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Investigations of spatial cellular composition of tissue architectures

revealed by multiplexed in situ RNA detection often rely on inaccurate cell

segmentation or prior biological knowledge from complementary single-cell

sequencing experiments. Here, we present spage2vec, an unsupervised seg-

mentation-free approach for decrypting the spatial transcriptomic hetero-

geneity of complex tissues at subcellular resolution. Spage2vec represents

the spatial transcriptomic landscape of tissue samples as a graph and lever-

ages a powerful machine learning graph representation technique to create

a lower dimensional representation of local spatial gene expression. We

apply spage2vec to mouse brain data from three different in situ transcrip-

tomic assays and to a spatial gene expression dataset consisting of hun-

dreds of individual cells. We show that learned representations encode

meaningful biological spatial information of re-occurring localized gene

expression signatures involved in cellular and subcellular processes.

Database

Spatial gene expression data are available in Zenodo database at https://doi.org/10.5281/zenod

o.3897401. Source code for reproducing analysis results and figures is available in Zenodo data-

base at http://www.doi.org/10.5281/zenodo.4030404.

Recent advances in single-cell RNA (scRNA)

sequencing [1,2] allow to dissect the cell-type hetero-

geneity of complex tissues at incredible pace. An

international effort has started building comprehen-

sive reference maps of gene expression at the cellular

resolution to uncover the cell-type composition of

entire organs and organisms [3]. However, in order to

understand the functional architecture of a tissue it is

essential to reconstruct the spatial organization of its

constituent cell types. To this end, single-cell

sequencing analyses are often complemented with

imaging-based methods for spatially resolved

multiplexed in situ RNA detection [4–8] that allow to

map mRNA molecules directly in tissue samples and

identify specific cell-type location, enabling the

discovery of their functional role inside the tissue

architecture.

Previous attempts to map the spatial heterogeneity

of cell types mostly relied on cell body segmentation

algorithms and gene assignments to cells based on seg-

mented cell boundaries [4–7]. Extracted per-cell gene

expression profiles are successively clustered and anno-

tated based on complementary scRNA sequencing

analysis experiments or published literature [4–7].
This means that analysis of the spatial heterogeneity

in tissue samples is limited by the accuracy of image seg-

mentation algorithms to outline exact cell borders in

dense and overlapping cell environments, with uneven

illumination conditions and low signal-to-noise ratios.

Moreover, while some cell types are defined by clear dif-

ferences in their gene expression profiles, others differ

by only a few genes in their transcriptome (e.g., like

finely related neuronal subtypes) making their identifica-

tion challenging.

Abbreviations

GNN, graph neural networks; GO, gene ontology; ISS, innonbreakingspacesitu sequencing; scRNA, single-cell RNA.
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Preliminary work from Park et al. [9] tries to

address these problems proposing a segmentation-free

spatial cell-type analysis based on cellular mRNA den-

sity estimation via Gaussian KDE [10], defining cell

location as local maxima of mRNA-dense regions and

extracting gene expression profiles for each cell (i.e.,

local maxima) as the averaged gene expression in that

unit area. Qian et al. [11], instead, proposed a proba-

bilistic framework for jointly assigning mRNAs to seg-

mented cells and cells to cell types based on scRNA-

seq cell-type priors, achieving a fine classification of

interneuron subtypes of CA1 hippocampal region.

Despite these efforts for improving cell-type identifi-

cation in situ, spatial cell-type analyses alone do not

use the full power of in situ spatial transcriptomics:

The subcellular resolution can reveal spatial hetero-

geneity also at subcellular levels. There is compelling

evidence that many genes are expressed in a spatially

dependent fashion independent of cell types [12], and

this information is lost when analyzing transcriptional

profiles of single cells. Moreover, there is a consider-

able amount of heterogeneity within each cell type

explained by the balance between intrinsic regulatory

networks and extrinsic subcellular processes depending

on the local cellular microenvironment [13–17]. mRNA

localization plays an important role in these cell differ-

entiation processes as localization can vary during

specific stages of cell development, and distinguishes

cell phenotypes, activities, and communication. Specifi-

cally, mRNA localization is involved in cellular com-

partmentalization of gene expression into spatial

functional domains involved in spatially targeted segre-

gation of protein synthesis [18]. For example, mRNA

localization is particularly diffused in neurons, where

protein synthesis can take place at distal sites far away

from the nucleus: Dendritic and axonal structures

express several forms of plasticity that requires local

translation [19–22]. Disruption of these subcellular bio-

logical processes (BP) was shown to be implicated in

neurodevelopmental, psychiatric, or degenerative dis-

eases [23–26]. It is thus important to take advantage of

in situ mRNA detection methods to dissect the spatial

heterogeneity of gene expression at subcellular resolu-

tion with respect to development and disease, and

unreveal the subcellular spatial domains underlying

cell differentiation.

Here, we propose a novel segmentation-free

approach for analyzing the spatial heterogeneity in

gene expression of tissue samples that does not rely on

the definition of cell types and cell segmentation but

leverages the spatial organization of single mRNAs to

define subcellular spatial domains involved in cellular

differentiation. Specifically, we consider the spatial

organization of mRNAs inside tissues as local neigh-

borhoods where groups of different mRNA types

interact based on their spatial proximity (Fig. 1).

These subcellular domains are shared or cell-type

specific, and can therefore be expected to occur in sev-

eral places inside a cell or across a tissue sample. In

order to investigate the spatial mRNA network for

recurrent gene expression signatures, we adopted a

powerful graph representation learning technique [27]

based on graph neural networks (GNN) [28], which

has recently emerged as state-of-the-art machine learn-

ing technique for leveraging information from graph

local neighborhoods. Therefore, each mRNA location

is encoded in a graph as a node with a single feature

representing the gene it belongs to and it is connected

to all the other nodes representing the other mRNAs

located in its neighborhood (Fig. 1A). During training,

the GNN learns the topological structure of each

node’s local neighborhood as well as the distribution

of node features in the neighborhood (i.e., local gene

expression), and projects each node in a lower dimen-

sional embedding space that encapsulates high-dimen-

sional information about the node’ s neighborhood

(Fig. 1B). We call this vectorization approach spatial

gene expression to vector, or spage2vec, where geomet-

ric relations in this lower dimensional space corre-

spond to higher order relationships in the local gene

environment. We apply spage2vec to three publicly

available mouse brain datasets [6,7,11] and compare

the resulting gene expression signatures to cell-type

maps presented in the respective publications. We fur-

ther validate the method on a previously published

spatial gene expression dataset of over 400 human

fibroblast cells [29], conforming previously observed

spatial gene expression patterns and identifying 26 new

spatial domains involved in different molecular and

BP.

Results

Spage2vec for in situ sequencing analysis of

mouse hippocampal area CA1

We first analyzed published in situ sequencing (ISS)

data of mouse hippocampal area CA1 [11], where

transcripts of 99 genes were localized. After represent-

ing the spatial gene expression as a graph, we applied

spage2vec to generate a 50-dimensional embedding

for each mRNA spot (Materials and methods), encod-

ing information of its local neighborhood. We then

projected the 50-dimensional embedding to three

dimensions in order to visualize spatial relationships

learnt from the data as similar colors in RGB color
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space (Fig. 2A,C). Next, in order to investigate

whether the learnt lower dimensional embedding con-

tains significant information of biological functional

domains, we clustered the spot embeddings directly in

the 50-dimensional space (Materials and methods)

and compared obtained spot cluster labels with cell-

A

B

C

D

Fig. 1. Spage2vec workflow for detecting

subcellular spatial domains from spatial

gene expression data. (A) Left: Each colored

dot represents a targeted gene, where color

defines gene identity (targeted mRNAs

representing n different genes, k dots). Cell

nuclei are shown in grayscale in the

background. Right: A graph connecting the

neighboring dots from the left panel based

on their spatial distances. (B) A lower

dimensional representation of the graph is

learnt for each of the k dots using a graph

representation learning technique based on

a GNN. The neural network predicts a node

embedding vector for each dot of the graph

representing high order spatial relationships

with its local neighborhood (Materials and

method). (C) Thereafter, the spatial gene

expression variation is visualized at

subcellular resolution by projecting the

learnt node embedding vectors into a 3D

RGB color space using UMAP. (D) Clusters

representing localized gene expression

signatures are obtained by unsupervised

clustering analysis of the embedding. Scale

bars 5 µm.
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type annotations of mRNA spots from Qian et al.

We initially obtained 29 clusters, which reduced to 25

after merging highly correlated clusters (Fig. S1)

(Materials and methods). Identified clusters can be

interactively explored in TissUUmaps [30] at https://

tissuumaps.research.it.uu.se/demo/ISS_Qian_et_al.html

(Data S1). We then compared the 25 identified clus-

ters with 20 cell-type and 69 subcell-type annotations

defined in Qian et al., excluding mRNA spots without

cell-type labels (Fig. 2E,F). To demonstrate the ability

of the model to generalize over unseen data, we used

the spage2vec model trained on the right hemisphere

mouse hippocampal area CA1 to predict the node

embedding for the spatial gene expression graph of

the left hemisphere CA1 area unseen during training

(Fig. 2B,D). As can be seen in the figures (Fig. 2A–
D), the node representation of the two spatial gene

expression graphs projected and visualized in RGB

color space shows that the model produces visually

similar embeddings for data not available during

training.

spage2vec for osmFISH analysis of mouse

somatosensory cortex

In order to demonstrate the generalizability of spage2-

vec to other datasets, we also produced a lower dimen-

sional representation of mRNAs from published

osmFISH data of 33 cell-type marker genes targeted in

mouse brain somatosensory cortex [7]. Again, we rep-

resented the gene expression as a graph and applied

spage2vec, resulting in a 50-dimensional representation

of each mRNA spot. We projected the 50 dimensions

to three dimensions and visualized similar local gene

expression signatures as similar colors in 3D RGB

color space (Fig. 3A). Next, we clustered the learnt

embedding space in 274 domains and reduced to 69

domains after merging highly correlated clusters

(Fig. S2) (Materials and methods). Identified clusters

can be interactively explored at https://tissuumaps.

research.it.uu.se/demo/osmFISH_Codeluppi_et_al.html

(Data S1). We then compared the resulting 69 clusters

with the 31 cell-type annotations defined in Codeluppi

et al., excluding spots without cell-type labels (Fig. 3B,

C).

Spage2vec for MERFISH analysis of mouse

hypothalamic preoptic region

We further applied spage2vec to a 3D mRNA local-

ization dataset of hypothalamic preoptic region ana-

lyzed by MERFISH [6], where the transcripts of 135

targeted genes were localized in 3D. As for the

previous dataset, we applied spage2vec to the graph

representation (in this case 3D) and projected the 50

dimensions into three for visualization (Fig. 4A). Lev-

eraging the symmetry of the data, we trained a spa-

ge2vec model on approximately half the sample (0–
956 µm) and tested on the other half. Clustering in

50-dimensional space resulted in 198 clusters, which

were reduced to 121 after merging of clusters with a

gene expression correlation greater than 95%

(Fig. S3). Identified clusters can be interactively

explored at https://tissuumaps.research.it.uu.se/demo/

MERFISH_Moffitt_et_al.html (Data S1). We com-

pared the gene expression profiles of these 121 clus-

ters with the 10 cell types and 76 subcell types

presented in Ref. [6] (Fig. 4B–D).

Spage2vec for MERFISH analysis of human

fibroblast cells (IMR90)

We performed a spatial gene expression analysis using

spage2vec on a MERFISH dataset (Chen et al.) [29]

consisting of over 400 human fibroblast cells (IMR90)

targeted with a gene panel of 130 genes. In this case, a

spatial gene expression graph is generated for each of

the analyzed cells and then merged as disjoint sub-

graphs in a bigger network. We then produced a 50-di-

mensional representation of the input spatial gene

expression graph that clustered in 59 clusters. Next, we

merged, by summing the expression, clusters with a

pairwise correlation greater than 90%. And finally, we

removed small spurious clusters containing < 1000

reads, resulting in a final set of 26 clusters.

Identified clusters can be interactively explored at

https://tissuumaps.research.it.uu.se/demo/MERFISH_-

Chen_et_al_2015.html.

We then validated the representation learned by spa-

ge2vec with respect to the two groups of genes (i.e.,

group I: THBS1, LRP1, GPR107, PAPPA, FBN1,

FBN2, group II: MYH10, DYNC1H1, CKAP5,

FLNC, SPTBN1, FLNA, TLN1, SPTAN1) identified

by Chen et al. as having similar subcellular spatial

gene expression patterns. We show that these two

groups of genes map on close and overlapping loca-

tions in the learnt spage2vec embedding space

(Fig. 5A) and show distinct cluster expression profiles

(Fig. 5B). Thus spage2vec successfully learnt a mean-

ingful representation of the input spatial gene expres-

sion, where identified clusters group based on

correlation of their gene expression profiles (Fig. S4)

into two main groups dominated, respectively, by

group I and group II genes, confirming spatial gene

expression patterns identified by the Chen et al. ‘s

analysis (Fig. 5C).

1862 The FEBS Journal 288 (2021) 1859–1870 ª The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Representation learning for spatial gene expression G. Partel and C. W€ahlby

https://tissuumaps.research.it.uu.se/demo/ISS_Qian_et_al.html
https://tissuumaps.research.it.uu.se/demo/ISS_Qian_et_al.html
https://tissuumaps.research.it.uu.se/demo/osmFISH_Codeluppi_et_al.html
https://tissuumaps.research.it.uu.se/demo/osmFISH_Codeluppi_et_al.html
https://tissuumaps.research.it.uu.se/demo/MERFISH_Moffitt_et_al.html
https://tissuumaps.research.it.uu.se/demo/MERFISH_Moffitt_et_al.html


A B

C D

E F

Fig. 2. Application of spage2vec to ISS data of mouse hippocampal area CA1. Visualization of functional variation of spatial gene expression

at subcellular resolution in right (A) and left (B) hippocampal area CA1, where mRNAs are color-coded based on their node embedding

projections in RGB color space for right (C) and left (D) hemisphere. (E) Spatial gene expression with mRNAs color-coded based on their

cell-type annotation defined in Qian et al. (legend at bottom right). (F) Heat map showing distribution of gene counts in each spage2vec

cluster (normalized by total gene count per cell type and cluster) and cell- and subcell-type annotation per gene transcript from Qian et al.

(same legend as for (E)). The heat map is normalized to enhance how the spage2vec clusters correlate to cell types (or multiple cell types).

Some cell types are not present in this part of the brain (representing only a subset of the data in Qian et al.), and therefore, some columns

are empty. The grayscale at the bottom of the heat map shows total gene counts per cell subtype as found by Qian et al. Scale bars

~ 300 µm.
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A

C

B

Fig. 3. Application of spage2vec to

osmFISH data from the mouse brain

somatosensory cortex. (A) Visualization of

functional variation of spatial gene

expression at subcellular resolution, where

mRNAs are color-coded based on node

embedding projection in RGB color space,

and (B) spatial gene expression with

mRNAs color-coded based on cell-type

annotations defined from Codeluppi et al.

cell segmentation. Shaded areas correspond

to regions excluded in the original cell-type

analysis. (C) Heat map showing normalized

gene counts having specific spage2vec

cluster labels and cell-type annotations from

Codeluppi et al. (marked with different

colors), and cell-type legend. The grayscale

at the bottom of the heat map shows total

gene counts per cell type as found by

Codeluppi et al. Scale bars ~ 300 µm.

Fig. 4. Application of spage2vec to MERFISH data of the mouse brain hypothalamic preoptic region. (A) Visualization of functional variation

of spatial gene expression at subcellular resolution, where mRNAs are color-coded based on their node embedding projections in RGB color

space. The gray dashed line defines regions of the sample used for training (left) and for testing (right). (B) Spatial gene expression with

mRNAs color-coded based on cell-type annotations defined from Moffitt et al. cell segmentation. (C) Spatial distribution of node embedding

projections in RGB color space (upper row) and cell-type annotations (bottom row) from Moffitt et al. across the whole section. (D) Heat

map showing normalized gene counts having specific spage2vec cluster labels and cell annotations from Moffitt et al. (marked with

different colors), and cell-type legend. The grayscale at the bottom of the heat map shows total gene counts per cell subtype as found by

Moffitt et al. Scale bars ~ 400 µm.
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This is an indication that the learnt spage2vec

embedding not only represents localized gene expres-

sion signatures, but it also manages to capture the

global structures of the spatial gene expression data.

Moreover, to confirm the biological significance of

the identified clusters, we perform gene ontology

(GO) enrichment analysis of the highly expressed

genes that characterized each cluster (Table S1). Most

of the identified clusters were significantly enriched

with multiple GO terms. Recurrent terms were related

to location terms like extracellular region, and extra-

cellular matrix, and BP involved in cell signaling and

motility.

Discussion

We showed that spage2vec can learn low-dimensional

embeddings encoding important topological and func-

tional information of local gene expression. This rich

low-dimensional space can be used for downstream

clustering analysis in order to detect biologically mean-

ingful re-occurring gene expression signatures that cor-

relate well with subcellular and cellular domains. The

embedding, found by unsupervised training, has an

inductive property to generalize over unseen nodes.

This means that it can be applied to a new unseen

dataset, as long as the new dataset has the same

A

B

C

Fig. 5. Application of spage2vec to

MERFISH data of human fibroblast cells

(IMR90). (A) UMAP 2D projection of

spage2vec embedding of genes identified in

Chen et al. as forming two distinct spatial

gene expression patterns (respectively,

group I marked in light blue, and group II

marked in red). Each plot shows the

mRNAs of each gene color-coded based on

their density profile estimated using a

Gaussian kernel and all other genes in gray.

Markers and axis legends are shown on the

top left. (B) Heat map showing the obtained

spage2vec cluster labels of each mRNA

with respect to its gene label for group I

and group II (normalized per spage2vec

cluster on full dataset). (C) Spatial

distributions of all identified clusters in two

example cells, where each mRNA is

displayed by a marker with color and

symbol according to the cluster it belongs

to (legend on the right). Cell nuclei have

been approximated from Fig. 4C in Chen

et al. with semitransparent ovals. Clusters

have been divided into two groups based

on correlation of their gene expression

profiles (Fig. S4) and color-coded,

respectively, with shades of blue and red.

Scale bars ~ 10 µm.
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feature set (i.e., consists of gene expression data from

the same gene panel). This is especially useful to pre-

dict embeddings for new spatial gene expression data-

sets and map them to a common lower dimensional

space. The fact that spage2vec is a fully unsupervised

approach triggers the possibility to explore cellular

heterogeneity in situ without the need of scRNA

sequencing data-driven analysis.

The presented approach is completely independent

of cell segmentation, and equally applicable to 2D and

3D data, meaning that dense gene expression datasets

such as those from MERFISH can be analyzed with-

out relying on the accuracy of cell segmentation. In

fact, most cell segmentation approaches are based on

identifying cell nuclei and then approximating gene-to-

cell assignment by shortest distance to the closest

nucleus. This can very often introduce noise as cells

may vary very much in shape, and the nucleus of a

given cell may not even be present in the same tissue

section as the bulk of the cell. Furthermore, the pre-

sented segmentation-free spage2vec approach enables

detection of biologically significant cellular and subcel-

lular components as well as subcellular gene expression

signatures representing functional domains located far

away from a cell nucleus.

Materials and methods

Building a spatial gene expression graph

Spatially resolved gene expression data consist of gene

expression information and coordinates describing spatial

location (in 2D or 3D) in a tissue sample. This informa-

tion can be represented as a graph by saying that a node

in the graph is a single mRNA that has a categorical fea-

ture representing the gene it belongs to. Next, connections

are drawn between each mRNA and all its local neighbors

within a maximum spatial distance dmax. We automatically

define the distance dmax such that ≥ 97% of all nodes are

connected to at least one neighbor, automatically

adjusting for the spatial resolution of the dataset and pro-

viding a good balance between global and local features

in the representation. Connected components with less

than three nodes representing spurious expressions are

removed from the graph before further processing

(Fig. 1A). Note that the same graph representation works

in both 2D and 3D.

Neural network model and training

Next, spage2vec strives to transform the spatial gene

expression graph into an embedding where similar localized

gene expression signatures are assigned similar vectors

using a neural network model. The neural network model

consists of an unsupervised GraphSAGE [27] model imple-

mented with the open source machine learning python

library StellarGraph (https://github.com/stellargraph/stella

rgraph). The model learns embeddings of unlabeled graph

nodes by combining the node’s own feature with features

sampled and aggregated from the node’s local neighbor-

hood. Specifically, node embeddings are learnt by solving a

binary node classification task that predicts whether arbi-

trary node pairs are likely to co-occur in a random walk

performed on the graph. For this task, the training set con-

sists of positive node pairs, pairs that co-occur within walks

of length 2 on the graph, and negative pairs of nodes uni-

formly randomly selected from the graph. Through training

this binary node pair classifier, the model automatically

learns an inductive mapping from a high-dimensional fea-

ture space (i.e., spatial gene expression) to a lower dimen-

sional node embedding space, preserving important

topological and structural features of the nodes. The model

architecture consists of two identical GraphSAGE encoder

networks sharing weights, taking as input a pair of nodes

together with the graph structure and producing as output

a pair of node embeddings. Thereafter, a binary classifica-

tion layer with a sigmoid activation function learns to pre-

dict how likely it is that a pair will occur at a random

position in the graph. Model parameters are optimized by

minimizing binary cross-entropy between the predicted

node pair labels and the true labels, without supervision.

Neural network hyperparameters

The proposed spage2vec model architecture used for all

experiments presented here consists of two GraphSAGE

layers with 50 hidden units, a bias term, l2 normalization,

and l1 kernel regularization, using attentional aggregator

function [31] with LeakyReLU [32]. Each GraphSAGE

encoder embeds each node’s neighborhood with a 2-hop

node aggregation strategy, sampling, respectively, 20 and

10 nodes for the first and the second hops. The model is

trained with on-the-fly batch generation with batch size

equal to 50, using Adam [33] as optimizer with learning

rate equal to 0.5e-4. The output of spage2vec will thus be

one vector of length 50 per spatial gene expression posi-

tion. All details and settings are provided as Python note-

books (https://github.com/wahlby-lab/spage2vec).

Depending on the number of mRNAs in the dataset and

the size of the gene panel, we suggest a different dimen-

sionality for the spage2vec embedding such that it can cap-

ture meaningful variation in the data but also produces

not too sparse representations that would negatively influ-

ence posterior clustering performances. We recommend

using more hidden nodes and higher embedding dimension-

ality for spatial gene expression datasets with a larger gene

panel and higher number of mRNAs, so that the complex-

ity of the data can better be captured by the GNN. The

number of hidden layers is strictly related to the number of
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hops, or search depth, used in the node aggregation strat-

egy, where an increasing number of hops aggregate infor-

mation further away from a given node and consequently

better capture global features of the input spatial gene

expression graph. Nevertheless, it has been shown that

using more than two hops gave only marginal returns in

performances while consistently increasing training time

[27]. Instead, the number of nodes sampled in each hop is

used to uniformly sample a fixed-size set of neighbors in

order to have fixed memory and computational footprint

at each batch. In Ref. [27], the authors show that Graph-

SAGE can achieve generally good performance using two

hops with a total sampling size ≤ 500. We set these two

parameters in order to preserve low variance and relatively

low training time. Specifically, we look at average node

degree of the spatial gene expression graph (e.g., average

node degree equal to 8) setting a slightly higher value for

sampling in the second hop (e.g., number of nodes sampled

in the second hop equal to 10), and a doubly larger value

for the first hop in order to have a lower variance for the

closest neighbors (e.g., number of nodes sampled in the

first hop equal to 20).

Visualization of node embeddings

To visualize the extracted spatial gene expression embed-

dings created by spage2vec, we reduced the embedding

dimensionality to three dimensions with UMAP [34]. This

allowed us to present the localized gene expression signa-

tures as data points in a 3D RGB color space. Mapping

the new color-coding back to tissue space shows that many

of the transcripts not only cluster in space but also seem to

recur and correlate with cellular and subcellular spatial

domains (Fig. 1D).

Identification of localized gene expression

signatures

For further comparing the spage2vec output with

approaches aimed at identifying cell types, we hypothesize

that recurring localized gene expression signatures are spa-

tial functional domains that may be cell-type-specific, or

represent processes shared among different cell types. We

therefore cluster the 50-dimensional spage2vec output using

the Leiden clustering algorithm [35,36] followed by column-

wise Z-score normalization of the cluster expression matrix

(genes x clusters). Clusters where gene expression profiles

have a correlation greater than 95% are merged by sum-

ming their expression counts, and the merged cluster

expression matrix is renormalized with Z-score normaliza-

tion, leading to a final set of clusters. Note that the trained

model has an inductive property, meaning that it can gen-

eralize and find embeddings for previously unseen localized

gene expression signatures.

Gene ontology analysis

In order to examine the identified clusters for enrichments

of GO terms in Chen et al. dataset, we extract for each

cluster highly expressed genes that have Z-scores higher

than 1. We search for enrichments in location terms (CC),

molecular-level activities (MF), and BP with goatools [37]

using the most recent human annotations (https://ftp.ncbi.

nlm.nih.gov/gene/DATA/gene2go.gz). For each selected

gene set of each cluster, we query both the relative anno-

tated GO terms and terms immediately upstream, against a

background list composed by all the genes present in the

panel. Terms found to be statistically significant with P-val-

ues smaller than 0.005 were reported (Table S1).

Datasets

We apply spage2vec to three publicly available published

mouse brain tissue datasets obtained by three different spa-

tial transcriptomics assays: (a) ISS of left and right hip-

pocampal area CA1 [11]; https://tissuumaps.research.it.uu.

se/demo/ISS_Qian_et_al.html, with a resolution of

0.325 lm per px and a total of 84 880 detections of 99 dif-

ferent mRNAs; (b) an osmFISH analysis of the somatosen-

sory cortex [7]; https://tissuumaps.research.it.uu.se/demo/

osmFISH_Codeluppi_et_al.html, comprising a tissue sec-

tion of 3.8 mm2, with a resolution of 0.065 lm per pixel,

and a total of 1 802 589 detections of 33 different mRNAs;

and (c) a MERFISH analysis of the hypothalamic preoptic

region [6]; https://tissuumaps.research.it.uu.se/demo/MER

FISH_Moffitt_et_al.html, comprising a 3D tissue section

10 lm thick of 1.8 by 1.8 mm and a total of 3 728 169

detections targeting 135 different genes.

We further validated spage2vec on a MERFISH dataset

of 421 human fibroblast cells (IMR90) [29]; https://tissu

umaps.research.it.uu.se/demo/MERFISH_Chen_et_al_2015.

html imaged with 1.45 NA, 1009 oil immersion objective.

The gene panel consisted of 130 genes, with 740 043

decoded transcripts.

Code availability

All software was developed in Python 3 using open source

libraries. The processing pipeline and the source code used

to generate figures and analysis results presented in this

paper are available as Python notebooks at http://www.doi.

org/10.5281/zenodo.4030404, or on our GitHub repository

(https://github.com/wahlby-lab/spage2vec).
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ISS data from Qian X. et al.

Fig. S2. Gene expression per detected cluster of the

osmFISH data from Codeluppi S. et al.

Fig. S3. Gene expression per detected cluster of the
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Fig. S4. Gene expression per detected cluster of the

MERFISH data from Chen et al.

Table S1. GO analysis of spage2vec clusters of MER-

FISH Chen et al. spatial gene expression data.
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