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Abstract

Transcription is an essential step in gene expression and its understanding has been

one of the major interests in molecular and cellular biology. By precisely tuning

gene expression, transcriptional regulation determines the molecular machinery

for developmental plasticity, homeostasis and adaptation. In this review, we

transmit the main ideas or concepts behind regulation by transcription factors

and give just enough examples to sustain these main ideas, thus avoiding a classical

ennumeration of facts. We review recent concepts and developments: cis elements

and trans regulatory factors, chromosome organization and structure, transcrip-

tional regulatory networks (TRNs) and transcriptomics. We also summarize new

important discoveries that will probably affect the direction of research in gene

regulation: epigenetics and stochasticity in transcriptional regulation, synthetic

circuits and plasticity and evolution of TRNs. Many of the new discoveries in gene

regulation are not extensively tested with wetlab approaches. Consequently, we

review this broad area in Inference of TRNs and Dynamical Models of TRNs.

Finally, we have stepped backwards to trace the origins of these modern concepts,

synthesizing their history in a timeline schema.

Introduction: cis elements and trans
regulatory factors

Transcriptional regulation emerges from the interaction

between trans factors (Latin for ‘far side of ’) that bind to

cis-regulatory elements (Latin for ‘this side of ’) in the

context of a particular chromatin/chromosome structure.

Taking the doubled-stranded DNA molecule as a reference,

cis elements are all those DNA regions – encoded in a

plasmid or in a chromosome – in the vicinity of a gene. In

complement, all the diffusible cellular molecules that are

able to bind to the DNA are the trans factors. The coactivity

of these molecular entities composes the minimal transcrip-

tional regulatory system in all living organisms. In bacterial

chromosomes, a transcription unit (TU) is the ordered

assembly of the following genetic entities: a regulatory

region, a transcription start site, one or more ORFs and a

transcription termination site. When a TU comprises more

than one ORF, the transcribed mRNA is called polycistronic;

otherwise, it is called monocistronic. It is not uncommon

for genes to be transcribed by several promoters; thus, TUs

overlap. The collection of overlapping TUs constitutes an

operon. Historically defined as a polycistronic TU, it has

been observed that operons always contain a promoter that

transcribes the whole set of genes conforming its TUs. The

regulatory region contains cis elements such as the promoter

– where the RNA polymerase initially binds – and transcrip-

tion factor-binding sites (TFBS) – where transcription

factors (TFs) bind to modulate the binding of the RNA

polymerase (Browning & Busby, 2004). In prokaryotes,
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Fig. 1. Timeline of bacterial transcription regulation.
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these regions occupy up to 400 base pairs (bp) (Collado-

Vides et al., 1991).

Transcription initiation in bacteria requires proteins

known as sigma factors (s). These factors – with even

dozens of different types per genome – are essential for

proper promoter recognition by RNA polymerase (Maeda

et al., 2000; Helmann, 2002; Paget & Helmann, 2003;

Kazmierczak et al., 2005). In bacteria, s factors are divided

into two main phylogenetic families: s70 and s54. The s70

family includes the housekeeping s that contributes

with most of the gene transcription under normal condi-

tions. One subgroup of factors from this family comprises a

varying number of proteins known as extracytoplasmatic

factors (ECF) activated in response to environmental stress.

Usually, every bacterium has one protein member from

the s54 family. RNA polymerase associated with a member

of this family recognizes promoters that are different

from those exclusively recognized when associated with a

member of s70. However, there are exceptions where two

different s factors bind to the same promoter (Weber et al.,

2005; Wade et al., 2006; Typas et al., 2007). Most s factors

have one anti-s protein that binds to their s cognate,

inhibiting its action. The s activity depends on s/anti-s
ratios and the mechanisms to dissociate s/anti-s complexes

are diverse (Hughes & Mathee, 1998). Also, there are post-

translational mechanisms that modulate the activity of

TFs and s factors such as proteins of transport systems

that sequester the factors, releasing them only when

special conditions are encountered (Martinez-Antonio &

Collado-Vides, 2008).

TFs are classified in several families based on at least two

domains, which allow them to function as regulatory

switches (Jacob, 1970). One domain functions as a signal

sensor by ligand-binding or protein–protein interaction. In

many cases, the ligand is a metabolite or a physicochemical

signal that conduits the endogenous or environmental

information (Ptashne & Gaan, 2002; Martinez-Antonio

et al., 2006). The other domain is the responsive element of

the switch that directly interacts with a target DNA sequence

or TFBS. In bacteria, the helix–turn–helix domain is the

most common (Madan Babu & Teichmann, 2003a; Sesha-

sayee et al., 2006). Also, in bacteria, most of these domains

are present in one single protein, except for two-component

systems (Ulrich et al., 2005). Classically, in these systems,

when the sensor protein – usually localized in the cell

periplasm – senses an exogenous condition, it phosphor-

ylates itself and its cytoplasmic partner, which has a tran-

scriptional regulatory activity (Mascher et al., 2006). These

two-component systems work as a unit: evidences from

Escherichia coli show that 26 of the 29 pairs are encoded in

the same operon (Janga et al., 2007a).

In general, negative regulators bind to the promoter,

interfering directly with RNA polymerase; in contrast,

positive regulators bind to the promoter’s upstream region,

helping to recruit the polymerase and start transcription

(Collado-Vides et al., 1991; Madan Babu & Teichmann,

2003b). TFs usually work as homodimers, tetramers, hex-

amers and even, in a few cases, as heterodimers (Goulian,

2004). TFs work in concert and a regulatory region can be

occupied by several TFs. One of the causes of this crowding

of the DNA by TFs in some regulatory regions is the

degeneracy of TF–TFBS interaction, i.e. there are different

sites that are able to recruit the same TF and different TFs

that can recognize similar sites. For example, overlapping

regulons like E. coli’s SoxS, MarA and Rob arise because of

TF–TFBS degeneracy (Martin & Rosner, 2002). The regula-

tory effect depends on the TF concentration and TF–TFBS

affinity: to function, weak sites require high concentrations

of TFs; in contrast, strong sites work with a lower amount

(Alon, 2007a, b). Also, compared with local TFs that tend to

have high-affinity sites, global TFs are less specific, bind to a

larger collection of sites and must be expressed at higher

levels (Lozada-Chavez et al., 2008; Martı́nez-Antonio et al.,

2008). Furthermore, there are TFs with a dual regulatory

role, being activators and repressors at the same time. One

simple example are TFs that bind to a single site in the

intergenic region between divergently transcribed units,

regulating each one of them in a different manner. This is a

common theme in sugar catabolism loci where a structural

operon is activated, whereas the gene that codes for the TF

itself is repressed. An alternative process by which dual

regulation works is by the interplay between TF concentra-

tion and binding site strength: imagine two TFBSs for the

same TF, a weak negative site inside a promoter and a strong

positive site next to it. When the TF concentration is low, the

strong positive site recruits the TF and transcription is

promoted. As the TF concentration increases, the strong site

saturates and the weak site begins to be occupied, thus

preventing the union of the polymerase to the promoter.

The transcriptional regulator factor for inversion stimula-

tion (Fis) has a dual function over some TUs using the

previous strategy (Weinstein-Fischer & Altuvia, 2007).

It is not yet possible to predict the regions of DNA

binding from protein structure and experimental mapping

is necessary. In general, the number of genes encoding TFs

increases with the number of total genes. In particular, in

bacterial genomes this increment is proportional to the

squared number of genes, suggesting that the increase in

genome size is followed by a greater regulatory complexity

(Cases et al., 2003; van Nimwegen, 2003; Aravind et al.,

2005; Molina & van Nimwegen, 2008). Also, genes in small

genomes are relatively more clustered in operons compared

with genes in larger genomes (Moreno-Hagelsieb, 2006).

However, recent evidences support the idea that the average

number of TFBS per regulatory region is independent of

genome size (Molina & van Nimwegen, 2008). (Box 1).
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Chromosome organization and structure

Chromosome compactness might represent a physical con-

straint to transcription initiation (Willenbrock & Ussery,

2004; Marr et al., 2008). Recent studies suggest that the

E. coli chromosome is arranged in structural domains with a

loop-like conformation, with sizes that range from 10 to

117 kb (Postow et al., 2004; Gitai et al., 2005). The packing

of some regions depends on the activity of nucleoid-

associated proteins: in bacteria, these are DNA-bending

[integration host factor (IHF), HU and Fis] and DNA-

bridging proteins [histone-like protein (H-NS)]. The ex-

pression of these proteins depends on the growth phase,

suggesting a correlation between growth and nucleoid

structure (Ali Azam et al., 1999; Luijsterburg et al., 2006;

Zimmerman, 2006). In addition, DNA isomerases, DNA

chaperones and accessory proteins also regulate DNA access,

coiling, bending and packing. Fis recognizes specific TFBSs

and in some DNA regions (100–200 bp) clusters of high-

affinity Fis sites can be found. However, Fis may also bind

nonspecifically to stabilize DNA loops (Skoko et al., 2006).

As opposed to Fis-induced bending, H–NS is a condensing

agent of the DNA. However, surprisingly, some experiments

have shown that it can also have the opposite relaxing effect

(Dorman, 2004). It has been suggested that one of the

functions of H–NS is to silence horizontally acquired genes,

especially those of low GC content (Navarre et al., 2006).

Chromosome size in bacteria ranges from c. 0.5 mbp

(intracellular pathogens and endosymbionts) to c. 9 mbp

(free-living bacteria) (Cordero & Hogeweg, 2007; Vinuelas

Box 1. Timeline

Transcription is regulated. This was realized currently with

two classical examples: the induction of the lac operon

(Jacob & Monod, 1959, 1961) and the control of the lytic-

lysogenic decision in l-phage infection (Ptashne, 1965).

The circuits controlling these processes are canonical

examples that present almost all properties ubiquitous to

all gene regulation. It did not take too much time to realize

that all cellular functional states, for example cell types,

could be codified in a genetic network. This hypothesis

gave rise to the first theoretical studies on gene networks

that showed that stable genetic patterns indeed arise on

very simple models (Kauffman, 1969, 1995; Thomas &

D’Ari, 1990). RNA polymerase is essential for transcription

(Hurwitz, 1959) and many factors concur to modulate

gene expression through the regulation of the binding to

DNA of this molecular machine. For example, s factors

and anti-s factors coordinate the rapid response of many

processes in the face of environmental changes and are

essential for proper transcription (Burgess et al., 1969;

Stevens & Rhoton, 1975). Also, factors can be inherited

across multiple cell generations, giving rise to epigenetic

phenomena that are not always determined by the DNA

sequence (Luger et al., 1997; Bao et al., 2007). Much of the

knowledge on transcriptional regulation was discovered

with many clever experiments. Nonetheless, direct evi-

dence of metabolite–TF–DNA interaction was not avail-

able until the first crystallographic structures were

obtained (McKay & Steitz, 1981; Weber & Steitz, 1987;

Benoff et al., 2002). The continuous accumulation of

experimental facts showed that there are generalities on

how cells sense the external environment and couple that

change to gene regulation: repressible/inducible systems

and two-component systems (Savageau, 1974; Stock et al.,

1985). However, the disperse increase of these data did not

allow a genome-wide analysis. The solution to this pro-

blem began with the appearance of comprehensive struc-

tured compendia of transcriptional data with authoritative

editing (Wingender, 1988; Huerta et al., 1998). Modularity

is present in transcriptional regulation, and one of the first

evidences was the discovery of the TATA box motif

(Pribnow, 1975), a modular element of transcription

initiation. The necessity to automatize motif searching

was evident, and many computational sequence-searching

algorithms emerged out, among them MEME (Bailey &

Elkan, 1994). Genes are highly interrelated and this was

clear when the pictures of the first – albeit incomplete –

transcription networks (Barabasi & Albert, 1999; Guelzim

et al., 2002) and high-throughput experiments appeared,

i.e. microarrays and ChIP-chip experiments (Schena et al.,

1995; DeRisi et al., 1996; Lockhart et al., 1996; Ren et al.,

2000). One of the peculiarities of gene networks is that

they have an over-representation of network motifs, a

signature of evolutionary and structural constraints (Milo

et al., 2002; Shen-Orr et al., 2002). Transcriptional regula-

tion controls the presence/absence of cellular components,

allowing, for example, to metabolize available nutrients.

Even though these networks are highly intricate, the

metabolic fluxes of bacterial colonies can be predicted

(Palsson & Lightfoot, 1984; Palsson et al., 1984). Many

technologies and knowledge on gene regulation have

converged to synthesize the first gene circuits (Elowitz &

Leibler, 2000; Gardner et al., 2000). With the aid of new

technological applications, transcription in single cells has

been detected, showing that promoter activity is stochas-

tic, producing bursts of proteins when messenger is

transcribed (Yu et al., 2006). Furthermore, single-molecule

detection in individual cells reports that 90% of the time

the LacI repressor is bound unspecifically to DNA, wan-

dering along it until it encounters its operator (Elf et al.,

2007) (Fig. 1).
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et al., 2007). A chromosome contains from hundreds to

thousands of genes that are encoded in both leading and

lagging DNA strands. There is a preference for essential and

highly expressed genes (such as those for ribosomal pro-

teins) to be localized in the leading strand near the origin of

replication (Rocha, 2004). The strategic orientation of these

genes has been explained as an advantage for efficient

transcription, for example to avoid head-on collisions

between the transcription and the replication machinery

(Brewer et al., 1992; Mirkin et al., 2006). The G1C content

differs among genomes, although regulatory regions have a

rich A1T content, an observation related to the access of the

transcriptional machinery (Dekhtyar et al., 2008).

Epigenetics in transcriptional regulation

Inherited stable changes in cell functioning that cannot be

explained as the result of mutations or modifications in the

DNA sequence are considered as epigenetic (Bird, 2007).

Specific molecular mechanisms are responsible for the

transmission of particular acquired characteristics in a non-

genetic manner: biochemical modifications in DNA or

DNA-binding proteins can act as epigenetic markers. Bac-

terial DNA can be methylated in several ways, resulting in

N4-methyl-cytosine (m4C), N6-methyl-adenine (m6A) and

N5-methyl-cytosine (m5C). Among these three chemical

markers, m4C has been clearly related to epigenetic tran-

scriptional regulation besides its relation to other cellular

processes (Casadesus & Low, 2006). Epigenetic markers are

conserved through bacterial generations thanks to the

capacity of methyltransferases to recognize preferentially

hemimethylated DNA. This covalent modification can alter

the interactions of restriction enzymes or regulatory pro-

teins with DNA by a direct steric effect. In E. coli, many

genes such as dnaA and trp can be regulated by Dam

methyltransferase (Low et al., 2001). A well-studied specific

example of epigenetic inheritance by DNA methylation is

the switching of the pap operon in the uropathogenic E. coli.

The operon is regulated by the interplay of two leucine-

responsive protein (Lrp)-binding sites. In the repressed

state, Lrp binds the proximal site interfering with transcrip-

tion and Dam methylates the distal site blocking Lrp

binding. The operon is derepressed when PapI dimerizes

with Lrp. The PapI–Lrp complex has a higher affinity for the

distal site, thus freeing the proximal site from Lrp. Dam me-

thylates the proximal site and transcription begins (Hernday

et al., 2002). Any of the two states of the pap operon is

passed on to daughter cells using the methylation signal.

It is not always necessary to have molecular markers for

epigenetic inheritance. One commonly unnoticed – and

misconceived as a trivial – example is the transmission, to

the daughter cells, of the cellular components in the mother’s

cytoplasm in every cell division cycle. The cytoplasm con-

tains specific factors that prime the daughter’s transcription

in order to recover the transcription state of the mother cell.

For example, it is known that low levels of the gratuitous

inducer isopropyl b-D-1-thiogalactopyranoside (IPTG) do

not derepress the lac operon. However, once high IPTG

concentrations have induced the transcription of the operon,

it is possible to lower the IPTG concentration to nonindu-

cing levels and maintain induced a colony previously

induced with high IPTG concentrations. This is because

daughters of preinduced mothers have a high level of b-

galactoside permease in their membranes. This allows them

to import, even at low concentrations, IPTG and maintain

the lac operon derepressed (Casadesus & D’Ari, 2002).

Transcriptional regulatory networks

The direct influence of TFs over the transcription activity of

different target genes (TG) is customarily drawn in a network

of causal relationships known as a transcriptional regulatory

network (TRN) (McAdams & Arkin, 1998; Thieffry &

Thomas, 1998; Lee et al., 2002a). The network representa-

tion unveils the global organization of transcriptional reg-

ulation such as its modular and hierarchical structure

(Thieffry & Romero, 1999; Ihmels et al., 2002; Segal et al.,

2003; Wolf & Arkin, 2003; Barabasi & Oltvai, 2004; Resendis-

Antonio et al., 2005; Yu & Gerstein, 2006; Martı́nez-Antonio

et al., 2008) or the fact that on average every TG is controlled

by two TFs (Albert, 2005; Aldana et al., 2007). One natural

unit in TRNs is the regulon: a set of TGs coregulated by the

same set of TFs; this concept was originally defined as the

group of genes subject to the exclusive regulation of one TF

(Maas, 1964). Regulons are divided into simple or complex if

regulated by a single or by multiple TFs, correspondingly.

The majority of regulons in bacteria correspond to the last

category (Gutierrez-Rios et al., 2003).

The E. coli TRN seems to be dominated by probably o 10

global TFs (Martinez-Antonio & Collado-Vides, 2003). Local

TFs usually act in concert with global TFs and are also

regulated by them, forming a feedforward loop motif (Alon,

2007a, b). In E. coli, most of the local TFs tend to be encoded

in close chromosomal proximity with one of their regulated

genes (Janga et al., 2007a). In addition to simple horizontal

cotransfer, a biophysical explanation for local TFs and TGs

colocalization is that, because the number of local TF

molecules is low, they must be close to their regulated target

in order to quickly reach their binding site by jumping and

sliding along the DNA molecule (Kolesov et al., 2007;

Wunderlich & Mirny, 2008). As a rule, global TFs do not

regulate each other directly, a phenomenon known as ‘hubs

repulsion’ or disassortativity (Song et al., 2006; Takemoto &

Oosawa, 2007). As a general observation, the promiscuity of a

TF for binding sites diminishes as its local character augments

(Lozada-Chavez et al., 2008), and global and local regulators
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tend to coordinate jointly a general and a particular condition

(Balaji et al., 2007; Janga et al., 2007b). Global TFs and

some recently duplicated TF pairs can coregulate some TUs,

forming a network motif named bifan (Shen-Orr et al.,

2002). In fact, this motif is a particular class of the complex

regulons coordinated by only two TFs. Escherichia coli, for

instance, has regulons with as many as four to six TFs

mutually affecting expression of their TGs. The transcrip-

tional response concentrating regulatory changes – triggered

by environmental signals – is partitioned by global TFs as

well as by sigma promoter subsets. For example, this is

evident when considering E. coli’s s interactions, giving a

very clear separation of gene subsets participating coordi-

nately in heat shock, s32 (Nonaka et al., 2006), stress response

sE (Johansen et al., 2006), and stationary-phase sS (Typas

et al., 2007), etc.

Local regulators and nucleoid-associated factors (many of

them global TFs) affect the transcription rate of TGs in

drastically distinct ways. Evidence shows that nucleoid-asso-

ciated TFs and DNA-supercoiling induce continuous changes

in the transcription rate, whereas local TFs induce discrete

changes (i.e. On/Off transcription states). These two aspects

have been compared with the analog and digital components

of electronic devices (Blot et al., 2006; Marr et al., 2008).

Plasticity and evolution of TRN

Thanks to the availability of hundreds of sequenced bacterial

genomes, one can consider the following evolutionary ques-

tion: in bacteria, to what extent are TRNs conserved? Recent

studies show that TFs evolve much faster than their TGs,

suggesting that TRNs in bacteria are highly flexible and

dynamic (Lozada-Chavez et al., 2006; Madan Babu et al.,

2006). Several reports that analyze different components of

TRNs strongly support their plasticity. For example, multiple

evidences show that nonorthologous TFs control equivalent

pathways, for example the nonorthologous NagC, NagR and

NagQ regulate the utilization of N-acetylglucosamine and

chitin in various groups of proteobacteria (Meibom et al.,

2004; Yang et al., 2006). In contrast and to a lesser extent,

orthologous regulators may control distinct pathways in differ-

ent species, for example the orthologous Fur (Alpha-, Beta-,

Gammaproteobacteria, bacilli and cyanobacteria) and Mur

(alphaproteobacterial rhizobial species Rhizobium leguminosar-

um and Sinorhizobium meliloti) regulate iron homeostasis and

manganese uptake, respectively (Rodionov et al., 2006). Also,

even global TFs do not necessarily regulate similar metabolic

responses in different organisms (Friedberg et al., 2001; Suh

et al., 2002; Derouaux et al., 2004; Moreno-Campuzano et al.,

2006). Likewise, as phylogenetic distances decrease, TFBS

conservation increases (Makarova et al., 2001; Mazon et al.,

2004). However, there are some exceptions to this rule: TFBSs

of BirA (regulation of biotin biosynthesis) are highly conserved

in Bacteria and Archaea (Rodionov et al., 2002), while TFBSs of

ArgR/AhrC (control of arginine regulon) and NrdR (ribonu-

cleotide reductase regulon) are strongly conserved in Bacteria

(Makarova et al., 2001; Rodionov & Gelfand, 2005). This

suggests that biotin, arginine and ribonucleotide reductase

regulatory sites may be ancient. In addition, bacterial species

that live in ever changing environments have a tendency to

increase the number of encoded stress-responsive TFs and s
ECF; this may be a simple effect of a larger number of

regulators encoded in larger genomes (Helmann, 2002). Final-

ly, studies in E. coli show that some parts of its TRN are more

conserved if they are involved in basic processes (Cosentino

Lagomarsino et al., 2007; Salgado et al., 2007).

Several evolutionary processes, such as duplication

and horizontal gene transfer (HGT), must be studied to

understand TRN flexibility. For example, loss and duplica-

tion of TFs and TFBS may result in regulon expansion,

shrinkage, fusions, fissions and even creation and destruc-

tion. It is possible to see the contribution of gene duplica-

tion at all levels of TRNs (Teichmann & Babu, 2004),

although it seems to be more frequent at the bottom layers

(Cosentino Lagomarsino et al., 2007; Lozada-Chavez et al.,

2008). There are coordinated TF–TG duplications in bacter-

ial TRN. These events account for 38% of the regulatory

interactions in E. coli’s TRN and 45% in S. cerevisiae’s TRN

(Teichmann & Babu, 2004; Zhang et al., 2005). The percen-

tages were obtained considering only paralogy within each

species; this can mask a convergent evolution within para-

logs. For E. coli, the previous percentage contrast with the

8% obtained when HGT events are eliminated from the

regulatory interactions arose within the E. coli lineage (Price

et al., 2008).

Although most TFs have paralogs, they seem to have arisen

by HGT rather than by gene duplication within the E. coli

lineage (Price et al., 2008). Moreover, it seems that, in

horizontal transfer events, local regulators flow more easily

within near phylogenetic distances than global regulators

(Lercher & Pal, 2008; Price et al., 2008). Therefore, global

regulators are gained and lost more slowly and are even prone

to undergoing a slower sequence evolution than other regula-

tors within a bacterial lineage (Rajewsky et al., 2002; Price

et al., 2008). This fact does not ensure the maintenance of

their global functional role (Friedberg et al., 2001) because the

property of global regulation depends on several evolutionary

forces and on TF’s particular molecular properties (Lozada-

Chavez et al., 2008). In addition, genes recently transferred

have low expression levels; probably this is a sign of slow but

steady integration of transferred genes into the existing

regulatory circuits (Taoka et al., 2004; Price et al., 2008). In

E. coli, the evolutionary rate of TFBSs of horizontal transferred

TGs is fast but gradually decelerates with the age of horizontal

transfer (Lercher & Pal, 2008). These facts show that TFs and

their TFBSs can evolve largely independently, allowing genes
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to join or leave regulons and allowing regulatory regions to

increase their complexity by augmenting the quantity and

type of cis-regulatory interactions. HGT, complex gene dupli-

cation events and an accelerated sequence divergence may

mask the discovery of orthologs, making comparative studies

of TRN a particularly difficult task; see Box 2.

Box 2. Inference of TRNs

Before any biological question about TRNs can be asked,

the technical problem of obtaining a reliable network must

be solved. There are essentially three methodologically

different ways of doing this: (i) by the compilation of

different facts reported in research articles whose main

interest could have not been to obtain a network, (ii) by

ChIP-chip or ChIP-Seq and (iii) by computational meth-

ods with DNA sequences, microarrays or scientific articles

as input data. We provide a short description of each one

of these methods.

Databases of compiled isolated experiments

Interactions derived from the literature are the standard to

validate any computational or high-throughput experi-

mental inference (Jacques et al., 2005; Munch et al., 2005;

Baumbach et al., 2006; Kazakov et al., 2007; Gama-Castro

et al., 2008; Sierro et al., 2008). However, not all the

annotated regulatory interactions are equally well sup-

ported by experimental facts, and subtleties arise. The

experience in RegulonDB has dictated that evidences of

TF–TG interaction must be divided into at least two

categories: strong and weak. Evidence is strong if, for

example, it comes from footprinting or EMSA plus change

in expression or binding site mutation plus change in

expression. An example of weak evidence is: expression

change detected in a microarray plus existence of a binding

site – for a certain TF – detected ‘by eye’ by the researcher.

Because of its nature, ‘weak’ interactions may become

‘strong’ interactions or may disappear depending on new

evidence.

ChIP-chip and ChIP-Seq

These high-throughput experimental techniques are de-

signed to locate, in vivo and at a genome-wide scale,

regions in the DNA where specific proteins bind, in

particular TFs. Both techniques start with chromatin

immunoprecipitation: cells are treated with a reagent that

crosslinks proteins and DNA. Then, cells are lysed and

DNA is digested. By immunoprecipitation, all DNA frag-

ments bound to a TF are recovered. The fragments are

denatured and amplified. At this point, if ChIP-Seq

technology is used, the amplified fragments are sequenced

in an ultrahigh-throughput sequencing machine. Detec-

tion of binding sites is performed mapping back the

sequenced fragments to the genome (Fields, 2007). If

ChIP-chip technology is used, fragments are labeled with

fluorescent tags to subsequently be hybridized in a special

microarray. The microarray may contain only intergenic

regions or may be a high-density tiling array (Grainger

et al., 2005a; Wade et al., 2005; Cho et al., 2008). All

regions that contain a binding site for the TF will have a

signal above background in the microarray. The ChIP-chip

technique has been used to infer the component of the

TRN of S. cerevisiae that is under the control of 106 TFs

(Lee et al., 2002b; Grainger et al., 2005b, 2006; MacIsaac

et al., 2006).

Computational approaches

There is a plethora of computational approaches (Albert,

2007; Margolin & Califano, 2007). Here, we enlist some of

the core ideas/techniques behind many inference algo-

rithms and give some of the most representative examples

in the literature. It is worth mentioning that all these

approaches have a high false-positive rate; they are some-

times unable to discern between direct and indirect

regulations and some of them do not detect regulatory

feedback loops. However, their informative guidance must

not be underestimated. For example, consider the detec-

tion of regulatory candidates for some arbitrary gene in

E. coli. Without any type of previous information, the

candidates would be c. 4500 genes, i.e. every gene in the

E. coli’s genome. Using for example Mutual information,

the set would be reduced to a dozen of putative regulators

– a tractable set size.

Bayesian networks

A Bayesian approach solves the following problem: given a

set of genes and their expression patterns, find the network

that explains the observed patterns with the maximum of

probabilities (Pearl, 1988; Heckerman, 1999; Neapolitan,

2003). To discriminate among the different possible net-

works, a score function – known as the Bayesian–Dirichlet

metric – is evaluated. This inference method has been

applied to propose a TRN in S. cerevisiae (Segal et al.,

2003).

Mutual information

This is the most general way to detect dependence between

two variables. The method is used to estimate, from a

group of genes and their expression patterns, whether

there exists dependence between all possible pairs. An

interaction between a pair is proposed if their mutual

information is significantly different from that of the same

pair but with the expression patterns randomized (Steuer
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The regulatory network of E. coli can be perturbed

globally, rewiring it to a great extent; this might be a

consequence of the inherent plasticity of TRNs. For exam-

ple, Isalan et al. (2008) reconnect some global and local

regulators and s factors also by transforming wild-type

strains with constructs of almost all possible combinations

of these genes with their different promoters. They rewire

the network in 600 different ways, every time adding up to

five new interactions. Remarkably, in a wild-type genome

background, bacterial colonies are viable in 95% of the

cases. Another example of network perturbation in a

wild-type background shows that mutations in the house-

keeping s factor induce global rewiring (Alper & Stepha-

nopoulos, 2007). The authors show how this rewiring more

efficiently solves several problems of metabolic optimiza-

tion thanks to the interplay of many changes in gene

expression that make possible the exploration of complex

phenotypes. These results must be confronted with meta-

bolic networks where enzymes have great specificity for

their substrates and many catabolic and anabolic pathways

are highly conserved. In this respect, metabolic networks

appear to be stiff; in contrast, TRN seem to be loose.

TFs bind to a broad spectrum of binding sites with

different affinity and change targets widely among species.

In the light of the previous facts, the rapid adaptation of

bacterial organisms to almost every niche on earth is

greatly explained thanks to the plasticity of transcriptional

regulation.

Stochasticity in transcriptional regulation

In transcription, all the time TFs are binding to or unbind-

ing from different sequences in the DNA. The greater the

affinity, the greater the time they remain bound. If the

sequence is regulatory, there is a likelihood that the rest of

the transcription machinery assemblies begin transcription

before the TF tears off from DNA by thermal fluctuations. In

this picture, there is no natural threshold in affinity above

which TFs undoubtedly induce transcription. In general,

there are a variety of binding sites and for every one of them

a TF will have a different affinity, inducing, with some

probability, transcription. When promoters are strong and

TFs abound, transcription is certain and has a well-defined

rate (Elowitz et al., 2002). However, when promoter strength

is weak or TF numbers oscillate around the dozens, stochas-

tic fluctuations in the mean TF numbers are very large and

transcription becomes ‘noisy’.

In transcription, variability in the number of messages

arises from two sources of noise: one intrinsic and the other

extrinsic. In a hypothetical cell with two identical genes,

intrinsic noise would cause differences in their number of

transcripts. This effect is analogous to the tossing of two

identical coins that do not generate the same sequence of

heads and tails. Extrinsic noise originates from the cell-to-

cell variation of cellular components, for example the exact

number of polymerase molecules. Elowitz et al. (2002)

measured the individual contribution of the two

et al., 2002). This is the core idea behind the inference of

the TRN of E. coli (Faith et al., 2007).

Discovery of TF-binding sites

From a collection of TFBSs for a specific TF, it is possible to

obtain an estimate of the binding energy between the TF

and any arbitrary site. To construct a network, the esti-

mated binding energy between the TF and every possible

site in intergenic regions is obtained. The sites with the

highest binding energies are proposed as targets, thus

inferring an interaction between the TF and the gene in

the surroundings of the binding site (McCue et al., 2002;

Aerts et al., 2003; Tompa et al., 2005; Chang et al., 2006;

Rodionov, 2007; van Nimwegen, 2007).

Orthology-based algorithms

From a model organism, where some regulatory interac-

tions are known, the evolutionary and functional relation-

ships between the components of transcriptional

regulation can be studied using phylogenetic trees or

bidirectional best BLAST hits, BBHs. With these tools, a

search for orthologous counterparts of TF–TG pairs in the

model organism is performed in closely related species.

When orthologous pairs are found, new regulatory inter-

actions are proposed (Yu et al., 2004). This has been used

to show that networks of transcriptional regulation are

highly evolvable in Bacteria (Lozada-Chavez et al., 2006;

Madan Babu et al., 2006; Price et al., 2007). Some experi-

mental works have supported the orthology predictions

and their regulatory extrapolation based on this approach.

This is the case of the Lrp regulon within the E. coli lineage

(Lintner et al., 2008) and of the sB regulon in Gram-

positive bacteria (van Schaik et al., 2007).

Natural language processing

First, a lexicon (e.g. a set of gene names) related to

transcriptional regulation is compiled. These nouns are

concatenated with verbs – to regulate, to inhibit, to

promote, etc. – to, depending on certain grammatical

rules, discover regulatory interactions in a collection of

related scientific articles. Using this method, from 200 000

E. coli’s article abstracts, it was possible to recover 395

regulatory interactions with 85% accuracy (Saric et al.,

2006).
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components of noise by the ingenious construct of two

fluorescent proteins of different colors in the same plasmid

that were subjected – every one of them separately – to the

control of a promoter with the same sequence. Trans-

formed with this construct, individuals of ‘noisy’ strains

appear under the microscope with any of the two possible

colors (intrinsic noise high). In quiet strains, every indivi-

dual appears with the same color obtained when combin-

ing equal quantities of the two fluorescent proteins

(intrinsic noise low). Extrinsic noise is obtained when

comparing the fluorescence intensity among cells of the

same strain.

One fact with profound consequences in the cell fate

decision is the metastable gene expression patterns originat-

ing from the random fluctuations of the expression of

individual genes. The metastability is attained thanks to

TRNs that amplify random fluctuations of gene expression

and then sustain stable patterns over biological relevant

lapses of time. This causes growing isogenetic colonies of

microorganisms to differentiate in subcolonies of specia-

lized ‘cell types’ spontaneously (Maamar et al., 2007; Suel

et al., 2007; Chai et al., 2008). Any single cell from an

original isogenetic colony can give rise, in turn, to descen-

dants that differentiate in subcolonies that are in the same

proportion as the ones in the original colony.

Transcriptomics

At present, there are basically two options to probe the

transcriptional state of the cell: microarrays and ultra-high-

throughput sequencing. In the first technology, different

single-stranded DNA probes are designed and arrayed to

monitor the mRNA expression of different genes. These

transcriptional products, isolated from a culture sample, are

tagged with fluorescent proteins and then hybridized in the

microarray against their complementary sequences. The

intensity of the fluorescence, in the different locations of

the array, gives an estimate of the abundance of the different

probed transcripts. Microarray technology has been refined

since its first appearance in the mid 1990s when they

detected exclusively annotated ORFs (Schena et al., 1995).

Today, state-of-the-art microarray technology is represented

by high-density whole-genome tiling arrays. In this imple-

mentation, the arrayed set of probes is richer, containing, for

example, DNA probes for both intragenic and intergeneic

regions. This improvement allows for the identification of

complex transcript structures – such as genes in operons – as

well as novel short transcripts – such as small RNAs – that

would be missed by previous low-density arrays (Reppas

et al., 2006). The raw data generated from microarrays must

be transformed in two steps: correction for background

noise and normalization. The first transformation attempts

to eliminate the contribution from unspecific hybridization;

the second transformation intends to make gene intensities

from different experiments comparable (Quackenbush,

2002). The widespread use of this technology has led to the

appearance of useful databases with collections of hundreds

of arrays of different bacterial organisms under diverse

experimental conditions (Demeter et al., 2007; Faith et al.,

2008; Kanehisa et al., 2008).

There are particular problems that are inherent to micro-

array technology. For example, prior selection of probes in

the arrays biases the possible set of transcripts that can be

detected; unspecific hybridization cannot be completely

eliminated; the differential efficiency of probes makes it

impossible to compare the expression of different genes in

the same sample, etc. It appears that the solution to these

problems is to use the sheer brute force of massive sequen-

cing with the new ultra-high-throughput sequencing tech-

nologies (Bennett et al., 2005; Margulies et al., 2005). The

idea is simple: sequence all the transcripts that the cell

expresses under a particular condition and then map these

sequences back to their corresponding regions on the

genome to detect presence or absence (Nagalakshmi et al.,

2008). Note that the detection of transcripts is not condi-

tioned on a possibly biased set of probes nor on the

resolution of the array. This translates into the possible

discovery of new gene products. Also, the effect of unspecific

hybridization is not present in the sequencing, and com-

parison between gene transcript levels is possible because

the number of sequenced transcripts is directly counted.

At least one study has compared microarray and sequen-

cing technology, showing that data in the latter are highly

replicable and that the sequencing technology can

detect differentially expressed genes between two samples

at a higher positive discovery rate (Marioni et al.,

2008).

The processing of transcription data and the rationale

behind that same processing is as important as the technol-

ogy to probe transcription. The traditional data workflow

screens for differentially expressed genes; this proceeding

has been described, pejoratively, as fishing expeditions

(Gibson, 2003). This criticism indirectly points to the fact

that the community lacks methods to synthesize gene

expression data and methods to analyze this synthesis at

higher levels of description, for example gene expression

data organized coherently in TRN or genes of related

function sorted out in functional classes. One way to amend

this situation is the use of a clustering method known as

Self-Organizing Maps. This clustering reorganizes transcrip-

tion data in such a way that genes with similar expression

levels are contiguously located in a squared lattice, generat-

ing an image of the state of the transcriptome. Surprisingly,

with this reordering, it is possible to sort out different

cellular functional states just by seeing the image, a gestalt

analysis (Guo et al., 2006). Another method of higher level
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analysis is to take advantage of the decades of molecular

knowledge and organize transcriptional data into sets of

genes that together perform a cellular process (Subramanian

et al., 2005). This gene set analysis has a higher statistical

power to discriminate changes at the gene set level that

would be unnoticed at the single-gene level. (Box 3).

Box 3. Dynamical models of TRNS

Dynamical models of TRN present different degrees of

granularity that are appropriate to particular aspects of

and questions in cell regulation. In deciding the proper

model and its coarseness – perhaps the most important

step in modeling – all prior available knowledge is im-

portant: number of genes, available physicochemical para-

meters, TF affinities for TFBSs, kinetic parameters, etc. In

general, there are three classes of models with particular

levels of granularity: Boolean, stochastic and continuous

models (Smolen et al., 2000; Bower & Bolouri, 2001;

Christensen et al., 2007). It is also possible to combine

any of them to produce hybrid models.

Boolean models

The sigmoidal induction/repression of gene expression by

different factors is well approximated by step functions

with two states: On/Off (Thomas & D’Ari, 1990). Using

this simplification, we can define a TRN model: genes with

two states (inhibited or induced), interacting through

logical rules (ORs, ANDs or Boolean tables in general) in

discrete time steps. Model networks with these modest

characteristics are Boolean and they present – remarkably

– much of the higher order phenomena sustained by gene

networks (Kauffman, 1969; Thomas & D’Ari, 1990). To

give but one example: only a few gene expression patterns

in Boolean models are stable and have a direct correspon-

dence with gene expression patterns of real cell types

(Mendoza & Alvarez-Buylla, 1998; Albert & Othmer,

2003; Huang & Ingber, 2007). Also, recent investigations

using the Boolean abstraction of real networks provide a

first explanation of how – paradoxically – robustness and

adaptability coexist in living organisms (Aldana et al.,

2007; Balleza et al., 2008; Nykter et al., 2008).

Stochastic models

Stochasticity inevitably emerges when molecular compo-

nents are present at low cellular concentrations (McAdams

& Arkin, 1997; Kierzek et al., 2001). This physical phe-

nomenon generates noise in synthetic and natural circuits

(Paulsson, 2004; Mettetal et al., 2006), and its conse-

quences over the phenotype are starting to be explored

(Suel et al., 2006). For example, noise constitutes the

driving force behind differentiation in isogenetic colonies

(Colman-Lerner et al., 2005). Biological and theoretical

studies have aided to delineate the regulatory mechanism

by which the cell handles noise efficiently and effectively to

carry out its biological functions (Gardner & Collins, 2000;

Orrell & Bolouri, 2004; Raser & O’Shea, 2005). From a

theoretical point of view, stochastic models are the most

challenging but also the most realistic ones: there is a

precise counting of how, through individual chemical

reactions, the populations of every chemical species

change. The milestone to simulate stochastic processes is

the Gillespie algorithm (Gillespie, 1992). Because of their

analytical and computational complexity, the present

models do not surpass a handful of chemical species. Two

immediate problems must be solved to model systems

with several dozens of genetic components: the systematic

determination of kinetic constants and the efficient com-

putation of thousands of chemical stochastic equations

(Kuwahara et al., 2006; Sanchez & Kondev, 2008).

Continuous models

Contrary to stochastic models, continuous modeling as-

sumes that the number of components in TRNs is suffi-

ciently high to assume that concentrations are continuous

variables. This framework allows taking into account

realistic effects such as complex TF interactions, spatial

diffusion of molecules and the gradual variation of mRNA

expression, to mention just a few (Bower & Bolouri, 2001;

de Jong, 2002). The continuous description has been

useful for the design of genetic circuits in synthetic biology

(Atkinson et al., 2003; Kaern et al., 2003). Remarkably, this

sort of approach allows one to understand the biological

function of network motifs. For instance, dynamical

analyses of feed forward loops show how this circuit

controls the slow activation and rapid deactivation of the

regulated gene. Also, the analysis of feedback loops evi-

dence their role as the units behind memory (Alon,

2007a, b). As in stochastic models, the continuous ap-

proach is useful to quantitatively analyze the dynamics of

TRN only when the topology, the regulatory type of the

interactions and the kinetic constants are known (Shea &

Ackers, 1985; Kobiler et al., 2005). When kinetic constants

are not available, plausible values can be used to obtain the

possible dynamical responses of TRNs.

Hybrid models

Experimental evidence shows that different levels of cell

functioning are carried out at different time scales and at

different concentrations of their components – seconds

and thousands of molecules in metabolism, minutes and

hundreds of molecules in transcription. How these levels

can be combined to be consistent between them in a single

model constitutes an active field of research (Puchalka &
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Synthetic transcriptional regulatory
circuits

The previous sections show the detailed knowledge we have

accumulated on transcriptional regulation by TFs. The

synthesis of TRNs attempts to go from this understanding

to a rational transcriptional network design. It aspires to

integrate new complex functions into cell behavior; not just

the addition of stationary properties such as the constitutive

expression of exogenous proteins but the addition of the

dynamically controlled expression of complete gene pro-

grams. There are several first examples in this direction that

show the feasibility of program integration into cell beha-

vior: rational design of memory circuits (Ajo-Franklin et al.,

2007), insertion of complete regulated metabolic pathways

(Pfleger et al., 2006), toggle switches (Gardner et al., 2000),

oscillators (Elowitz & Leibler, 2000) and the creation of new

ways of cell–cell communication (Bulter et al., 2004). In all

these cases, small gene circuits compute their output based

on the external/internal input signal sensed. Promoters

controlling the expression of the genes in the circuit are the

essential piece to accomplish the required computations, for

it is in this element where signals – transduced by TFs –

converge and are integrated. The particular importance of

promoters has naturally led to an interest in their character-

ization and synthesis. For example, with respect to their

characterization, it has been shown that, more often

than not, the activity of different promoters controlled by

two regulators is not a simple OR/AND function (Cox et al.,

2007; Kaplan et al., 2008). With regard to their synthesis,

now we have available complete characterized libraries of

synthetic promoters with different strengths; this last fact

was verified indirectly by measuring the specific b-galacto-

sidase activity. Remarkably, more than six orders of

magnitude in b-galactosidase activity can be covered using

different promoters (Mijakovic et al., 2005). It is also

possible to create libraries of regulated promoters by

combinatorial synthesis (Cox et al., 2007). This consists

of the combinatorial ligation of previously created promoter

regions, i.e. sequences that correspond to the distal

region (upstream the � 35 box), to the core region (between

the � 35 and � 10 boxes) and to the proximal region

(downstream the � 10 box). These regions contain one

operator site for any of the following regulators: LacI, AraC,

LuxR or TetR. Using this strategy, thousands of promoters

with different regulated strengths can be generated.

Supposing complete characterized libraries of different

promoters exist, the main challenge in synthetic circuits still

remains: to integrate these small networks into the cell

environment without killing the cell, for example without

overproducing toxic intermediates or causing metabolic bot-

tlenecks that would inhibit growth. The problem is to find the

exact promoter strengths with the correct regulatory region to

balance and coordinate the expression of multiple genes. One

promising solution is to generate a library of networks and

then select the best-performing one under a given criterion.

This is the same strategy followed in the directed evolution of

proteins, where a library of mutant protein sequences is

created and then screened for the best variation of the protein.

The difference in the library of networks lies in the fact that the

mutations are in the noncoding regions that regulate tran-

scription and translation. One example of this approach is the

combinatorial synthesis of intergenic regions in operons to

tune the translation of polycistronic transcripts (Pfleger et al.,

2006). The approach, without a specific design, generates

transcripts with slight variations in intergenic regions that

change RNAase cleavage sites, ribosomal binding sites seques-

tering sequences and mRNA secondary structures. With this

technique, it was possible to introduce in E. coli a heterologous

mevalonate biosynthetic pathway by tuning the expression of

three genes in an operon. In one last example of combinatorial

synthesis, a collection of 125 different networks was produced

from these units: five different promoters regulated by three

different TFs (LacI, TetR and l cI) (Guet et al., 2002). Among

the networks, it is possible to find positive and negative

feedback loops, oscillators and toggle switches. It must be

stressed that all these different network functions can be

encoded with the same set of genes, the difference residing

only in the interaction graph of the constituent genes.

Concluding remarks: the need for
integrative schemes

Even though recent progress to unravel the underlying

mechanisms of transcriptional regulation has been

Kierzek, 2004; English et al., 2006; Samoilov & Arkin,

2006; Covert et al., 2008). One solution is hybrid models;

these combine any of the above approaches to integrating

different cues of cell functioning (Bower & Bolouri, 2001).

For example, there are hybrid models that take into

account the continuous character of the concentration of

some transcripts and their abrupt discrete change in

transcription during regulation (Glass & Kauffman, 1973;

Thomas & D’Ari, 1990). Another hybrid model is one in

which a noise function is added to the continuous concen-

tration of transcripts to introduce stochastic fluctuations

(Ozbudak et al., 2002). Even though these models are more

complex than purely discrete ones, they provide a more

approximate picture to transcriptional regulation, making

it easier, for example, to relate and compare the models

with real transcriptome data.
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spectacular, the community lacks an integrative framework

to direct new advances. In this respect, systems biology in

bacteria has the challenge to show its promised capabilities

of new levels of integration and understanding combining

modeling and experiments of the whole network and cell

behavior. To achieve this, there are two complementary

procedures: bottom-up and top-down schemes (Beer &

Tavazoie, 2004; Bonneau et al., 2007). The former traces its

origins to the systems sciences, whose essence is to explore

the collective phenomena emerging when integrating its

building parts (Bruggeman & Westerhoff, 2007). Bottom-

up schemes constitute the base to develop mechanistic

models that are useful to discern the transcriptional organi-

zation by which the cell faces a genetic or an environmental

perturbation at a genome scale (Segre et al., 2002; Covert

et al., 2004; Resendis-Antonio et al., 2007). On the other

hand, top-down procedures require deductive methods,

whose main interest is to identify causal interactions

between the individual genes measured by high-throughput

technologies (Wagner, 2001; de la Fuente et al., 2002).

Successful integration of top-down and bottom-up schemes

is not a trivial activity; it requires permanent comparison

between types of modeling and its experimental verification

to reconstruct a coherent explanation of cell activity.

The navigation towards progress here depends on how

simplified models can capture the essentials to predict, and

the fact that biological systems can be engineered in

synthetic approaches, even if they are also extremely inter-

connected.

This review has focused on regulation by TFs. However,

there are other layers of cellular regulation that ultimately

influence regulation by TFs. This situation creates feedback

loops that transmit information from almost any regulatory

layer to any other one in order to maintain cellular home-

ostasis. This is in clear contrast with the isolated picture of

TRN, where a cellular hierarchical decision-making

structure is emphasized. Thus, a major conceptual challenge

is to change our way of thinking about causality in a

complex system with an important connectivity

and an important amount of circularity, i.e. feedback loops,

in the ‘decision’ network of gene regulation at the whole-

cell level.
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