiltration.
Strategies to circumvent annotation burden

These challenges have been addressed by recent advances inDL training
for computational pathology. These advances include transfer learning,
zero- and one-shot training, and unsupervised and semi-supervised
approaches.

Transfer learning is the process of using a previously trained DL model
to “jump-start” the training of a new model. In this approach, the new
model is initializedwith a parameter set from amodelwith similar architec-
ture which has been trained on a large, well-annotated dataset.14 After ini-
tialization, the model is “fine-tuned” to recognize the specific classes in the
target dataset. The intuition behind this approach is that tasks in a given do-
main like computer vision require similar content descriptors; these de-
scriptors are defined by the weights associated with the layers of the
network architecture. By jump-starting the system with a set of pre-
trained parameters, a new domain-specific dataset will require fewer
rounds of training and less annotated data.

Transfer learning is a powerful tool for reducing training set sizes, but is
highly dependent on the similarity between the “source” (initial) and the
target dataset. Training a network to recognize natural images does not
necessarily prepare it to do well at classifying H&E stained microscopy.

Zero- and one-shot training aremethods that attempt to identify outliers
prior to model training, so that “informative” samples can be identified a
2

priori and annotated.15,16 An example of the informative differences in
samples is shown below in Fig. 2

The challengewith this training approach lies in the definition of “infor-
mative” samples: often, the variability among a single class pattern is so
great that it is difficult to identify outliers relative to the baseline class struc-
ture. To properly identify informative samples, an expert pathologist would
be required to review and label samples according to the likelihood that
they will improve classification performance.

The abundance of unlabeled H&E-stained cancer datasets have given
rise to unsupervised or semi-supervised training methods, where labeled
samples are either not used or are a minority of the total training set.17–19

In thesemethods, cluster relationships are used as a primary source of infor-
mation about class membership, relying on the latent data structure (as de-
fined by image content descriptors) to distinguish semantically meaningful
areas of the image, where there are many classes with differing colors and
intensities.

While thesemethods can help to bootstrap a segmentation approach be-
tween classeswith distinct color and intensity contrast, they are not suitable
for highly variable image patterns, confounders, or a large number of clas-
ses, as we might expect to find in a whole-slide tissue sample.

Therefore, unsupervisedmodels are insufficient for acquiring usable re-
sults for complex tasks such as tissue labeling, and fully supervised labels
are preferable to train semantic segmentation models.

Active and human-in-the-loop learning
Active learning (AL)20,21 is a supervised, iterative training method that

combines aspects of semi-supervised and one-shot learning. In AL, a boot-
strap model trained on a small subset of annotated data is allowed to clas-
sify a set of unlabeled, “potential” training data. Based on some criteria,
these classified samples may be selected for manual re-labeling, after
which they are added to the bootstrap training set. There are several
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ways to define this selection criteria based on the type of information the
designer seeks tomaximize. Unsupervised clustering-basedmethods are de-
signed to use the structure of the feature space to highlight samples of inter-
est, ensuring that informative samples (those that represent potentially new
classes, or outlier samples) are preferentially added to the dataset.22 Other
approaches focus on sample “uncertainty”, quantified directly by probabi-
listic classifiers or estimated for samples based on difficulty of classification
(e.g., closeness to a boundary in Support VectorMachine-basedmethods, or
disagreement among committee-based approaches).23,24 All of these ap-
proaches seek to reduce the number of training samples that require man-
ual annotation. The hypothesis of AL is that by iteratively introducing
new samples that maximize classifier performance rather than randomly
selecting and annotating new samples, the performance of the resulting
classifier will be higher with a small number of samples (or, similarly,
that the classifier will reach a “target” level of performance with fewer
training samples). AL does not necessarily improve final classifier perfor-
mance, but instead seeks to reach that final performance with fewer
samples compared to random learning (RL).

A closely related concept to AL is human-in-the-loop (HITL) training.
In this approach, a human is tasked with manually reviewing and
adjusting the training data or design of an AI system. HITL systems
can be used to make sure the results of AI are accurate, explainable,
and in line with the intended application.25–27 Previous groups have
used HITL to great effect for whole-slide digital pathology segmenta-
tion. Lutnick et al. used a system (termed HAI-L, for “Human-AI-
Loop”) to iteratively improve segmentation of glomeruli structures in
kidney biopsies28 and found that the time of annotation required for
classifier performance was greatly reduced.

In this paper, we combine these training approaches, using manual as-
sessment of classifier performance as the criteria for selecting new samples
for full re-annotation and inclusion into the training set. The hypothesis of
this work is that HITL and AL will enable human control of the AI tuning
(identifying mislabeled samples as well as new classes to add to training),
and that the classification performance will improve faster with AL when
compared with RL.
Table 1
Legend of classes and their colors.

Class name Annotation color

Stroma Red
Tumor Blue
Lymphocytes Yellow
Mucosa Sky blue
Background/Adipose Gray
Blood Green
Nerves Orange
Necrosis Black
Keratin Pearl Dark blue
Muscle Olive
“Junk” (tissue folds, out of focus areas, ink) Pink
Application: Oral cavity cancer overview

In this work, we apply our segmentation training approach to a dataset
of H&E stainedOral Cavity Cancer (OCC) tumorwhole slide images (WSIs).
In 2021, OCC was newly diagnosed in 53 260 patients and resulted in
10 750 deaths in the United States, with 377 713 cases being diagnosed
worldwide in 2020. Overall, the disease has a 5 year predicted survival
rate of 57%.29,30 The staging system for OCC is divided into low (Stage
I/II) and high (Stages III/IV) stage. Low-stage patients are typically treated
with surgery alone, whereas high-stage patients receive adjuvant chemora-
diotherapy. Unfortunately, 25% of Stage I patients and 37% of Stage II pa-
tients will experience loco-regional recurrence (LRR). The Histologic Risk
Model (HRM)31 was developed for OCC using 3 histological variables to
identify high-risk patients: Worst Pattern of Invasion (WPOI), Lymphocytic
Host Response (LHR), and Perineural Invasion (PNI). Of these 3, WPOI was
found to be themost significant variablewith the greatest predictive perfor-
mance. The HRM has been clinically validated,32–39 but it has not seen
broad use in the clinic due to the difficulty of translating the criteria into
pathological practice.

Our overarching goal is to develop a computational Quantitative
Risk Model (QRM), based on known priors of the HRM. A laboratory-
developed digital QRM test can theoretically refine and improve upon
the HRM, enhance its robustness, and increase the availability of risk
scoring. In this work, we aim to provide segmentation of WSIs on
tumor resected images, creating “tumor maps”. Features can be ex-
tracted from these tumor maps for risk-stratification. We evaluate our
combined human-in-the-loop and AL training pipeline to build a
multi-class semantic segmentation classifier which can identify struc-
tures of interest relevant to the HRM.
3

Methods

Image dataset creation

The overall dataset consists of 151 whole slide images (WSIs) from 107
clinically low stage OCC patients which were consecutively accrued.

Tumor resection slides generated during normal course of treatment
were stainedwithHematoxylin and Eosin (H&E) and digitized via anOlym-
pus scanner at 0.167microns per pixel, or 40xmagnification. Only themost
informative slides were digitized, at the discretion of the pathologist. Spec-
imens were blocked in their entirely, and were processed via standard hos-
pital clinical procedures in the histopathology field. Whole slides were
selected via the criteria of WPOI, PNI, and LHR from the histological risk
model. Regions of interest from the whole slides were selected manually
via the criteria of WPOI, as the time pathologists had to generate labels
was constrained, and as previously mentioned WPOI has the greatest pre-
dictive performance.

As a result, multiple WSIs can come from the same patient, depending
on the size and complexity of the original tumor resection. Following
digitization and de-identification, all WSIs were placed into a Digital Slide
Archive database for access and analysis. Pathologists performing WSI
selection, ROI selection, and annotating images, were all attending pathol-
ogists specifically trained in the field of head and neck cancer, with the
cohort coming from 8 different universities across the world.

From the 107 patients, 23 were randomly selected for manual ground-
truth annotation. ROIs were selected and cropped by a pathologist from
each WSI based on tissue WPOI via the HRM, and these ROIs were hand-
annotated. In total, 24 ground-truthmapswere created (1 of the 23 patients
generated 2 ROI annotations). These label maps were created in Photoshop
by pathologists trained in using the HRM.

Each tissue class was assigned a color, and pathologists were instructed
to label only classes in which they were highly confident, leaving the re-
mainder of the image as an “avoid” class. A total of 12 tissue classes, listed
in Table 1 were identified, not including the “avoid” class. The class called
lymphocytes is shortened from lymphocytic host response, and it represents
areas of stroma rich in lymphocytes.

During annotation, a pair of classes was identified that have similar pre-
sentation in the H&E ROI images. Slide background and adipose tissue both
present as light gray/white areas,which are highly contrastingwith the sur-
rounding tissue and do not appear like any other class in the tissue list.
Because of the difficulty in distinguishing this pair of classes, we have
merged them into a “super-class” and labeled them together in the segmen-
tation experiments. Following this fusion, 11 tissue classes remained.

Following annotation, this dataset was further divided into a training
dataset (20 patients) and a hold-out testing dataset (3 patients) for use in
training and quantitatively evaluating the segmentation algorithm. This
split was performed at a patient level, meaning that all ROIs belonging to
a patient were placed into the corresponding group (i.e., no patients’ slides
appear in both training and testing datasets). Prior to training and evalua-
tion, each annotated ROI was resized to 2 microns per pixel and cropped
to pixel dimensions of 2000 × 2000. Image standardization to the calcu-
lated mean of the dataset was performed as a preprocessing step.



Fig. 3. Visual representation of utilized CNN architecture.
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Segmentation classifier architecture

The segmentation classifier is a simple modification of the U-net
architecture.40 Our version is shown in Fig. 3, consisting of a set of 4
down-sampling convolutional blocks connected to a symmetrical set of 4
up-sampling deconvolutional blocks.

Each down-sampling block consists of a space-preserving 2D
convolutional layer (kernel size ¼ 3), batch normalization, and ReLU non-
linear layers, followed by 2 × 2 maximum pooling layers to reduce the
size of the input by half. Each up-sampling block consists of an up-sampling
layer followed by a space-preserving 2D convolutional layer, batch normal-
ization, and ReLU nonlinear layer. At each up-sampling block, the outputs
from the corresponding down-sampling block are concatenated, following
the procedure in Ronneberger et al.40
Classifier training pipelines

In our experimental setup, several classifiers were trained and evaluated
as described in the sections below. Each classifier was trained for 300
epochs with a learning rate of 1 × 10−4, a batch size of 1, and a dropout
rate of 0.8 applied after each max pooling layer.
Active learning training approach
Our human-in-the-loop AL pipeline is summarized in Fig. 4. This is an

iterative pipeline, where sets of training samplesDi are used to train classi-
fiers Ci, where i represents the training iteration.
Fig. 4. Active learning pipeline emphazing
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We begin with the pool of 24 samples identified for use in training.
From this set, 3 of these samples were removed and used as an independent
holdout testing set, leaving 21 samples for potential inclusion in classifier
training.

From this pool, a small subsample of 4 ROIs was randomly selected and
added to the first training dataset iteration, denoted D0. These samples
were used to train a “bootstrap” classifier, denoted C0. The remaining 17
samples in the training pool were then segmented by C0 to yield a set of
tissue maps.

Training then proceeded iteratively. At each iteration i, the tissue maps
generated by Ci (along with the image ROIs themselves) were analyzed in a
“Tissue Map QA” process, where each image was graded qualitatively by a
team of pathologists on a scale of 0–5 for each tissue class. A score of 5 rep-
resented an ideal or “perfect” segmentation and 0 represented a poor seg-
mentation. The 4 images with the lowest scores were then added to the
training set to create a new AL training set, Diþ1, and the classifier was
re-trained to yield Ciþ1. This was done iteratively until i=3. At each itera-
tion, classifier Ci was evaluated quantitatively on the holdout testing exam-
ples as described below.

Active learning metrics and evaluation
At each training iteration, the classifier Ci was evaluated using 3

metrics: Categorical Cross-Entropy Loss, Sørensen-Dice coefficient, and
Receiver Operating Characteristic (ROC) curve analysis.

To calculate the loss, we used the categorical cross entropy loss
function, which is calculated as:

L x; yð Þ ¼ − log
exp x j

� �
∑C
c¼1 exp xcð Þ

where the xj represents samples for which the predicted class does not
match the annotated class (i.e., mistakes) and C is the total number of
classes in the classifier output.

Sørensen-Dice coefficients were calculated as:

dice cð Þ ¼ 2∗TPc
2∗TPc þ FPc þ FNcð Þ

where TPc, FPc, and FNc represent the true-positive pixels, false-positive
pixels, and false-negative pixels, respectively, for tissue class c. These values
were calculated across the holdout testing set to yield a set of Dice coeffi-
cients for each class.

Similarly, ROC curves were calculated on a class-by-class basis using a
“one vs all” strategy. For each class, the area under the ROC curve (AUC)
the roles of the AI and the pathologists.



Fig. 5. Loss curves for training and validation across different iterations of AL and RL. While the training curves are similar, we see validation losses for AL are lower across
versions than RL.
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was calculated as an overall measure of performance balancing sensitivity
and specificity. Finally, as our initial holdout testing set was small, 32 addi-
tional ROIs from 31 patients not present in the training set were extracted
post iteration through the AL pipeline to augment the holdout testing set.
Table 2
Dice coefficients for present classes for holdout testing images across all versions.
The highest dice coefficient for each class is in bold text.

1AL 2AL 3AL 1RL 2RL 3RL

Tumor 0.719 0.703 0.723 0.708 0.610 0.695
Stroma 0.636 0.643 0.695 0.587 0.616 0.671
Lymphocytes 0.599 0.498 0.692 0.487 0.404 0.549
Mucosa 0 0.006 0.002 0 0.002 0.010
Blood 0 0.004 0.242 0.186 0.197 0.207
Keratin pearl 0.077 0.363 0.189 0.172 0.164 0.008
Muscle 0.077 0.012 0.116 0.011 0.056 0.008
Background/Adipose 0.627 0.517 0.564 0.475 0.326 0.507
Average 0.420 0.391 0.461 0.375 0.339 0.375

5

We also performed qualitative evaluation of the resulting computer gener-
ated label maps compared to the ground truth.
Random learning training approach
The control set of our experiments is a random learning (RL) training

paradigm. In this scenario, training set D0 is the same as in AL. At each it-

eration i of training, we added a random set of 4 ROIs to create bDiþ1,

which in turn was used to generate classifier bCiþ1, where bD and bC represent
randomly selected training sets and classifiers, respectively. In addition, RL

training was performed 3 times to yield multiple random batches of bD.
Random learning metrics and evaluation

Each classifier bCi was evaluated using the same quantitative metrics as
described above for AL.We used the mean of the 3 RL training runs to com-
pare with the single AL run. In addition, we also recorded the standard de-
viation of the performance metrics to see how variable RL training pipeline
is with randomly selected samples.



Fig. 6. Dice coefficients across all versions for tumor, stroma, and lymphocytes. This demonstrates the varying degrees of impact AL has across different classes of interest.

Fig. 7. Unweighted average dice coefficient across all versions of AL vs RL
(p ¼ 0:011).

Fig. 8. ROC curves for holdout testing images for tum
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Results

Training and validation loss

After 4 iterations, it was found that while there is no significant differ-
ence in training loss between versions of AL and RL, the validation loss
for the AL was lower than the mean of the RL for every version. The loss
plots for training and evaluation can be seen in Fig. 5. Loss for each of
these was calculated as a 3 epoch average for each point on the graph,
and the loss curves shown for RL are the average of all 3 batches.

Quantitative testing set performance

Classification performance
The Dice coefficients for all present classes in the holdout testing images

are shown in Table 2. Dice for the RL versions are averages of the 3 batches.
Since AL only had 1 training vs the 3 separate batches of RL, there is no var-
iation for AL. The Dice coefficients in version 3 of the AL were all higher for
the classes present in the holdout testing images than the Dice coefficients
in version 3 of the RL. The average of all Dice coefficients are shown up in
Fig. 7 and are broken down for the tumor, stroma, and lymphocyte classes
in Fig. 6.

Segmentation sensitivity and specificity
Table 3 shows the AUC for all classes across all versions. Fig. 8 shows

ROC curves and AUC for the holdout testing set for the most prevalent
or, lymphocytes, and stroma across all versions.



Fig. 9. Progression of an ROI for AL vs all 3 batches of RL. We see how RL varies wildly between batches, whereas AL gives a guarantee of qualitative performance.
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classes, with the AL andmean RL ROC curves being displayed for each iter-
ation. After statistical testing, we have found no significant difference in
AUC for AL vs RL.

Qualitative ROI results

Fig. 9 demonstrates the progression of an ROI from Version 1 to Version
3 for AL and the 3 separate batches of RL. The AL ROI maps are more stable
across versions than the RL ROI maps.

Discussion

Active learning shows both qualitative and quantitative benefits on the
ROI scale. With a constant dataset size AL outperforms RL. This is shown in
the validation losses for AL being consistently lower across versions than
Fig. 10. Total ground-truth pixels for classes of interest. This showcases that there is not
AL vs those added for RL.

7

RL, and the Dice coefficients performing significantly better for AL vs RL
(p ¼ 0:011), while the AUCs of the ROC curves maintain their perfor-
mance. In addition to this, the qualitative AI tissue maps remain more
consistent across iterations for AL vs RL.

Fig. 10 illustrates the bar plots for the number of ground-truth pixels of
classes in each version. As shown, after 3 iterations there is no significant
difference in the number of ground-truth pixels added to the dataset in
AL vs RL, meaning we aren’t adding more ground-truth pixels in AL. This
means that the increase in performance of AL is driven by how informative
the data being added to the dataset is, and not the amount of data. This
leads to the conclusion that for any given training set size, AL will
outperform RL.

In general, Version 3AL outperformed every other classifier. On a class-
by-class basis, as shown by the Dice coefficient and AUC tables, this isn’t as
cut and dry. As shown in Table 2, the highest performing classifiers for the
a statistically significant difference in the amount of pixels of ground truth added via



Fig. 11. Progression of WSI maps generated for AL vs RL. These demonstrate that the AI WSI maps improve for both AL and RL across versions.
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keratin pearl and background classes were Versions 2AL and 1AL, respec-
tively. In addition to this, there are also times where more data was
added, yet performance decreased, the most notable example of which is
Table 3
AUC for holdout testing images across all versions. The highest AUCs for each class
are in bold text.

1AL 2AL 3AL 1RL 2RL 3RL

Tumor 0.89 0.91 0.95 0.91 0.92 0.95
Stroma 0.54 0.54 0.7 0.71 0.59 0.53
Lymphocytes 0.49 0.71 0.75 0.62 0.54 0.73
Blood 0.49 0.36 0.51 0.71 0.81 0.7
Keratin pearl 0.74 0.79 0.79 0.87 0.92 0.8
Muscle 0.61 0.06 0.36 0.28 0.55 0.17
Background/Adipose 1 1 1 1 1 1

8

for the lymphocyte class showing sharp dips from Versions 1AL and 1RL
to Versions 2AL and 2RL. A possible cause of this is the small training set
size, and that individual additions to training can have outsized negative
effects.

Summing up, first, AL outperforms RL across versions, with Version 3AL
performing the best. Even with decreases in performance between different
versions and classes, AL outperformsRL for a given dataset size. For usmov-
ing to the next step of generating usable WSI AI tissue maps as a starting
point for our pathologists, these results make the AL the choice for generat-
ing the bootstrap WSI dataset for reannotation.

Examples of what these WSI maps look like when generated are shown
in Fig. 11. Shown from left to right in each figure are the original WSI, the
Bootstrap result, the AL Version 3 result, and the RL Version 3 result. Qual-
itatively on the whole slide scale, it shows decent segmentation of tumor
and immune host response, however in Subfigure 16 the bottom of the
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image, which is a gland, is classified as immune host response. This shows
the need for reannotation on the WSI scale.

Concluding remarks and future work

In summary, the ROI AL classifier showed benefits on the ROI scale
compared to the RL classifier, with the Dice coefficients for AL
outperforming those for RL after 3 versions by an average difference of
0.086, the validation losses being lower for AL than RL, and the AUC curves
not being significantly different statistically. This is vital in what we intend
on doing in the future, which is human in the loop reannotation for WSIs.

We were able to begin this process by using the ROI classifiers to gener-
ateWSImaps as a starting point for our pathologists. Being able to generate
segmentation maps on the WSI scale will prove invaluable, as being able to
generate a usable starting WSI segmentation for pathologists to work from
will reduce annotation burden immensely. The scale of labeled data we are
able to add to the dataset in just one pass by giving the pathologists a
starting point is orders of magnitude greater than the original ROI annota-
tion pipeline. In addition to this, the cloud server theseWSI annotationswill
sit on will also allow pathologists from different universities to upload their
slides and run the newest trainedmodel on them, sowewill havemore data
to validate our model on. One of the other benefits of the cloud server will
be that multiple pathologists can reannotate the same image. This will
allow us to perform experiments on the variability of annotations, as well
as test out different annotation fusion methods.
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