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ABSTRACT
Exertional heat stroke, the third leading cause of 
mortality in athletes during physical activity, is 
the most severe manifestation of exertional heat 
illnesses. Exertional heat stroke is characterised 
by central nervous system dysfunction in people 
with hyperthermia during physical activity and 
can be influenced by environmental factors such 
as heatwaves, which extend the incidence of 
exertional heat stroke beyond athletics only. 
Epidemiological data indicate mortality rates 
of about 27%, and survivors display long term 
negative health consequences ranging from 
neurological to cardiovascular dysfunction. The 
pathophysiology of exertional heat stroke involves 
thermoregulatory and cardiovascular overload, 
resulting in severe hyperthermia and subsequent 
multiorgan injury due to a systemic inflammatory 
response syndrome and coagulopathy. Research 
about risk factors for exertional heat stroke remains 
limited, but dehydration, sex differences, ageing, 
body composition, and previous illness are thought 
to increase risk. Immediate cooling remains the 
most effective treatment strategy. In this review, 
we provide an overview of the current literature 
emphasising the pathophysiology and risk factors 
of exertional heat stroke, highlighting gaps in 
knowledge with the objective to stimulate future 
research.

Introduction
Heat stroke is classified into two separate endotypes, 
referred to as classic heat stroke and exertional heat 
stroke (EHS). Classic heat stroke is induced by heat 
exposure in the absence of physical exertion.1 EHS 
is induced by vigorous physical activity performed 
normally, but not always,2 in hot or humid environ-
ments.1 3 The term "heat stroke" suggests the pres-
ence of stroke- like symptoms associated with warm 
environments and hyperthermia (normally charac-
terised by increases greater than 2.5°C from resting 
values). EHS is characterised by central nervous 
system (CNS) dysfunction (eg, delirium, convulsions, 
or coma) with the possibility of follow- on organ or 
tissue damage in people with hyperthermia. The 
prevention of EHS is currently more effective than 
any treatment strategy.

Understanding the pathophysiology and the risk 
factors that lead to EHS is important for the correct 
diagnosis and the choice of mitigation strategies. 
Here, we provide an overview of the pathophysiology 
of the disorder and discuss the potential risk factors 
that contribute to its incidence.

Sources and selection criteria
The following electronic databases were searched 
for articles published from the inception of the 
databases until July 2022: Medline (accessed by 
PubMed), Cochrane Wiley (Central Register of 
Controlled Trials), and LILACS. In addition, the 
reference lists of relevant published studies were 
searched manually. To identify relevant publica-
tions, the combined search term (exploded versions 
of the medical subject headings) were used: ("heat 
illness" OR "heat stroke" OR "exertional heat stroke" 
OR "heat exhaustion") AND ("heat injury" OR "hot 
temperature" OR "extreme heat" OR "thermoregu-
lation" OR "warm environment" OR "heat stress") 
AND ("dehydration" OR "water stress" OR "water- 
electrolyte imbalance" OR "fluid balance"). We 
prioritised peer reviewed original studies including 
case series and retrospective studies. In addition, we 
also included studies using both clinical (eg, human 
participants) and preclinical models (eg, animal 
models). We did not include unpublished data from 
thesis or dissertations.

Incidence of exertional heat stroke
The precise incidence of EHS is underestimated, 
but large incidence is observed among warfighters, 
athletes, labourers, and those engaging in recrea-
tional exercise. Problems with classification of the 
disorder contributes to the lack of a clear reported 
incidence. Most studies include EHS under the 
umbrella term of exertional heat illness. Exertional 
heat illness is classified as a spectrum of severity 
and includes heat exhaustion, heat injury, and heat 
stroke,4 which can be severe if untreated and are all 
characterised by hyperthermia.5 To differentiate heat 
injury from heat exhaustion, tissue or organ injury 
must be present, although it might quickly resolve in 
patients that are rapidly treated. A recent systematic 
review performed in a military cohort reported inci-
dence of exertional heat illness ranging from 0.2 to 
10.5 per 1000 person years and prevalence ranging 
from 0.3% to 9.3%.6 In addition, long distance road 
races reported an EHS incidence ranging between 
1.6 and 2.13 per 1000 finishers without mortality.7 8

Another factor that interferes with the precise inci-
dence of EHS is the criteria often used to define the 
disorder clinically. Previous definitions of EHS have 
used the cut- off core temperature of >40°C. The use 
of a threshold core temperature to define the disorder 
is considered inaccurate.9 Athletes can collapse at a 
wide range of core temperatures,2 10 and the meas-
urements can be inaccurate if taken at peripheral 
body sites or after cooling has already occurred. 
The use of a threshold core temperature can lead 
to a misdiagnosis, suggesting that reliance on other 
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pathological manifestations (ie, CNS dysfunction) 
is warranted and likely more accurate. Immediate 
cooling, regardless of core temperature, should 
always be the main priority on collapse because reli-
ance on a specific core temperature could delay (or 
fail to prescribe) medical intervention and cause long 
term organ damage.11 Although less likely, false posi-
tive cases are possible because core temperatures 
>40°C can occur without CNS impairment.12 13 Thus, 
CNS dysfunction is likely to define EHS with more 
sensitivity or specificity.

Pathophysiology
In this article, we will discuss four aspects of EHS 
pathophysiology: thermoregulatory or cardiovas-
cular limitations, the so- called leaky gut hypoth-
esis and endotoxaemia, inflammation and systemic 
inflammatory response syndrome, and coagulop-
athy and disseminated intravascular coagulation 
(figure 1).

Thermoregulatory and cardiovascular limitations
It seems reasonable to hypothesise that EHS is 
primarily due to impaired thermoregulation, because 
patients often display severe hyperthermia at the 
time of collapse. A person's ability to thermoregulate 
is closely linked to the ability of the cardiovascular 
system to cope with central and peripheral blood 
flow demands to support metabolic and thermoreg-
ulatory requirements.14 15 During vigorous exercise, 
heat is produced by skeletal muscle contractions 

at rates that are 15- 18 times greater than the basal 
metabolic rate.16 Most of this heat is transferred from 
the muscles to the blood and carried to the body core. 
Theoretically, if no thermoregulatory mechanisms 
are activated, metabolic heat production of this 
magnitude would raise core temperature from 37°C 
to 42°C in only about 25 minutes.16 This magnitude 
of endogenous heat production could overcome the 
thermoregulatory mechanisms of heat dissipation 
and induce EHS, even in a temperate environment.2 
Given that cellular tolerance to heat is in the range 
of 40- 45°C,17 this magnitude of heat would result in 
cellular and organ damage. Effective thermoregula-
tory pathways must be active to provide means for 
heat loss to prevent EHS during severe or prolonged 
physical activity.

The most effective thermoregulatory mechanism, 
at least during exercise performed on land and in the 
heat, is the evaporation of sweat.18 Sweat produc-
tion is initiated either by the activation of the central 
temperature receptors or by elevation of skin temper-
ature,19 both of which trigger the activation of the 
eccrine sweat glands. Evaporation of sweat depends 
on the vapour pressure gradient between the skin 
and air,20 such that thermoregulation is normally 
impaired in humid environments. However, evapo-
ration can still occur even if the skin and air are both 
saturated with water, provided the air is cooler than 
the skin. A thermoregulatory failure underlying EHS 
would signify a suppressed ability to dissipate heat 
coupled with high rates of heat storage, which would 
result in a marked elevation in core temperature. One 
argument against the hypothesis of a thermoregula-
tory failure underlying EHS is that during exercise in 
hot environments, core body temperature values of 
40- 42°C are not uncommon in athletes who are fit 
and acclimatised to heat.12 13 21–23 These individuals 
show no signs or symptoms of EHS. Reports indicate 
that people with EHS might collapse during activities 
that were previously completed safely.24 In addition, 
high grade fever exceeds 40°C without morbidity.25 26 
Therefore, although a thermoregulatory limitation 
could participate in the EHS pathophysiology to 
some extent, it does not entirely explain the manifes-
tation. Since thermoregulation and cardiovascular 
responses are so tightly intertwined, an overwhelmed 
cardiovascular system might have a key role in EHS 
pathophysiology.

During muscle contraction, metabolic heat 
production increases in an intensity dependent 
manner.27–29 During exercise in the heat or when 
wearing encapsulated clothing, individuals gain 
extra heat from the environment to the body or the 
trapping of heat within the clothing ensemble.30 31 
To sustain exercise, cardiac output must match the 
demands for blood flow. Blood flow to active muscles 
is required to meet the oxygen demands for muscular 
activity, while blood flow to skin is required to meet 
the demands of thermoregulation.14 Vasodilation 
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Figure 1 | Summary of the main pathophysiological factors participating in exertional 
heat stroke. During exercise (before collapse), hyperthermia ensues due to an inability 
of the cardiovascular system to sustain thermoregulation. Shifts in blood flow leads 
to increased intestinal permeability, causing leakage of intestinal content into the 
systemic circulation, a response is known as the leaky gut hypothesis. Intestinal 
content and hyperthermia lead to the systemic inflammatory response syndrome, which 
promotes a disseminated intravascular coagulation characterising the coagulopathy. 
Most of these responses remain after collapse or until the victim is adequately cooled 
and regains consciousness. The two most common outcomes of exertional heat stroke 
are death or recovery with long term negative consequences to health. Figure based on 
original graphical scheme prepared using Servier medical art (smart.servier.com)
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and increased skin blood flow increase the amount 
of blood pooled in peripheral vessels, which reduces 
central blood volume. Splanchnic and renal blood 
flow are reduced by both vigorous exercise and severe 
heat stress. Reductions in gut and renal blood flow are 
generally thought to facilitate shifts in cardiac output 
to the skin and exercising muscle to maintain blood 
pressure and allow continued exercise.32 33 When 
these adjustments are inadequate during exercise 
in hot environments at high metabolic rates (>75% 
of maximal oxygen consumption (VO2max)), skin, 
muscle, and brain blood flow are compromised and 
contribute to severity of exertional heat illness.1 34–36 
These cardiovascular alterations lead to a diversity of 
outcomes including altered gut permeability that can 
have consequences to EHS pathophysiology.

Leaky gut hypothesis and endotoxaemia
Increased intestinal permeability, also known as 
the leaky gut hypothesis, suggests that bacteria 
and toxins leak from the gut lumen, where they are 
normally contained via tight junctions, through 
the intestinal wall into the portal and general 
circulation. Several reports have documented 
increased intestinal permeability during exercise 
with37–39 and without heat stress.40 As blood flow 
in the splanchnic circulation declines, skin blood 
flow increases for heat dissipation and gut epithe-
lial membranes undergo nitrosative and oxida-
tive stress, due to ischaemia reperfusion.41 These 
processes degrade tight junction integrity and are 
thought to facilitate endotoxin leakage into the 
portal circulation.

The leaky gut hypothesis has been linked to 
EHS pathophysiology because of observations 
that in patients with extreme EHS, high levels 
of lipopolysaccharide (a cell wall component 

of Gram negative bacteria) are observed. Under 
normal circumstances, the liver reticuloendothe-
lial system clears endotoxin so that it does not 
reach the general circulation.42 In extreme heat 
stress conditions, dysfunction or damage to the 
liver could compromise the ability of the reticulo-
endothelial system to function. Only under these 
catastrophic conditions of liver failure or damage 
does endotoxaemia occur. Endotoxaemia and liver 
necrosis were observed in a football player who 
died of EHS at a body core temperature of 40.6°C.43 
In primates, circulating endotoxin was markedly 
increased under classic heat stroke conditions 
once body core temperatures exceeded the fatal 
level of 43.0°C.44 Although liver damage was not 
assessed in this study, it is typically detectable at 
body core temperatures ranging from about 42°C 
to 43°C.45–47

Studies using endotoxin neutralisation in 
several species have shown protective effects 
of antibiotics and endotoxin tolerance against 
heat stroke mortality, but once again these 
studies looked at catastrophic models with 
high mortality rates and core temperatures 
exceeding the threshold where liver injury would 
be expected.44 48 49 On the other hand, a murine 
model of classic heat stroke that induced body 
core temperature as high as 42.7°C did not show 
detectable circulating endotoxin despite consider-
able gut histological injury.50 51 This lack of endo-
toxin was most likely due to the absence of liver 
damage, which supports the hypothesis that liver 
dysfunction might be required for endotoxaemia. 
Chung et al52 failed to show elevated endotoxin 
in patients with heat stroke. The liver has a crit-
ical role in recovery from EHS, as demonstrated in 
preclinical mouse models owing to the formation 
and release of acute phase proteins that support 
the immune system in repairing organ damage.53 
In figure  2, we summarise the hypothesis for 
the leaky gut and endotoxaemia contributions 
to EHS pathophysiology with and without liver 
dysfunction.

Inflammation and systemic inflammatory response 
syndrome
Systemic inflammatory response syndrome is a 
dysregulated defence response of the body to a 
noxious stressor to localise and eliminate the source 
of the insult.54 The syndrome involves the release of 
acute phase proteins, cytokines, and chemokines, 
which are direct mediators of widespread autonomic, 
endocrine, haematological, and immunological 
alterations in the host. The dysregulated inflamma-
tion can lead to a pro- inflammatory cascade resulting 
in organ dysfunction and even death.

Preclinical models of classic heat stroke and EHS 
show a robust inflammatory response that ensues 
after collapse, which mimics mechanisms observed 
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Figure 2 | Working hypothesis for the leaky gut response during exertional heat stroke 
(EHS). In non- lethal EHS, the liver effectively clears endotoxins. In catastrophic EHS, 
particularly with severe liver damage, endotoxin leaks into the circulation and causes 
sepsis. LPS=lipopolysaccharide. Figure based on original graphical scheme prepared 
using Servier medical art (smart.servier.com)
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in patients.55–57 In both male and female mice with 
EHS,53 58 59 levels of plasma interleukin 6 peaked at 
0.5 hours after loss of consciousness.58 59 Induction 
of interleukin 6 in severe hyperthermia is thought to 
come from either endotoxaemia or hyperthermia and 
the actions of this cytokine can differ depending on 
its circulatory concentration. Sustained elevation of 
circulating interleukin 6 during recovery from classic 
heat stroke has been correlated with poor outcome 
in primates and humans.55–57 Mice with interleukin 
6 gene knockout showed increased mortality, indi-
cating protective effects at a basal level. Interleukin 
6 injection in mice with classic heat stroke led 
to protection from organ injury.60 Whether these 
possible dual actions of interleukin 6 also exist for 
EHS remains unknown.

One possibility for induction of the systemic inflam-
matory response syndrome after EHS (or classic heat 
stroke) is that the endotoxaemia via the so- called 
leaky gut triggers an inflammatory response after its 
binding to toll- like receptors, a class of proteins that 
have a crucial role in immune signalling by recog-
nising pathogen and damage associated molecular 
patterns.61 Evidence of endotoxaemia is only present 
in catastrophic EHS events (figure  2), the leaky gut 
is unlikely to explain the inflammatory response 
observed on collapse in survivors of EHS. A secondary 
source for the inflammatory response could be 
hyperthermia. Hyperthermia increases interleukin 
6 mRNA content in myofibres, in part by heat shock 
factors, although the response in other organ levels 
has not yet been determined.62 This response is 
relevant because interleukin 6 regulates the hepatic 
acute phase response during recovery from EHS.53 In 
summary, EHS is accompanied by a strong inflam-
matory response that leads to systemic inflammatory 
response syndrome and multi- organ damage. The 
triggers for these responses are endotoxaemia (in 
catastrophic EHS) and probably hyperthermia.

Coagulopathy and disseminated Intravascular 
coagulation
Coagulation is the process of changing the physical 
state of the blood from liquid to semi- solid. In verte-
brates, coagulation is an evolutionary conserved 
mechanism that maintains haemostasis, in cases 
of blood vessel damage, by preventing bleeding.63 
Overall, coagulation has four stages of clot formation, 
including constriction of the blood vessel, formation 
of a temporary platelet plug, activation of the coag-
ulation cascade, and formation of the final clot. The 
system is tightly regulated by the complex interaction 
of 20 pro- coagulation factors, including fibrinogen, 
thrombin, prothrombin, von Willebrand factors, 
among others.64 When the system is under equilib-
rium, the clotting formation process is balanced by 
fibrinolysis, which is the enzymatic breakdown of 
the fibrin in blood clots.65 Once vascular repair is 
achieved, the fibrinolytic factors plasminogen and 

tissue plasminogen activator are attracted by the clot 
through lysine residues of fibrin and start clot diges-
tion. Disturbances in these haemostatic processes 
lead to several problems, including thrombosis and 
disseminated intravascular coagulation.66

Disseminated intravascular coagulation can be 
classified into hyperfibrinolytic coagulation, which 
will lead to thrombotic events, or hypofibrinolytic 
coagulation, which leads to excessive bleeding.67 
Disseminated intravascular coagulation has been 
reported in patients with EHS. For example, a 
38- year- old male recreational athlete presented 
in the emergency room with a history of sudden 
loss of consciousness during a 10 km run. He did 
not have a history of cardiovascular or respiratory 
disease and did not have similar loss of conscious-
ness episodes previously. His level of fibrin degrada-
tion product, small pieces of protein that stay in the 
circulation when a blood clot dissolves, was substan-
tially elevated at 0.8 mg/L (normal <0.05 mg/L). 
Prothrombin time and activated partial thrombo-
plastin time, indicators of the time required for clot 
formation in a blood sample, were 29.7 seconds 
(normal time 12.3 seconds) and 33.5 seconds 
(control time 26.38 seconds), respectively.68 He also 
presented bilateral intracerebral bleeding, consistent 
with hypofibrinolytic disseminated intravascular 
coagulation.

Treatment strategies for disseminated intravas-
cular coagulation in EHS have not been established, 
and the time course changes in coagulofibrinolytic 
markers have not been thoroughly evaluated. The 
triggers of disseminated intravascular coagulation 
during heat stroke events are difficult to determine. 
In a baboon model of classic heat stroke, inhibition 
of tissue factor/factor VIIa, which has an activating 
role in the clotting formation cascade, attenuated 
disseminated intravascular coagulation.69 The 
authors concluded that a pathway dependent on 
tissue factor/factor VIIa initiates coagulation activa-
tion in this model. Whether the same factor is respon-
sible for the initiation of disseminated intravascular 
coagulation in EHS or whether the response holds 
true in other mammals remains unknown.

Risk factors
No sound evidence indicates which risk factors 
increase EHS predisposition, but several factors have 
been implicated. In figure  3, we highlight the risk 
factors discussed in this review.

Dehydration
No direct evidence indicates that dehydration has 
a causative role in EHS. But to hypothesise that 
it will be a risk factor is logical, given the known 
impact of dehydration on human physiology.70 71 
Blood plasma consists of about 90% water. During 
exercise, because of increased metabolic demand 
and sweat production, plasma volume decreases, 
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which increases plasma osmolality and blood 
viscosity, which are associated with increased reac-
tive oxygen species production.72 The increased 
osmolality induces a pull of water from intracellular 
stores to extracellular stores to overcome the impact 
from exercise. The greater viscosity from decreased 
plasma volume causes cardiac drift, leading to 
greater cardiac strain.73 When decreases in plasma 
volume are drastic enough to decrease blood pres-
sure, it can diminish cerebral blood flow and cause 
syncope.74 By exercising in the heat, sweat rates 
escalate to increase evaporative heat loss from the 
paired metabolic heat produced from exercise and 
the external environmental heat. The detriments 
of dehydration are exacerbated when individuals 
begin exercise in a hypohydrated state,75 which is 
frequent in athletes.76–78 In a crossover study of 17 
male soldiers, Sawka et al compared heat strain 
between euhydrated and hypohydrated individuals 
with about 8% dehydration after walking for 180 
minutes at 49°C and 20% humidity.79 The hypo-
hydrated state was more responsible for heat intol-
erance than aerobic fitness. In the hypohydrated 
condition, the heart rate was higher, sweat rate was 
lower, and participants showed lower tolerance for 
temperature change (observed through exhaustion 
occurring at lower rectal temperature) even after heat 
acclimation.79 Therefore, dehydration could poten-
tially enhance the risk of EHS via hyperthermia. 
While the role of dehydration in increased intestinal 
permeability has been hypothesised,80 more studies 
are needed to support this idea with EHS.

Body composition
Obesity is associated with decreased cardiovascular 
fitness and impaired microvascular function at the 
skin, potentially leading to impaired thermoregula-
tory responses.81 Impaired skin microvascular func-
tion could lead to a diminished ability to produce 
sweat that matches evaporative heat loss demands. 
However, an association between skin blood flow 
and overall thermoregulation is absent.82 In a clinical 
trial involving independent groups (n=9 per group), 
Dervis et al reported that individuals with higher fat 
mass have impaired sudomotor responses leading to 

a decreased ability to thermoregulate.83 When heat 
production induced by exercise was fixed, individ-
uals with low body fat had a higher sweat rate than 
those with high body fat. The fact that both groups 
exercised at the same heat production relative to 
lean body mass could explain these findings. The 
lower lean body mass in the high fat group resulted 
in a lower absolute heat production and thus a 
lower evaporative requirement. This diminished 
sudomotor response could have contributed to the 
measured core temperature in the Dervis study being 
greater in the high body fat group after 60 minutes 
of activity than the low body fat group. Overall, the 
main message of Dervis study was that, once the 
effects of heat production and mass were accounted 
for, a lower average specific heat capacity of body 
tissues in the high fat group led to a disproportionate 
mean elevation in core temperature. The findings 
also reinforce that the thermoregulatory responses of 
groups with different adiposity levels should not be 
compared using a fixed heat production.

Adipose tissue itself is an insulator under cool 
conditions (about 21°C) such that high adiposity 
might result in decreased ability to dissipate heat 
and heightened risk of hyperthermia.84 Sweat evap-
oration is partially determined by skin temperature 
and varies across the body.85–87 In a clinical trial with 
independent groups (n=20 per group), Chudecka et 
al observed a statistically significant difference in 
skin temperature between obese and normal weight 
women at the thighs and abdomen—locations where 
excess adipose tissue is typically found in women. 
These findings support the concept of adipose tissue 
acting as an insulator, making heat dissipation in 
those areas less likely and causing heat retention.84 
Yokota et al used a simulated heat model with six 
compartments (muscle, fat, vascular skin, avascular 
skin, core, and central blood in passive and active 
heat) that was based on human physiology and 
biophysics in male soldiers.88 The simulated model 
suggested that short and lean men have the greatest 
thermoregulatory response while tall and fat men 
have disadvantage in hyperthermic environments. 
Therefore, short and lean men were expected to wear 
their body armour and perform their tasks in a hyper-
thermic environment for 18 minutes longer than tall 
and fat men before reaching a core temperature of 
38.5°C—a temperature in which 25% of heat casual-
ties occur.89 This study was simply a predictive model 
based off collected physiological and anthropometric 
data in male soldiers. Yokota et al validated this same 
model in women. Similar to the male data, female 
soldiers who were short and lean were expected to 
cope better with required activities in hyperthermic 
conditions than tall- fat women.90 The researchers 
then had the women do the previously simulated 
situation and found the measured results to be 
consistent with the predicted results. Both Yokota 
studies support the idea that increased adipose 
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Figure 3 | Potential risk factors affecting exertional 
heat stroke. Arrow colours represent level of evidence 
for each risk factor: green=strong; yellow=moderate; 
red=anecdotal
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tissue increases insulation, although the anatomical 
location of these extra fat stores and the properties of 
the clothing worn might also be factors.

One aspect to consider is that cutaneous blood 
vessels pass through the subcutaneous fat layer, 
thus vasodilated skin allows warm blood to bypass 
the subcutaneous fat layer, regardless of its thick-
ness.91 92 The lower density of fat tissue can alter the 
surface area for heat dissipation, although this effect 
is likely small. Ultimately, regardless of the mecha-
nism, greater body surface area probably contributes 
to an increased core temperature and decreased heat 
loss, making exertional heat illness and EHS more 
probable. Finally, another factor associated with 
obesity that might explain a greater susceptibility 
to EHS is inflammation. Increased adiposity is well 
known to cause chronic inflammation and metabolic 
disease,93 which are thought to be predisposing EHS 
risk factors.

Sex differences
Thermoregulatory differences exist between male and 
female individuals at high ambient temperatures in 
active conditions.94 95 In military populations, heat 
illnesses are more prevalent in women, but EHS is most 
common in men.96 Behavioural, hormonal, morpho-
logical, and physiological differences can be difficult 
to dissociate between the sexes. From a morphological 
perspective, variations in surface area and body compo-
sition affect thermoregulatory efficiency. Overall, male 
and female mammals differ in size. Absolute mass 
and surface area tend to be greater in male mammals 
whereas surface area- to- mass ratio and body fat tend 
to be greater in female mammals. The implications of 
these morphological differences between sexes to EHS 
responses remain unclear.97 In a preclinical model of 
EHS,98 female mice outperformed male mice by about 
40%.59 This finding was unexpected given that this 
preclinical model consists of forced wheel running in 
uncompensable heat (37.5°C environmental tempera-
ture and 40% relative humidity) and the greater surface 
area- to- mass ratio in female mice.

Behavioural responses driven by endocrine stimuli 
could account for the higher incidence of EHS in men. 
Testosterone has a role in certain behaviours, including 
aggression and dominance,99 which could justify men’s 
tendency to ignore the protective physical signs and 
symptoms of heat illness. A clinical trial of 10 men and 
10 women confirmed that, during exercise, women 
use thermal behaviour to a greater extent than men.100 
When looking at sex specific differences, menstrual 
cycle fluctuations in oestrogen, progesterone, and the 
ratio between the two result in oscillating core temper-
atures,101 although the influence of menstrual cycle in 
thermoregulation has been limited. At least during hot 
and dry conditions, the menstrual cycle phase does not 
appear to modulate whole body heat loss during exer-
cise.102 Oral contraceptives could affect the core temper-
ature due to the manipulation of these sex hormones,103 

however, the effect of these drugs on EHS has not been 
studied.

Responses to thermal stress between the sexes are 
primarily a result of decreased rates of metabolic heat 
production in female individuals.95 This decrease in 
metabolic heat production is presumably associated 
with cutaneous vascular conductance and sudomotor 
activity.104 105 Female individuals tend to show lower 
sudomotor activity at a similar heat load than male indi-
viduals, resulting in differences in temperature regula-
tion and sweat production.94 However, in a clinical trial, 
Kazman et al104 compared men’s (n=55) and women’s 
(n=20) responses to a heat tolerance test. All women 
were in the follicular phase of the menstrual cycle (ie, 
the longest step in the menstrual cycle, lasting from 
the first day of a period to ovulation, when oestrogen 
levels are high and progesterone levels are low). In this 
study, women were more heat intolerant than men, as 
defined by a core temperature over 38.5°C, failure to 
plateau in body temperature, or a heart rate over 150 
bpm. Thus, sex was thought to predict heat intolerance. 
However, a linear regression analysis found body fat 
percentage and VO2 max were more accurate predic-
tors and negated the effect of sex. These findings also 
suggested thermal strain is less important than cardi-
ovascular strain regarding performance in the heat.104 
However, the heat tolerance test lacks sensitivity and 
specificity owing to its stringent terminal criteria and 
cannot account for fluctuations in temperature above 
38.5°C106 107 and it is associated with a high fail rate of 
false positives.107

Oestrogen and progesterone fluctuations in the 
oestrous cycle result in variations in core temperature 
with women in the luteal phase (eg, high progesterone, 
lower oestrogen) showing 0.3- 0.5 ◦C increase in core 
temperature compared with the follicular phase (eg, 
high oestrogen, low progesterone). Even with this 
variation in temperature, thermoregulatory responses 
did not differ throughout the estrous cycle phases. On 
the other hand, In a clinical trial of four women aged 
20- 35 years, Horvath et al observed differences in 
core temperature at rest that were attenuated during 
combined heat and exercise.108 More studies are 
warranted to determine the influence of sex hormones 
on EHS susceptibility.

Ageing
Although EHS is more prevalent in young cohorts, ageing 
can be considered a risk factor because it is known to 
hinder several thermoregulatory and cardiovascular 
responses. Ageing in humans is accompanied by a 
decrease in sudomotor function, cardiovascular func-
tion, immune function, and behavioural thermoreg-
ulation.15 These factors contribute to the increased 
risk of heat related morbidity and mortality.109 Elderly 
people typically have a higher incidence of classic heat 
stroke than EHS because of decreased activity levels, 
and many older individuals also have pre- existing 
cardiovascular insufficiencies, as observed by a lower 
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VO2max, which has a negative effect on the ability to 
adequately respond to heat.110

Increased levels of physical activity on ageing miti-
gates the negative physiological alterations associated 
with ageing. Many factors might contribute to this 
impact of increased levels of physical activity, such as 
improved cardiovascular fitness, reduced weight, and 
improved immunity. The sudomotor system begins to 
decline considerably at age 40 years, beginning with 
the lower limbs and followed by the back, abdomen, 
upper limbs, and then head.111 The resultant decline 
in sweat rate is due to decreased functionality of sweat 
glands, and not the number of sweat glands. An age 
related decline in sweating limits the ability to dissipate 
internal (metabolic) and external (ambient) sources 
of heat gain causing hyperthermia and potentially 
collapse. With the increasing incidence of EHS beyond 
athletics, it is likely that humans performing daily tasks, 
such as lawn mowing and gardening, might be at risk of 
developing EHS and the impact of ageing must be taken 
into consideration.

Previous illness
When an organism has an immunological challenge, 
the innate and adaptive immune systems are activated. 
Innate immunity represents non- specific immuno-
logical defenses that are activated immediately after 
antigens appear. Adaptive immunity is an antigen 
specific immune response that requires recognition of 
the antigen and development of immune cells specific 
to destroying that antigen. Heat stress and EHS have 
been shown to degrade gut integrity and stimulate the 
immune system.112 113 The degradation in gut integrity 
is implicated in a catastrophic immune response known 
as systemic inflammatory response syndrome.114 Heat 
exposure induces a set of proteins that modulate the 
immune response to resolve systemic inflammatory 
response syndrome. Cytokines are immune modulators 
that have a dynamic nature and have been associated 
with fatalities from heat stroke. However, as previously 
mentioned with interleukin 6, some cytokines have 
been implicated in both proinflammatory and anti- 
inflammatory functions, which could be a function of 
their concentration or the surrounding milieu in which 
they are functioning.115 Because of the vast array of 
cytokines and their diverse functions, understanding 
which specific set of cytokines can reduce or accentuate 
the effects of EHS has been difficult, and is likely to 
involve a coordinated response among several different 
cytokines.62 116 Another important set of immunological 
cells involved in heat stroke are lymphocytes.117 118 In 
classic heat stroke, T regulatory cells have been shown 
decrease in number and in immunosuppressive func-
tion.117 When lymphocyte production is compromised, 
heat stroke severity is exacerbated.118 Other factors 
might also come into play when determining how EHS 
or heat stress modulate the immune response, such 
as thermosensors, pre- existing conditions, previous 
illnesses,119 and epigenetic consequences.120 121

Innate immunity is altered in individuals with comor-
bidities and pre- existing conditions, thus increasing the 
potential for exertional heat illness and, if left untreated, 
death. Diabetes mellitus has been shown to disrupt 
immune responses that are critical to staving off fungi, 
toxins, parasites, viruses, and bacteria. The mecha-
nisms that are suppressed in patients with diabetes 
mellitus include dysfunction of immune cells, decreases 
in cytokine production, dysfunction in phagocytosis, 
and a decreased ability to eliminate microbials.122 
These effects are prevalent owing to the hyperglycaemic 
environment in patients with diabetes mellitus.123 In 
terms of heat stress, hyperglycaemic environments are 
strongly associated with reductions in skin blood flow 
and sudomotor function, potentially incapacitating 
evaporative heat loss.124 125 Another deleterious effect 
of hyperglycaemic is the loss of nitric oxide availability, 
contributing to vascular complications.126 Based on 
the available evidence, a possible interplay could exist 
between the cardiovascular system, immune system, 
and diabetes—which complicates how to treat this 
condition and determine who is most vulnerable and 
why.

Emerging treatments and studies
Despite all the progress in our understanding of EHS, 
effective treatment strategies are still limited. Whole 
body cooling remains the most effective treatment to 
manage EHS victims on collapse.127 A recent review 
of the literature highlighted the most effective forms 
of cooling which include immersion in iced or cold 
water, cold water dousing, tarp assisted immersion in 
ice or cold water, towels or sheets soaked in iced or cold 
water, cold water immersion in portable water imper-
meable bags, and water spray or mister or high powered 
fan with water spray.127 Effective drug strategies to treat 
patients with EHS do not exist and common drugs, such 
as dantrolene sodium (primarily used to treat disorders 
related with skeletal muscle spasticity and malignant 
hyperthermia128) have failed.129 130 Future studies of 
potential drug interventions to treat EHS are necessary.

This review highlights gaps in our knowledge to 
stimulate future research in the field of EHS. Important 
gaps in knowledge include the contributions of sex 
hormones to EHS susceptibility, whether dehydration 
is a risk factor for EHS, the role of endotoxemia in non- 
lethal EHS pathophysiology, the time course of changes 
in coagulofibrinolytic markers in EHS, and the impact 
of oral contraceptives on EHS risk. Research studies 
partitioning the contributions of different physiolog-
ical systems131 and risk factors to EHS are required to 
advance knowledge on the precise sequence of events 
leading to EHS and the underlying mechanisms medi-
ating organ damage.

Conclusions
EHS pathophysiology is complex and involves an 
interaction of thermoregulatory and cardiovascular 
factors that lead to systemic inflammatory response 
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syndrome. In catastrophic EHS events, systemic 
inflammatory response syndrome is likely initiated by 
endotoxaemia when the hepatic system fails to clear 
bacteria effectively. Coagulopathy is also present in the 
pathophysiology and manifests through disseminated 
intravascular coagulation, resulting in thrombosis or 
bleeding (or both). Risk factors discussed in this review 
include dehydration, sex differences, ageing, body 
composition, and previous illness. The reason why 
some people are more susceptible to EHS than others 
warrants further research.

QUESTIONS FOR FUTURE RESEARCH
 ⇒ What are the contributions of sex hormones to 

susceptibility exertional heat stroke (EHS)?
 ⇒ Is dehydration a risk factor for EHS?
 ⇒ Can endotoxaemia be involved in non- lethal 

EHS pathophysiology?
 ⇒ What is the time course of changes in 

coagulofibrinolytic markers in EHS?
 ⇒ What is the impact of oral contraceptives on 

EHS risk?
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