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Enabling high-throughput biology with flexible
open-source automation
Emma J Chory1,2,3,† , Dana W Gretton1,†,‡ , Erika A DeBenedictis1,4 & Kevin M Esvelt1,*

Abstract

Our understanding of complex living systems is limited by our
capacity to perform experiments in high throughput. While robotic
systems have automated many traditional hand-pipetting proto-
cols, software limitations have precluded more advanced maneu-
vers required to manipulate, maintain, and monitor hundreds of
experiments in parallel. Here, we present Pyhamilton, an open-
source Python platform that can execute complex pipetting
patterns required for custom high-throughput experiments such
as the simulation of metapopulation dynamics. With an integrated
plate reader, we maintain nearly 500 remotely monitored bacterial
cultures in log-phase growth for days without user intervention by
taking regular density measurements to adjust the robotic method
in real-time. Using these capabilities, we systematically optimize
bioreactor protein production by monitoring the fluorescent
protein expression and growth rates of a hundred different contin-
uous culture conditions in triplicate to comprehensively sample
the carbon, nitrogen, and phosphorus fitness landscape. Our
results demonstrate that flexible software can empower existing
hardware to enable new types and scales of experiments, empow-
ering areas from biomanufacturing to fundamental biology.
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Introduction

Comprehensive, well-replicated experiments are foundational to

rigorous science, but humans can only perform so many actions

simultaneously. One possible solution is automation, which has

been widely implemented in biotechnology (Sparkes et al, 2010;

Appleton et al, 2017; Freemont, 2019) to facilitate routine tasks

involved in DNA sequencing (Meldrum, 2000), chemical synthesis

(Ley et al, 2015), drug discovery (Schneider, 2018), and molecular

biology (Smanski et al, 2014). In principle, flexibly programmable

robots could enable diverse experiments requiring conditions and

replicate numbers beyond the capabilities of human researchers

across a range of disciplines (Vasilev et al, 2011; Hans et al, 2018;

Keller et al, 2019). However, existing software for liquid-handling

robots focuses narrowly on automating protocols designed for hand

pipettes, while foundry languages such as Antha and remote labs

such as Emerald Cloud focus on automating workflows rather

than expanding experimental limits. As such, even labs with well-

established high-throughput infrastructures struggle to utilize the

full potential of their robots, precluding many complex experiments

that require flexible programming (Appleton et al, 2017).

Bioautomation lags behind the advancing field of manufacturing,

where robots are expected to be task-flexible, responsive to new

situations, and interactive with humans or remote management

systems when ambiguous situations or errors arise (Appleton et al,

2017). A key limitation is the lack of a comprehensive, suitably

abstract, and accessible software ecosystem (B€ar et al, 2012; Linshiz

et al, 2014; Walsh et al, 2019). Though bioinformatics is increas-

ingly open-sourced (Gentleman et al, 2004; Cock et al, 2009), bioau-

tomation has been slow to adopt key practices such as modularity,

version control, and asynchronous programming. To enable flexible

high-throughput experimentation, we developed Pyhamilton, a

Python package that facilitates high-throughput operations within

the laboratory, with protocols that can be easily shared and modi-

fied. Further, Pyhamilton allows liquid-handling robots to execute

previously unimaginable and increasingly impressive methods.

With this package, users can run robot simulations to troubleshoot

and plan experiments, schedule experimental processes, implement

error handling for quick troubleshooting, and easily integrate robots

with external equipment.

Results

Pyhamilton enables Hamilton STAR, STARlet, and VANTAGE

liquid-handling robots to be programmed using Python. This allows
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for robotic method development to benefit from standard software

paradigms, including exception handling, version control, object-

oriented programming, and other cornerstone computer science

principles (Table EV1, Movie EV1). Pyhamilton seamlessly connects

with Hamilton robots (Appendix Fig S1), can interface with custom

peripherals (Fig 1A), and contains unique Python classes corre-

sponding to robotic actions (i.e. aspirate and dispense) and consum-

ables (i.e. plates and pipette tips) (See Dataset EV1). To enable

method troubleshooting, Pyhamilton can also simulate methods

through Hamilton run control software (Movies EV2–EV4) and

incorporate any Python package (i.e. enabling error notifications via

push, text message, or Slack). Finally, in addition to the functionali-

ties we present, researchers can now also develop their own flexible

code that may be useful for increasingly specialized applications.

Enabling improved throughput of basic robotic tasks

Complex procedures are built from simple tasks, but the capabilities

of a pipetting robot are limited by standard liquid-handling software.

For example, an 8-channel head cannot be readily programmed to

pipette into two 24-well plates simultaneously, although doing so is

physically possible (Fig 1B). This limits many high-throughput

assays: automation of methods involving 24-well plates is no faster

than hand-pipetting, since robots and researchers pipette one plate

at a time. Thus, we first demonstrate that Pyhamilton easily enables

pipetting of liquids over two 24-well plates simultaneously (Fig 1B

and C, Table EV2), thereby doubling the speed (Movie EV5). This

can be critical for bacterial assays involving heated liquid agar

which solidifies quickly. This simple example demonstrates the

advantages of making full use of the robot’s mechanical capabilities,

freed from software constraints.

Enabling liquid transfers requiring complex calculations

Despite having far greater physical capabilities than a fixed-volume

multichannel pipette, it is difficult to implement complex liquid

transfer patterns involving different volumes on a robot because

programming using standard software is prohibitively monotonous

(Movie EV1). The ability to faithfully execute experiments involving

hundreds of different pipetting volumes could enable new types of

applications such as evolutionary dynamics experiments examining

gene flow (Slatkin, 1987), population symbiosis (Kaneko & Ikegami,

1992), sources and sinks (Dias, 1996), genetic drift (Lande, 1976;

Gillespie, 2000), and the spread of gene drive systems (Esvelt et al,

2014; Noble et al, 2017) (Fig 1D). We accordingly used Pyhamilton

to enable the flexible transfer of organisms between populations in

a 96-well plate, using pre-programmed migration rates to simulate

geographic barriers (Fig 1E).

A human would have great difficulty performing or program-

ming hundreds of variable pipetting actions in many directions, in

any reasonable time frame, without errors. With Pyhamilton,

simple abstractions and data structures make this task straightfor-

ward. Instead of exhaustively specifying each pipetting step, we

specified liquid transfer patterns as matrices and allowed Python

to compile the requisite steps. We demonstrate liquid transfer to

nearby plates and between adjacent wells to model “flow” or “dif-

fusion” across the miniaturized landscape of a 96-well plate. We

then simulate genetic flow by visualizing the point spread of a

drop of dye near the center of a plate (Fig 1F and G, Table EV2).

The amount of liquid exchanged and the number of wells is arbi-

trary, defined as a sparse matrix where the rows are source wells,

the columns are destination wells, and the values are the fraction

of liquid transferred (Appendix Fig S2). Each iteration, the robot

performs several hundred bi-directional liquid transfers to apply

the matrix operations (Movie EV6). Succinct code (Fig 1G) can

generate both symmetric and asymmetric diffusion patterns, which

could be combined with a phenotypic reporter to experimentally

simulate arbitrarily directionally bounded or unbounded migration

(Fig 1D) with many model organisms such as E. coli, yeast, or

even nematodes.

Enabling feedback control to maintain culture conditions

Though most liquid-handling robots are used to execute a list of

precompiled instructions (e.g., assembling reagents for many PCRs),

many potential applications require making real-time modifications

in response to changing data. For example, a turbidostat is a culture

of cells that is maintained at a constant density by making real-time

adjustments to the flow rate of media based on turbidity sensing. In

practice, this is accomplished with process controls which measure

the optical density (OD) of a culture in situ (Horinouchi et al, 2014;

Haby et al, 2019). However, turbidity probes are both costly and not

amenable to very high-throughput experiments (Takahashi et al,

2017; Wong et al, 2018; Hemmerich et al, 2018). Thus, we sought to

▸Figure 1. Example Pyhamilton applications.

A Generalizable Python outline for writing custom Pyhamilton code to interface with robot and integrated equipment such as plate readers (e.g., ClarioStar) and
custom pump arrays.

B Expanded robot capabilities allow for improved throughput of laboratory assays across 24-well plates.
C Example code required to run a bacterial assay across multiple simultaneous plates. Code for bacteriophage plaque assay is shown (see supplemental methods).
D Implementing complex and arbitrary bi-directional liquid handling to simulate experiments such as unbounded (left) or bounded (right) population flow across a

geographic region, such as a river.
E Geographic “barriers” described in matrix format
F Simulation of bounded and unbounded migration (top), and visualization of the liquid patterns executed by the robot each iteration (bottom). Solid blue box

designates “high” geographic barrier, dashed blue box designates a “medium” geographic barrier.
G Example code required to run population dynamics simulations, using a sparse matrix to assign source wells, destination wells, and volume transfer fractions.
H Real-time monitoring of on-deck turbidostats enables feedback control to equilibrate cultures to a set density.
I Plate reader measurements for OD (top), and respective estimated growth estimates (bottom) obtained from data from 24 replicates. Data are smoothed with rolling

mean and outlier points are excluded. OD set-point shown in red.
J Example code required to maintain on-deck turbidostats using a transfer function to calculate k-estimates and volume transfer rates.
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leverage the flexibility of Pyhamilton to multiplex the maintenance

of many bacterial turbidostats by adjusting the volume of liquid

transfers in response to real-time density measurements obtained

using an integrated plate reader (Fig 1H–J). The method equilibrates

each culture, growing in a multiwell microplate, to a setpoint (Fig 1

I) in response to these measurements by applying a transfer function

to calculate the growth rate (k-value) and adjustment volume for

each individual well over time (Fig 1J).

Asynchrony enables high-throughput turbidostats

To maximize the number of turbidostats that can be maintained, we

next developed a more complex method which uses asynchronous

programming to execute multiple robotic steps simultaneously— in

this case plate reading and pipetting (Appendix Fig S4). This allows

for up to 480 cultures to be maintained with real-time fluorescent

reporter monitoring on a single small robot, nearly 20× more than

A
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Figure 1.
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can be readily achieved with multiplexed mini-bioreactor setups

(Hans et al, 2018; Haby et al, 2019). In this method, bacterial

cultures are inoculated into 96-well clear-bottom plates and their

ODs and fluorescence levels are measured with an integrated

plate reader (Fig 2A, Movie EV7). To minimize waste, consum-

ables, and prevent media contamination, we also implemented a

cleaning process (Fig 2A): after each media transfer, each tip is

sterilized with 1% bleach, rinsed in water, and returned to its

housing unit (Fig 2A, Table EV2). To further minimize the possi-

bility of cross-contamination between wells, each culture is

assigned its own tip and media reservoir by housing replenishing

media within high-volume 96-well plates. We confirmed that

this method introduces no measurable cross-contamination by

inoculating 96 turbidostats with four different bacterial cultures

expressing RFP, YFP, CFP, or no fluorescent protein in a grid-like

pattern with no-bacteria controls (Fig 2C). We then monitored the

absorbance and fluorescence levels in real time and maintained

the cultures at OD 0.8 for 24 h. We observed no cross-contamination

and no growth in the no-bacteria controls during this time (Fig 2

C). We also inoculated the same bacterial strains at 6 different

starting densities (OD = 0.0–0.8) and demonstrated that irrespec-

tive of initial conditions, the feedback control algorithm equili-

brates each culture to its set point within 12 h (Fig 2D). Finally,

we confirmed that the method could support culture maintenance

of bacteria with varying growth rates (Appendix Fig S5A–C), with

no measurable back-contamination of media (Appendix Fig S5D), for

up to 2 days without experimenter intervention (Appendix Figs S5E

and F, and S6).

A

B

C D

Figure 2. High-throughput turbidostats.

A High-throughput turbidostat summary for up to 480 simultaneous turbidostats. Bacterial populations are housed in 96-well clear-bottom plates on the deck of a
liquid-handling robot. Liquid handling is used to create a turbidostat in every well, continuously refreshing each population by diluting the bacterial culture from a
respective deep-well media reservoir on deck. An integrated plate reader is used to monitor absorbance, luminescence, or fluorescence readouts for each culture.
Movements by robotic pipette (blue arrow) and plate reader (red arrow) are shown. Dotted lines indicate tasks that are executed asynchronously, and require 10 min
per plate.

B Step-by-step summary of high-throughput turbidostat method, executed asynchronously.
C Plate layout of real-time absorbance, CFP, RFP, and YFP fluorescence readings of 96 simultaneous cultures inoculated with either no bacteria, FP-null bacteria, and

CFP, RFP, or YFP-expressing bacteria. Data shown from 24 representative wells.
D Real-time absorbance measurements of 96 E. coli BL21 cultures inoculated at ODs of 0, 0.1, 0.2 0.4, 0.6, 0.8, which equilibrate to a set point of 0.8 within 12 h,

consistent with simulation (Appendix Fig S3).
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High-throughput perturbation analysis of metabolites

We next sought to use high-throughput turbidostat tracking to

address an outstanding question in metabolic engineering by

systematically mapping the chemical landscape that supports

bacterial growth and protein expression. To do this, we surveyed

the contributions of carbon, nitrogen, and phosphorus on growth

and recombinant protein production by permuting chemical

gradients for these metabolites in high-throughput using our

multiplexed turbidostat maintenance protocol. These dependen-

cies, while seemingly well-studied, have not been explored in

depth. Truly comprehensive mapping requires sufficient condi-

tions, replicates, and controls, long-term maintenance of log-

phase growth, and real-time monitoring, each of which is trivial

to implement with Pyhamilton.

It has traditionally been thought that cells regulate protein

production by allocating their resources to optimize for both

expression and growth (Li et al, 2014; Mori et al, 2017).

However, it has recently been shown that in either carbon-, nitro-

gen- or phosphorus-limiting conditions, cells are able to fine-tune

their ribosomal usage to maintain equal levels of protein (Li

et al, 2018). Thus, we wondered whether exploration of the

entire metabolite landscape (Fig 3A) could more rigorously iden-

tify bacterial growth conditions optimized for recombinant protein

production. To do this, we inoculated cultures with E. coli BL21,

a strain commonly used for recombinant protein production in

metabolic engineering or biomanufacturing, engineered for high

constitutive expression of a fluorescent protein (CFP) (Sarabipour

et al, 2014).

In a single experiment spanning 36 h with no user interven-

tion, we simultaneously quantified the equilibrium log-phase

growth rates and respective fluorescence levels of 300 individual

turbidostats, representing 100 different media compositions in

triplicate (Fig 3B). Cells were grown in modified M9 media

containing 100 different ratios of carbon, nitrogen, and phospho-

rus and the cultures were maintained in log-phase growth for

36 h with feedback control (Supplemental methods). All cultures

grew within +/− 20% of the standard M9 media growth rate,

with the exception of cultures that were starved of both carbon

and phosphorus (Fig 3C). We observed that increases in growth

rate are primarily correlated with increases in phosphorus (inde-

pendent of nitrogen or carbon levels), which is likely a result of

increased DNA synthesis. Further, in phosphorus-limiting condi-

tions, we find that the depressed growth rate can be rescued by

supplementing carbon, but not nitrogen, suggesting that carbon

precursors are a more limiting reagent than amino acids in

metabolism (Fig 3C). Consistent with previously published results

(Li et al, 2018), we observe that the total amount of protein is

generally not affected by limiting carbon or nitrogen, nor by

supplementing the cells with excess of either nutrient. However,

we additionally find that when phosphorus is limited (0.25X),

excess carbon supplementation not only rescues the growth rate

of the culture (Fig 3C, Dataset EV2), but also results in an

increase in total fluorescence (Fig 3D, Dataset EV2). Since we

observe negligible growth defects, this finding suggests that on a

per-cell basis, supplementing carbon in phosphorus-limiting condi-

tions (such as in the soil (Ostertag, 2008; Vitousek et al, 2010)

or P-limited lakes (Hessen, 1992)) can shunt bacterial metabolism

from DNA/mRNA synthesis to protein translation without sacri-

ficing growth. Collectively, these findings demonstrate that

Pyhamilton enables researchers to answer rigorous metabolic

engineering questions by enabling facile, low-consumable, yet

rich hypothesis-generating experiments.

Discussion

Liquid-handling robots have traditionally automated workflows

that were explicitly designed for human researchers rather than

enabling new high-throughput experimental modalities. Pyhamil-

ton is an open-source Python framework intended for experi-

ments that could never be done by hand, such as protocols that

must pipette continuously for multiple days, perform complex

calculations about future steps based on real-time data, or make

use of hardware that is more sophisticated than any hand-held

multichannel pipette.

We showcase these improved capabilities by simultaneously

quantifying the metabolic fitness landscape of 100 different

bacterial growth conditions to identify ideal conditions for

recombinant protein production. Though recent fluidic advances

have enabled the maintenance of many continuous cultures

(Gupta et al, 2017; Wong et al, 2018; Haby et al, 2019), our

liquid-handling platform can accommodate several times as

many. Moreover, liquid-handling systems can easily incorporate

a plate reader for real-time reporter monitoring, which vastly

expands the types of questions that can be approached with

facile, multiplex solutions. For example, one could maintain

cultures of, and accurately quantify any reporter output for

massively-parallel experiments including genetic knockout or

CRISPR collections (Baba et al, 2006; Peters et al, 2016), muta-

genesis variants (Miyazaki & Takenouchi, 2002), or even small-

molecule compound libraries (Geysen et al, 2003). With high

accuracy, any suspension culture of mixed populations could be

maintained in log-phase growth for days in order to study tran-

sient invaders into microbial communities (Amor et al, 2020) or

even microbiome system dynamics (Lloyd-Price et al, 2017). The

advent of small-molecule fluorescent reporters for metabolic fit-

ness (Zhao & Yang, 2015), pH (Zhang et al, 2016; Si et al,

2016), and CO2 (Zhujun & Seitz, 1984), in addition to the

hundreds of fluorescent protein sensors available to the synthetic

biology community at large (Palmer et al, 2011; Hu et al, 2018),

underscore the many potential applications of being able to

multiplex and quantify changes in growth, gene expression, and

the environment in real-time.

Presently, Pyhamilton is only extensible to Hamilton robots.

However, since it uses a platform-independent, web-based

protocol (HTTP) and common readable data format (JSON) to

bridge Python and the Hamilton Scripting Language (HSL)

(Appendix Fig S1), Pyhamilton could be ported to other biologi-

cal automation systems that provide an API, such as Tecan or

alternative platforms.

As such, Pyhamilton is a small part of an ongoing transition

to a paradigm which leverages insights from computer science

(B€ar et al, 2012) and applies them to biology. Similar to how

Bioconductor (Gentleman et al, 2004) and The Biopython project

(Cock et al, 2009) have revolutionized computational biology,
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bioinformatics, and genomics, our hope is that by making this

software open-source and freely available, a community of scien-

tists and developers could begin to similarly transform bioautoma-

tion. The experiments we have described represent only a small

sampling of many possible Pyhamilton applications. Collectively,

they highlight the potential of high-throughput robotic systems

to transcend the repetitive processes for which they were

conceived and directly address broad questions in microbiology,

genetics, and evolution that are beyond the physical capabilities

of human researchers.

A

C

D

B

Figure 3. Metabolic profiling of protein production.

A Schematic flow of carbon, nitrogen and phosphorus nutrients in protein and nucleotide production.
B Real-time absorbance and fluorescent reporter monitoring for BL21 E. coli expressing CFP in 100 various M9 media compositions (n = 3 per condition). Real-time

calculations of volumes/h and estimates for k-value convergence shown.
C (left) Average growth rate for each media composition plotted as a 2-dimensional fitness landscape of carbon and nitrogen, for four concentrations of phosphorus.

(right) Summary of all 100 conditions shown as 3D fitness landscape colored by growth rate (blue = low, red = high). Size of dot indicates absolute deviation from
average 1X M9 media composition.

D (left) Average amount of protein expression (measured by fluorescence) of each media composition plotted as a 2-dimensional fitness landscape of carbon and
nitrogen, for four concentrations of phosphorus (right). 3D protein production landscape of all 100 conditions colored by amount of fluorescence (blue = low,
red = high). Size of dot indicates absolute deviation from average 1× M9 media composition.
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Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Experimental models

BL21(DE3) New England Biolabs Cat #C2527I

S2060 Addgene Cat #105064

Recombinant DNA

pRSET-B YFP Addgene Cat #108856

pRSET-B mCherry Addgene Cat #108857

pRSET-B CFP Addgene Cat #108858

Chemicals, enzymes and other reagents

Carbenicillin Gold Biotechnology Cat #C-103-5

Chloramphenicol Gold Biotechnology Cat #C-105-5

Software

Pyhamilton https://github.com/dgretton/pyhamilton

Hamilton Run Control Software

Other

Hamilton STARlet Hamilton Company Cat #173020

1,000 μl Pipetting Channels, 8 channels Hamilton Company Cat #173081

CO-RE 96 channel Multi Probe Head Hamilton Company Cat #199090

iSWAP Plate Handler Hamilton Company Cat #190220

HEPA Flow Hood, UV Hamilton Company Cat #55502-01

CLARIOstar Multi-Mode Microplate Reader BMG LABTECH Cat #0430-101

Methods and Protocols

Robotic equipment set-up and interfacing
A Hamilton Microlab STARlet 8-channel base model was augmented

with a Hamilton CO-RE 96 Probe Head and a Hamilton iSWAP

Robotic Transport Arm. Air filtration was provided by an overhead

HEPA filter fan module integrated into the robot enclosure. A

BMG CLARIOstar luminescence multimode microplate reader was

positioned inside the enclosure, within reach of the transport arm.

Software. A general-purpose driver method was created using

MicroLab STAR VENUS ONE software and compiled to Hamilton

Scripting Language (HSL) format. Instantiation of this method and

management of its local network connection was handled in

Python. A new Pyhamilton-compatible supporting Python package

provided an overlying control layer interface to the CLARIOstar

plate reader. We used Git to develop and version control the

packages and the specific Python methods used for each experi-

ment; our software implementation can be found on github at:

https://github.com/dgretton/pyhamilton.

Bacterial assays
For bacterial assay validation, bacterial plaque assays were used

to confirm dilutions and agar solidification. Briefly, overnight

cultures of S2060 cells (Addgene bacterial strain #105064) were

grown in 2XYT media (Digest Peptone 16 g/l, Yeast extract: 10 g/l,

Sodium Chloride: 5 g/l; Research Products International #X15600)

supplemented with maintenance antibiotics were diluted 1,000-

fold into fresh media with maintenance antibiotics and grown at

37°C with shaking at 230 rpm to OD600 ~0.6–0.8 before use. M13

bacteriophage were serially diluted 100-fold (4 dilutions total) in

H2O. 20 μl of bacterial were added to 100 μl of each phage dilu-

tion, and to this 200 μl of liquid (70°C) “soft” agar (2XYT

media + 0.6% agar) supplemented with 2% Bluo-Gal was added

onto a well of a 24-well plate already containing 235 μl of hard

agar per well (2XYT media + 1.5% agar, no antibiotics). To

prevent premature cooling of soft agar, the soft agar was placed

on the robot deck in a 70°C heat block. After solidification of the

top agar, plates were incubated at 37°C for 16–18 h. Source code

from our implementation can be found at: https://github.com/

dgretton/roboplaque

Population dynamics experiments
Briefly, 96-well clear-bottom plates were filled with 100 µl of water

in each well. Point-spread analysis was initiated by adding colored

dye to the first well, and liquid transfers were compiled and

executed in real time using Pyhamilton on a Hamilton Microlab

STARlet. Source code for our implementation can be found at:

https://github.com/dgretton/pyhamilton_population_dynamics

Feedback controller algorithm
Bacteria optical density (OD) was modeled to evolve as: x¼ x0e

kt,

where x is the culture OD, x0 is the initial OD, k is the bacteria
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exponential growth constant (k-value) in reciprocal hours, and t is

elapsed time in hours. A media replacement cycle is modeled as

dilution of a culture by instant uniform mixing with transparent

media of a fraction y of its initial volume, which linearly scales its

OD x to a new OD x0 (e.g. if a 100 μl culture is at OD 0.3 and y¼ 1
2,

then the replacement is modeled as diluting with 50 μl transparent
media, and the final OD x0 is 0.2), summarized as:

x0 ¼ 1

1þy
x:

The culture OD is to be maintained at a constant setpoint, xset. In

each cycle i = 0,1,2,. . ., each representing a time interval Δt, the

turbidostat controller is responsible for producing an output

command and state update according to a transfer function:

yi,ϕið Þ¼ f xi,ϕi�1ð Þ:

where yi is the new controller output command as a fraction of the

turbidostat volume, ϕi is the new controller internal state, xi is the

present OD measurement, and f(xi,ϕi−1) is the controller transfer

function based on the OD measurement and the previous controller

state ϕi−1. The controller state may depend on the history of prior OD

measurements x0,. . .,xi−1 and prior controller commands y0,. . .,yi−1.

Specific controller state

A feedback controller with a distinct state was created for each

culture. The controller state is a triple ϕi ¼ kei ,yi
� �

: the present OD

measurement, xi; the current estimate of the culture’s growth

k-value, kei ; and the output command, yi.

Transfer function

The transfer function updates the three state variables and computes

an output. From the model equations, the current k-value, given a

new measurement xi taken an interval Δt after the previous replace-

ment executed, is

ki ¼
ln xi

xi�1
yi�1þ1ð Þ

� �
Δt

This ki contributes to the state k-value estimate kei through a

first-order linear filter to dampen the effect of measurement noise.

The output to restore the turbidostat OD to the setpoint is

yi ¼ max 0, min ymax ,
xie

keiΔt

xset�1

� �� �
:

where the final output yi is subject to physical limits, being both

nonnegative and not greater than the largest volume the robot can

move with a pipette tip as a fraction of the turbidostat volume,

appearing as ymax. After output limiting, yi is saved in the

controller state. Controller was developed as an abstract Python

class and tested in simulation with mechanical and measurement

noise models before application in experiments (Appendix Figs S3

and S6). Filtered k-value estimates were used to draw conclusions

about bacterial growth rates. Source code for implementation can

be found at: https://github.com/dgretton/many_basic_turbidostats/

blob/master/turb_control.py.

On-deck turbidostat cultures
Peristaltic pump array

To pump media onto the deck, up to seven miniature 12 volt,

60 ml/min peristaltic pumps (“fish tank pumps”) were actuated by

custom motor drivers. A Raspberry Pi mini single-board computer

received instructions over local IP and commanded the motor

drivers via I2C (extended pump configuration details, see DeBene-

dictis et al, 2020). Between each iteration, the reservoir was filled

with fresh 2XYT media, and then media was added to each bacterial

turbidostat growing in a 24-well plate, based on OD and parameter

estimation. Each turbidostat was then sampled by aspirating culture

into a 96-well plate reader plate, which was then read using an inte-

grated ClarioStar plate reader. Excess media was then drained from

the reservoir, and all other system components were rinsed 1× 5%

bleach and 4× water between each iteration. S2060 bacterial strains

were grown in 2XYT media supplemented with antibiotics. Source

code for implementation can be found at: https://github.com/dgre

tton/many_basic_turbidostats.

High-throughput turbidostat cultures
Cell strains and growth conditions

To generate fluorescent reporter strains, plasmids pRSET-B YFP, pRSET-

B mCherry, and pRSET-B mCherry were transformed into E. coli strain

BL21(DE3) (New England Biolabs). Plasmids were a gift from Kalina

Hristova (Addgene #108856, Addgene #108857, Addgene #108858).

Bacteria cells were grown overnight in LB media, and then conditioned

to grow in M9 Minimal Media: 33.7 mM Na2HPO4, 22.0 mM KH3PO4,

8.5 mM NaCl, 9.35 mM NH4Cl, 0.4% Glucose, 1 mM MgSO4, 0.3 mM

CaCl2, 1 µg biotin, 1 µg thiamin, 1× trace elements (Trace elements

solutions (100× stock solution, 100 mg/l MnCl2.4H2O, 170 mg/l ZnCl2,

43 mg/l CuCl2.2H2O, 60 mg/l CoCl2.6H2O, 60 mg/l Na2MoO4.2H2O).

For modified M9 Media, Phosphorus, Carbon, and Nitrogen sources

were increased or decreased by 2 or 4 fold. For turbidostat inocula-

tions, starter cultures were grown overnight at 37°C for 16–18 h,

and then diluted 1:100, and then grown for another 4–8 h until in

log-phase growth. When each strain reached log-phase growth (OD

0.6–0.8), cultures were first diluted to an OD of 0.6 and then turbi-

dostats were inoculated 1:100 into 175 µl in 96-well plate reader

plates (Black/Clear flat bottom polystyrene plates, Corning #3631)

prior to initiation of the robotic method. Unlike the first on-deck

turbidostat culture method, in which media was pumped onto the

robotic deck, for high-throughput tubidostates, 2 ml of media for

each well was aliquoted into a 96-deep well plate (Thomas Scien-

tific, Item #1149J23). Media is replenished daily, or when running

low. The robot deck was organized as described in Fig 2A.

Antibiotics

Antibiotics (Gold Biotechnology) were used at the following working

concentrations: carbenicillin, 50 μg/ml; chloramphenicol, 40 μg/ml.

Source code for implementation can be found at: https://github.

com/dgretton/many_asynchronous_turbidostats.

Data availability

Source code can be found at: https://github.com/dgretton/pyha

milton. Data from the metabolic fitness landscape experiment can

be found in Dataset EV2.
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