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Abstract

Background: Biological networks consisting of molecular components and interactions are represented by a graph
model. There have been some studies based on that model to analyze a relationship between structural
characteristics and dynamical behaviors in signaling network. However, little attention has been paid to changes of
modularity and robustness in mutant networks.

Results: In this paper, we investigated the changes of modularity and robustness by edge-removal mutations in
three signaling networks. We first observed that both the modularity and robustness increased on average in the
mutant network by the edge-removal mutations. However, the modularity change was negatively correlated with
the robustness change. This implies that it is unlikely that both the modularity and the robustness values
simultaneously increase by the edge-removal mutations. Another interesting finding is that the modularity change
was positively correlated with the degree, the number of feedback loops, and the edge betweenness of the
removed edges whereas the robustness change was negatively correlated with them. We note that these results
were consistently observed in randomly structure networks. Additionally, we identified two groups of genes which
are incident to the highly-modularity-increasing and the highly-robustness-decreasing edges with respect to the
edge-removal mutations, respectively, and observed that they are likely to be central by forming a connected
component of a considerably large size. The gene-ontology enrichment of each of these gene groups was
significantly different from the rest of genes. Finally, we showed that the highly-robustness-decreasing edges can
be promising edgetic drug-targets, which validates the usefulness of our analysis.

Conclusions: Taken together, the analysis of changes of robustness and modularity against edge-removal
mutations can be useful to unravel novel dynamical characteristics underlying in signaling networks.
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Background

Robustness and modularity are key properties to under-
stand complex dynamics in large-scale biological
networks. The former means the capability of a network
to maintain functioning against external and internal
perturbations [1], and the latter describes the divisibility
of a network into clusters [2]. The robust dynamics [3-5]
and the modularized structures [6—8] have been ubiqui-
tously observed through various biological examples. It is
also notable that these properties can be changed by struc-
tural mutations because they are highly dependent on the
network structure. For example, a few studies showed that
the modularity is greatly changed by the removal of hubs
[9] or by stabilizing events in protein—protein interaction
networks. Some other studies also proved that the robust-
ness is considerably changeable according to a variety of
mutations [10-13]. Additionally, there were some previ-
ous studies to investigate a relation between the robust-
ness and the modularity. For example, it was shown that
the modularized structure of bone networks improves the
robustness compared to a regular network of the same
size [14]. Some other studies observed that both the ro-
bustness and the modularity characteristics could be
emergently improved through a network evolution
process [15, 16]. Moreover, there were some studies to ex-
plicitly examine linear correlations between the robustness
and the modularity over differently structured networks
[17-19]. In metabolic networks, the robustness against
the mutant concentrations of metabolites or the mutant
expression of enzymes has increased or decreased, re-
spectively, as the modularity increases [17]. On the other
hand, the robustness against a gene state perturbation was
negatively correlated with the modularity in signaling net-
works [18, 19]. Although these previous studies found
interesting relations between the robustness and the
modularity, there are some issues needed to be investi-
gated as follows. The first issue is that there is little known
knowledge about changes of the modularity and the ro-
bustness. In particular, there was no intensive study about
the relationship of the changes of the modularity and the
robustness by structural mutations. We note that the pre-
vious studies [17-19] focused on the robustness and the
modularity over networks with very different structures,
whereas this study focuses on the changes of the robust-
ness and the modularity over mutant networks with a
slight structural modification. This means that the find-
ings in the previous studies do not necessarily hold in our
analysis. Another interesting issue is whether some well-
known motifs are relevant to the changes of the modular-
ity and the robustness or not. In fact, some previous stud-
ies have shown that network motifs such as feedback
loops (FBLs) and feed-forward loops (FFLs) ubiquitously
found in various biological networks can affect the robust-
ness [13, 20]. For instance, it was reported that more
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positive and less negative FBLs are observed in robust net-
works [21]. Another study showed that coherent coupling
of FBLs is a design principle of a robust signaling network
[22]. It was also reported that coherent FFLs strengthen the
robustness against update-rule perturbations [13]. To our
best knowledge, even there was no reported motif which is
relevant to the modularity property. Taken together, there
is little known about motifs which indicate the changes of
the modularity, the robustness, or both. The last issue is
that there was no previous study to compare sets of nodes
or interactions which efficiently control the changes of the
modularity and the robustness. This can be impressive be-
cause the result can be used to identify functionally import-
ant nodes or interactions such as drug targets.

In this work, we tried to investigate the changes of the
modularity and the robustness by edge-removal muta-
tions in signaling networks. Through intensive simula-
tions using a Boolean network model [23, 24], we first
found that both the modularity and the robustness in-
creased on average against edge-removal mutations, but
the change of modularity is negatively correlated with
the change of robustness. More intriguingly, the modu-
larity change was positively correlated with the degree,
the number of FBLs, and the edge betweenness of re-
moved edges, whereas the robustness change was nega-
tively correlated with them. Additionally, we found that
these findings are consistently conserved in the random
networks. Moreover, we identified two groups of genes
which are incident to the highly-modularity-increasing
and the highly-robustness-decreasing edges against the
edge-removal mutations, respectively, and observed that
they are likely to be central by forming a considerably
large connected component. The gene-ontology enrich-
ment of each of the gene groups was clearly different
from the rest of genes. Finally, we found that the highly-
robustness-decreasing edges can be promising edgetic
drug-targets. Taken together, the analysis of the changes
of the robustness and the modularity against the edge-
removal mutations can be useful to reveal novel dynam-
ical characteristics of signaling networks.

Methods

Network modularity

In this study, we examined the modularity by using the
method in a previous study [25] and it has been widely
used in many previous studies [18, 19, 26, 27]. Given a di-
rected graph G(V, A) where Vand A denote a set of nodes
and a set of directed edges, respectively, we consider a
partition P={V;, Va,..., Vo of Viie. V;nV;=¢ for all
i#j, and UM, V; = V). The modularity of P is defined as
M(P) =M, (wv_v - wVﬁ)#) , where wy,y, is the number

[0}

of directed edges whose both end nodes belong to V;, 0/’
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and @Y are the numbers of directed edges whose starting
or ending node only, respectively, belongs to V;, and o is
the total number of directed edges in the network. Then
the network modularity can be defined as M(G) =
maxp M(P). Since it is difficult to optimize the partition,
we computed the averaged modularity value of 30 trials of
partitions optimized by an existing algorithm [28].

Boolean network dynamics

In this study, we employed a Boolean network model in-
troduced in previous studies [29, 30] to investigate the
complex dynamics of biological networks. In a Boolean
network of a directed graph G(V;A), V and A denote a
set of Boolean variables and a set of ordered pairs of the
Boolean variables called directed edges, respectively. A
state of each v;€ V'is 1 or 0 which represents on or off
state of the gene, respectively. Then a state of a network
G is defined as a vector of the states of all nodes. A di-
rected edge (vj,v;) € A has a positive (activating) or nega-
tive (inhibiting) relationship from v; to v;. Here, we used
a nested canalyzing function (NCF) model [31] (see
Additional file 1: Supporting Text section for details),
which can represent a variety of canalyzing rules in real
molecular interactions [32] can be generated by using
the NCF model. Additionally, NCFs properly fit the ex-
perimental data gained from literature [31], and can also
describe logical interaction rules extracted from gene ex-
pression experiments [32, 33]. In this study, each NCF is
randomly generated by specifying all I,,s and O,,s be-
tween 0 and 1 uniformly at random.

Let G(V,A) a Boolean network with a list of update-
rules F={f},fs ..., fa}. Every initial state converges to an
attractor which can describe diverse network dynamics
such as multi-stability, homeostasis, and oscillation [34,
35]. Let a(s, G, F) the attractor which the initial state s
converged. The network is considered as robust against
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a perturbation at v; if the attractor is conserved and we
herein considered an update-rule mutation which de-
F. =

scenario that F is ;

scribes a changed to

{fl, ...,f;, s ,fN}, wherefli means that every canalyzing
and canalyzed values were flipped (i.e., all 7, and O, are
changed into 1-1, and 1-0,, respectively). This
update-rule mutation may represent a deleterious
change in the function of a protein or gene [36], and
have been used in a previous study [13]. Then the net-
work robustness y(G) is defined as follows:

S ZZ[(a(s, G,F) =a(s,G,F;)),

1
Y(G) =g
N| ses =1

where S is a set of initial states (i.e. S=2V), and I(") is a
function which outputs 1 or 0 if the condition is met or
not, respectively. Because |S| is a very large number, we
used a sample subset SCS with |S| = 2N instead of S to
calculate y(G).

Changes of modularity and robustness by edge-removal
mutations

This study focuses on how the modularity and the ro-
bustness of a network are changed by edge-removal mu-
tations. Let m; and r; be the modularity and the
robustness of the wild-type network, respectively. Given
a removal rate parameter n (%), the mutant network is
constructed by simultaneously removing approximately
n percent of a total number of edges from the wild-type
network. Then let m, and r, be the modularity and the
robustness of the mutant network. We defined the
changes of the modularity and the robustness by the
edge-removal mutations as (my-m;) and (ry—ry),
respectively. An illustrative example of the notion about
the changes of modularity and robustness by edge-
removal mutations is shown in Fig. 1.

positive (0.12548) and negative (—0.14445), respectively

Fig. 1 An illustrative example of edge-removal mutations. a The original network G(V, A). b The mutant network GV A) by removal of /| — B and
A1 It was observed that both networks G and G consist of three modules. Modularity and robustness values in G were 0.35799 and 0.88889,
respectively, whereas those in G were 048347 and 0.74444, respectively. Therefore, the changes of the modularity and the robustness were

G'(V',A)
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Signaling network datasets

To investigate real signaling networks, we used three
datasets of signaling networks: a T-LGL survival network
(T-LGL) [37] consisting of 60 genes and 142 interac-
tions, a signal transduction network in fibroblasts (STF)
[38] consisting of 139 genes and 557 interactions, and a
HIV-1 interaction network in T-cell (HIV-1) [39] con-
sisting of 138 genes and 368 interactions collected by
manually curating signaling pathways from cellcollective
(www.cellcollective.org) [40].

Generation of interaction-shuffled random networks

We need to extensively simulate randomly structure net-
works to verify that the new findings in real networks are
generally conserved. In this study, we employed a shuffling
model to generate random networks [10, 18]. Given a ref-
erence network, it rewires some edges in a way that in-
degree and out-degree of every node are conserved. Ac-
cordingly, the structure of the generated random network
is considerably similar to that of the original network.

Edge-based structural properties

A previous study has reported that there exists a rela-
tionship between a structural property with respect to
genes or interactions and the global stability in biological
networks [41]. In this regard, we investigated the rela-
tions of the following edge-based structural characteris-
tics to the changes of the modularity and the robustness.

e Degree of a node means the number of links
incident to the node in a graph. On the other hand,
the degree of an interaction (DEG) means the sum
of the degrees of both end nodes of the edge.

e An FBL is a circular chain where nodes are not
revisited except the starting and the ending nodes
[42]. It plays an important role in controlling the
dynamical behaviors of cellular signaling networks.
Specifically, vo > v > v, — ... > v, 1 — v is an
FBL of length L (>1) if there exist links from v; _; to
v (i=1,2,...,L) with vo = v, and v; # v for j, k € {0,
1,...,L -1} and j # k. The number of FBLs of a link e
denoted by NuFBL(e) means the number of different
FBLs involving e.

e Edge Betweenness (EBEW) is defined as the number
of shortest paths between pairs of nodes that run
along an edge [2], similar to Betweenness of a node.
EBEW has been used as an important edge-based
centrality measure in a previous study [43].

Software for statistical tests
In this study, IBM SPSS statistics [44] was used to con-
duct all statistical tests.
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Results and Discussion

Relationship between changes of modularity and
robustness by edge-removal mutations

We first investigated the changes of the modularity and
the robustness by edge-removal mutations in three real
networks T-LGL, STF, and HIV-1 (see Methods), and
the results are shown in Fig. 2. (T-LGL) and Fig. S1-S2
(STF and HIV-1, respectively) in Additional file 1. In this
study, we computed the average changes of the modular-
ity and the robustness values over 5000 trials of edge-
removal mutations. In addition, we varied the removal
rate, which denotes the percentage of the number of re-
moved edges over the total number of edges, from 1%
to 5%. We first tested whether the average changes are
significantly positive using one-sample t-test. We note
that the average changes were normally distributed, as
assessed by Kolmogorov-Smirnov’s test (see Fig. S3-S5 in
Additional file 1 for details) and there were no or very
few significant outliers, as assessed by a boxplot inspec-
tion (see Fig. S6-S8 in Additional file 1 for details). As
shown in Fig. 2(a), we observed that both average
changes were positive for all removal rates, which means
that the modularity and the robustness values were
increased by edge-removal (All P-values <0.0001; see
Additional file 1: Figure S1 (a) and Figure S2 (a) for the
results of STF and HIV-1 networks, respectively).

In addition, the increase of the robustness was posi-
tively related to the removal rate. To examine the rela-
tionship between the changes of modularity and
robustness values, we scattered them in the cases that
the removal rate is 1% (Fig. 2(b)) and 2% (Fig. 2(c)). In-
triguingly, there was a negative correlation between the
modularity change and the robustness change, and this
was consistently observed in the cases of larger removal
rates (see Additional file 1: Figure S9) and the other net-
works (see Additional file 1: Figure S1 (b)-(c)) and Fig.
S2 (b)-(c)). Figure 2 (d) shows the trend of the correl-
ation coefficient values between the changes of modular-
ity and robustness values against the removal rate, and
we observed that they were significantly negative
irrespective of the removal rates (see Additional file 1:
Figure S1 (d) and S2 (d) for the results of STF and HIV-
1 networks, respectively). Actually, the negative relation-
ship between the modularity and the robustness in sig-
naling networks was observed in our previous studies
[18, 19]. However, it should be noted that the previous
finding does not imply any relation between the changes
of the modularity and the robustness by edge-removal
mutations. To further examine if the negative relation-
ship we found is a general property in randomly struc-
tured networks, we generated three sets of 100 random
networks shuffled from T-LGL, STF, and HIV-1 (see
Methods), and could observe consistent (see Additional
file 1: Figure S10). This implies that such the negative
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Fig. 2 Analysis of the changes of the modularity and the robustness by edge-removal mutations in T-LGL signaling network. The removal rate of
edges was varied from 1% to 5% (More specifically, the numbers of removed edges were 2, 3, 4, 5, and 7, respectively, among a total of 142
edges). For each removal rate, 5000 trials of edge-removal were examined. See Additional file 1: Fig. S1 and S2 for the analysis results of STF and
HIV-1 signaling networks. a Results of average changes of the modularity and the robustness against the removal rate of edges. Y-axis value and
error bar represents the average and the standard deviation divided by the square root of the sample size (5000), respectively. Both average
values were significantly larger than zero (All P-values <0.0001 using one-sample t-test). The one-sample t-test was valid because the average
values were normally distributed (see Additional file 1: Fig. S3) and there were no or very few significant outliers (see Additional file 1: Fig. S6).
b-c Relationship between the changes of the modularity and the robustness in the case that the removal rate is 1% and 2%, respectively. A
significant negative relationship was observed (Correlation coefficients were —0.33042 and —0.31208 in (b) and (c), respectively, with all P-values
<0.0001). This relationship was consistently observed for larger removal rates (see Additional file 1: Fig. S9). d A trend of correlation coefficients
between the changes of the modularity and the robustness against the removal rate of edges

relation between the changes of the modularity and the
robustness can be regarded as a general principle con-
served in randomly structured networks.

Structural characteristics to affect the changes of the
modularity and the robustness

We showed that the changes of the modularity and the
robustness are correlated when a network is subject to
edge-removal mutations. To reveal structural character-
istics to affect the changes of the modularity and the ro-
bustness, we investigated the correlations of each of the
changes of the modularity and the robustness with each
of three edge-based structural properties, DEG, NuFBL
and EBEW (see Methods for the definitions) in T-LGL
signaling network (Fig. 3; see Additional file 1: Figure
S11 and S12 for the results of STF and HIV-1, respect-
ively). In Fig. 3, average DEG, NuFBL, and EBEW values
of the removed edges over 5000 trials with 1% of the re-
moval rate were examined. Intriguingly, we found that
the change of the modularity is positively correlated with
the average DEG, EBEW and NuFBL of removed edges
(The correlation coefficients in Fig. 3 (a)-(c) were

0.24708, 0.13786, and 0.11720, respectively, with all p-
values < 0.001). That is to say, removing edges with a
higher degree, EBEW, or NuFBL is more likely to in-
crease the network modularity. These results can be
relevant to previous results. For example, the edges with
high betweenness values are most likely to lie between
subgraphs [45], and thus removing those edges could
make a network more separately or more modularized.
We also found that the change of the robustness is nega-
tively correlated with the average DEG, EBEW and
NuFBL of the removed edges (The correlation coeffi-
cients in Fig. 3(d)-(f) were -0.21738, -0.14694, and
-0.10537, respectively, with all p-values<0.0001). In
other words, removing edges with a higher degree,
EBEW, or NuFBL is more likely to decrease the network
robustness. These results can be compared with some
previously known results regarding node-based muta-
tions. For example, some studies reported that a node
involving more FBLs is likely to be sensitive against
node-based mutations. To show that these results hold
in random networks, we generated three sets of 100 ran-
dom Boolean networks each of which was shuffled from
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Fig. 3 Relationship of each of the changes of the modularity and the robustness with the edge-based structural properties in T-LGL signaling
network. The removal rate was set to 1%, and a total of 5000 trials of removals were examined. a-c Relations of the change of modularity with
edge-based degree, EBEW, and NuFBL, respectively. The change of modularity was significantly positively correlated with all structural properties
(Correlation coefficients were 0.22443, 0.14564, and 0.12888, respectively, with all P-values < 0.0001). d-f Relations of the change of robustness with
edge-based degree, EBEW, and NuFBL, respectively. The change of robustness was significantly negatively correlated with all structural properties
(Correlation coefficients were —0.18050, —0.15030, and —0.07933, respectively, with all P-values < 0.0001)

T-LGL, STE, and HIV-1 networks, respectively. Through
extensive simulations with the removal rate of 1%, we
could observe consistent results (see Additional file 1:
Fig. S13-S15, All P-values < 0.0001 using t-test). In other
words, the degree, the edge-betweenness and the num-
ber of FBLs were positively correlated with the change
of the modularity whereas they were negatively corre-
lated in the random networks. It means that those struc-
tural characteristics might be a vital factor in controlling
both the changes of the modularity and the robustness.

Topological distribution of highly modularity-increasing

and robustness-decreasing edges by removal mutations

In the previous subsection, it was shown that the change
of the modularity is positively correlated with the degree,
the edge betweenness, and the number of involved FBLs
with respect to the removed edges whereas the change
of robustness is negatively correlated with them. From
these results, we hypothesized that the edges whose re-
moval will increase the modularity or decrease the ro-
bustness tend to be centrally located in signaling
networks. To validate this hypothesis, we first specified
“Highly-modularity-increasing” (High-MI) and “Highly-
robustness-decreasing” (High-RD) sets of edges as fol-
lows: We examined the changes of the modularity and
the robustness over 5000 trials of edge-removal

mutations with 1% removal rate, and collected top-K set
of edges among them in an increasing (resp. decreasing)
order of the change of the modularity (resp. the robust-
ness). Considering the distributions of the change of the
modularity (resp. robustness), K was chosen to 20, 20,
and 18 (resp., 31, 18, and 16) for T-LGL, STF, and HIV-
1 networks, respectively. Then High-MI (resp. High-RD)
denotes the union of the edges each of which was in-
cluded in the modularity-increasing (resp. robustness-
decreasing) top-K edges. Accordingly, we identified
High-MI (High-RD) groups consisting of 22, 79, and 42
edges (resp. 30, 69, and 33 edges) in T-LGL, STF, and
HIV-1 networks, respectively. Furthermore, we defined
High-MlI-incident (High-RD-incident) group which is a
set of genes incident to an edge in the High-MI (resp.
High-RD) edge group, and found the number of genes
in the High-Ml-incident (resp. High-RD-incident) were
29, 81, and 59 (resp. 33, 72, and 48) in T-LGL, STF, and
HIV-1 networks, respectively. The topological distribu-
tions of High-MI and High-RD edge sets in T-LGL, STF,
and HIV-1 networks are shown in Fig. 4 and Figure S16-
S$17 in Additional file 1, respectively. As expected, it was
observed that the edges in High-MI and High-RD
groups are likely to be located at the centre of the signal-
ing network. In order to more clarify this observation,
we compared node-based centrality values between each
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Fig. 4 Topological distributions of High-MI/High-RD edges and their incident nodes in T-LGL signaling network. a-b Distributions of High-MI and
High-RD edges, respectively, and their incident nodes. c-d Subgraphs with respect to High-Ml-incident and High-RD-incident nodes, respectively.
Red link and yellow node represent High-MI edge and High-Ml-incident node, respectively, in both (a) and (c), whereas they represent High-RD
edge and High-RD-incident node, respectively, in both (b) and (d). (see Additional file 1: Fig. S16-517 for the results of STF and HIV-1 networks.)

set of High-MlI-incident and High-RD-incident groups
and the set of rest genes. Specifically, we computed aver-
age degree, node-based betweenness [43], stress [46],
closeness [47], and the number of involved FBLs [22] for
each group of nodes (Fig. 5). As depicted in the figure,
we found that genes of High-MI-incident and High-RD-
incident groups showed higher degree, node-based be-
tweenness, stress, closeness, and the number of FBLs
than the rest of genes (Only three cases among 30 com-
parisons did not show significant differences.) In other
words, the genes incident to the interactions whose
greatly increase the modularity or decrease the robust-
ness tends to be central in the signaling network. Add-
itionally, we visualized the connectedness of edges of
High-MI and High-RD groups by projecting them into a
subnetwork from T-LGL (see Fig. 4(c) and (d), respect-
ively), STF (see Additional file 1: Fig. S16(c) and (d), re-
spectively), and HIV-1 (see Additional file 1: Figure
S17(c) and (d), respectively) networks. As shown in the

figures, every subnetwork forms a single connected com-
ponent. This implies that the highly modularity-
increasing or robustness-decreasing edges with respect
to edge-removal mutations are closely located in signal-
ing networks.

Gene ontology analysis of a set of genes incident to highly-
modaularity-increasing or highly-robustness-decreasing edges
We conducted Gene Ontotlogy (GO) enrichment analysis
(The Gene Ontotlogy Consortium, 2008) using ClueGO
tool [48] to investigate the locational and functional char-
acteristics of sets of High-Ml-incident and High-RD-
incident genes. The results are shown in Table 1 (see
Additional file 1: Table S1-S2). Some GO terms such as
protein tyrosine kinase and peptidase activity are more
highly observed in High-MlI-incident and High-RD-
incident groups. The former is an enzyme which transfers
a phosphate group from adenosine triphosphate to a pro-
tein in a cell, and the latter is catalysis of the hydrolysis of
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higher degree, node-based betweenness, stress, closeness, and the number of involved feedback loops than the rest of genes (All P-values < 0.05
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a peptide bond. In addition, High-MlI-incident and High-
RD-incident gene groups showed a greater fraction of re-
sponse function terms. Regulation of adaptive immune re-
sponse is any process that modulates the frequency, rate,
or extent of an adaptive immune response regarding to ro-
bustness change. Furthermore, High-Ml-incident group

showed a greater portion of vital binding functions. For
example, a protein phosphatase is an enzyme that removes
a phosphate group from the phosphorylated amino acid
residue of its substrate protein, and its binding function is
interacting selectively and non-covalently with any protein
phosphatase. On the other hand, High-RD-incident group
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Table 1 Results of GO analysis between High-Ml-incident/High-RD-incident group and the rest of genes in T-LGL signalling network,
with all P-values using Bonferroni test (see Additional file 1: Table ST and S2 for the results of STF and HIV-1 signaling networks)

Type of GO analysis GO term High-Ml-incident (%) The rest of genes (%) P-value

Modularity change Non-membrane spanning protein tyrosine kinase activity 75.00 25.00 54E-6
Positive regulation of peptidase activity 5762 4801 34E-12
Positive regulation of adaptive immune response 75.00 25.00 34.0E-6
Regulation of immunoglobulin mediated immune response 75.00 25.00 29E-6
Phosphatase binding 85.71 14.29 72.0E-9
Protein phosphatase binding 8333 16.67 260.0E-9
Cytokine receptor binding 64.29 3571 2.1E-15
Death receptor binding 60.00 40.00 960.0E-12
GO term High-RD-incident (%) The rest of genes (%) P-value

Robustness change Positive regulation of cysteine-type endopeptidase activity 63.62 4241 24.0E-12
Positive regulation of peptidase activity 67.22 3841 34E-12
Response to nicotine 60.00 40.00 200.0E-9
Regulation of adaptive immune response 83.33 16.67 540.0E-9
Positive regulation of apoptotic signaling pathway 67.22 3841 13.0E-12
Regulation of NIK/NF-kappaB signaling 75.00 25.00 54E-6
Necroptotic signaling pathway 7925 2642 380.0E-9
Extrinsic apoptotic signaling pathway in absence of ligand 66.84 40.11 370.0E-12

showed a greater fraction related to signaling pathway. For
instance, necroptosis is a programmed form of necrosis,
or inflammatory cell death, and its signaling pathway
is a series of molecular signals which triggers the
necroptotic death of a cell. Taken together, signifi-
cantly different functions between High-MI-incident/
High-RD-incident groups of genes and the rest of
genes can be characterized.

Edge-based drug discovery

We performed a case study to show an application
for edge-based drug discovery. For every interaction
in High-RD group, we examined the inclusion fre-
quency of the interaction in top-K edge sets ranked
by a decreasing order of the robustness change
among 5000 trials of edge-removal mutations with 1%
removal rate. We found that (JAK— STAT3),
(IP3R1 — Ca), and (gp41l — CD28) showed the highest
frequency in the T-LGL, STE, and HIV-1 networks,
respectively. We hypothesized that these edges can be
candidates of edgetic drug-targets, because they most
frequently caused the highest decreasing robustness
through removal mutations. To validate this, we sur-
veyed some recent experimental studies. Regarding
(JAK — STAT3) interaction of T-LGL network (Fig. 6),
it was shown that the interaction is associated with
oncogenesis, proliferation, survival, metastasis, angio-
genesis, and immune evasion in gastrointestinal can-
cers [49, 50]. For example, a colorectal cancer might

be developed by dysregulation of the interleukin (IL)-
6-mediated JAK— STAT3 pathway, and therefore
strategies targeting the IL-6/JAK/STAT3 pathway have
emerged as attractive options to treat colorectal can-
cer [51]. Next, the (IP3R1 — Ca) interaction of STF
network (see Additional file 1: Fig. S18) played an im-
portant role of dynamical relationship between IP3R1
and PI3K, which are the most influential components
associated with drug resistance [52]. Systemic analysis
of these components and their upstream components
has resulted in identifying novel combinations of drug
targets. In HIV-1 network, (gp41 — CD28) was found
to be the highest frequency interaction (see
Additional file 1: Figure S19), but there was no rele-
vant experimental study to support it. However, we
could find biological evidence related to the second
highest frequency interaction, (PI3K — PIP3). It is in-
cluded in PI3K/Akt/mTOR pathway [53], which is
known to be frequently activated in ovarian cancer.
Therefore, inhibitors targeting this pathway can be
evaluated as treatment strategies for ovarian cancer,
either mono-therapy or in combination with cytotoxic
agents [54]. Another interesting point was the feed-
back loops involved with those interactions. We
found a large number of feedback loops were related
to (JAK— STAT3), (IP3R1 — Ca), and (PI3K— PIP3)
in T-LGL, STF, HIV-1, respectively (The numbers
were 70, 286, and 872, respectively). Considering that
the number of involved FBLs was shown to be



Truong and Kwon BMC Systems Biology 2017, 11(Suppl 7):125

Page 66 of 174

(=)
) ()

0
N
~@\®
(soc) & !

4 \
\

&, @
|

8
@,

RN @

Fig. 6 Edge-removal analysis for edgetic drug discovery in T-LGL signaling network. The arrows and bar-headed lines represent positive and
negative interactions, respectively. Line thickness is proportional to the inclusion frequency of the interaction in top-K edge sets ranked in a
decreasing order of the robustness change among 5000 trials of edge-removal mutations with 1% removal rate. The interaction (JAK — STAT3)
was observed 30 times in top-K edge sets (K was chosen to 30). (see Additional file 1: Fig. S18 and S19 for the results of STF and HIV-1

PI3K

m
Es}
W

networks)

associated with the functional importance of a node
or an interaction, it implies that the found interac-
tions can be promising drug-targets.

Conclusions

There have been many computational studies about the
network robustness and modularity, whereas there are
few studies on investigating the modularity change and
the robustness change. Through extensive simulations,
we found that both the modularity and the robustness
increased on average in mutant networks by edge-
removal mutations in this study. However, it was inter-
esting that the changes of the modularity and the ro-
bustness were negatively correlated. Another interesting
finding is that the changes of the modularity and the ro-
bustness are positively and negatively, respectively, cor-
related with each of the degree, the number of FBLs,
and the edge betweenness of removed edges. These re-
sults were consistently observed in randomly structure
networks. Additionally, we identified two sets of genes
which are incident to the highly-modularity-increasing
and the highly-robustness-decreasing edges, respectively,
and observed that they are likely to be central by form-
ing a large connected component. These two gene sets
were enriched with different GO terms and the investi-
gation on the reason why such GO terms are related to

modularity and robustness will be a future study. Finally,
we found that the highly-robustness-decreasing edge
can be considered for promising edge-based drug-
targets. Taken together, our results in this study can
be useful to unravel novel dynamical characteristics of
signaling networks.
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