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Abstract

Background: Local or distant relapse is the key event for the overall survival of early-stage breast cancer after initial
surgery. A small subset of breast cancer cells, which share similar properties with normal stem cells, has been proven to
resist to clinical therapy contributing to recurrence.

Methods: In this study, we aimed to develop a prognostic model to predict recurrence based on the prevalence
of breast cancer stem cells (BCSCs) in breast cancer. Immunohistochemistry and dual-immunohistochemistry were
performed to quantify the stem cells of the breast cancer patients. The performance of Cox proportional hazard
regression model was assessed using the holdout methods, where the dataset was randomly split into two exclusive
sets (70% training and 30% testing sets). Additionally, we performed bootstrapping to overcome a possible biased error
estimate and obtain confidence intervals (CI).

Results: Four groups of BCSCs (ALDH1A3, CD44+/CD24−, integrin alpha 6 (ITGA6), and protein C receptor (PROCR))
were identified as associated with relapse-free survival (RFS). The correlated biomarkers were integrated as a prognostic
panel to calculate a relapse risk score (RRS) and to classify the patients into different risk groups (high-risk or low-risk).
According to RRS, 67.81 and 32.19% of patients were categorized into low-risk and high-risk groups respectively. The
relapse rate at 5 years in the low-risk group (2.67, 95% CI: 0.72–4.63%) by Kaplan-Meier method was significantly lower
than that of the high-risk group (19.30, 95% CI: 12.34–26.27%) (p < 0.001). In the multiple Cox model, the RRS was
proven to be a powerful classifier independent of age at diagnosis or tumour size (p < 0.001). In addition, we found
that high RRS score ER-positive patients do not benefit from hormonal therapy treatment (RFS, p = 0.860).

Conclusion: The RRS model can be applied to predict the relapse risk in early stage breast cancer. As such, high RRS
score ER-positive patients do not benefit from hormonal therapy treatment.
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Background
More than 50% of patients with breast cancer are classi-
fied into the early-stage (T1–3N0M0) group [1]. Despite
systemic adjuvant therapy dramatically increasing the
clinical outcome of patients with early breast cancer, re-
lapse still occurs in more than 20% of patients after sur-
gery within 10 years [2]. Relapse, including recurrence
both at local or distant sites, is the main cause for pa-
tient deaths, and thus remains an unmet challenge for a

curative treatment of breast cancer. It is pivotal to iden-
tify patients at risk of relapse at early stages in hopes of
improving clinical outcomes, especially within the sub-
group of node-negative females, defined as a relatively
indolent disease based on pathologic features. Recently,
several multigene assays have been developed for early-
stage breast cancer patients [3]. Multigene assays are
able to provide more prognostic information than trad-
itional parameters in several tumour types [4–11], and
several of them have been adopted by the oncology
guidelines for treatment. One example is 21-gene ex-
pression profiling, which has been widely accepted in
clinical practice [12].
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As reported, breast cancer is a tumour with high hetero-
geneity. Although recent advancements have further di-
vided this heterogeneous disease into distinct subgroups
by gene expression profiling (GEP) assays, among other
methods, several intriguing findings revealed that a small
subset of cells isolated from different subgroups of breast
cancers exhibit remarkable similar biological behaviours.
These subset of cells were defined as cancer stem cells
(CSCs) and reported to be responsible for the heterogen-
eity. Accumulating evidence has proved that CSCs retain
the critical characteristics of normal stem cells, such as
ability self-renewal and the capacity of proliferation, which
contribute significantly to therapeutic resistance and
breast cancer relapse [13–17]. In addition, several articles
indicated that some CSCs might be derived from normal
stem cells, which suggested that normal mammary stem
cells might share similar identifying markers [18–20].
Mammary stem cell markers or combined markers have
been certified in different stages of stem cells in breast
cancer, including ALDH, CD44, CD24, ITGA6/EpCAM,
and PROCR. [21–26]. Some of these markers and com-
bined markers (i.e., CD44+/CD24low ALDH+ and ITGA6+)
are considered to correlate with poor prognosis in breast
cancer [21, 27, 28], because they also identified a BCSC
subpopulation [14, 21, 26, 29]. In addition, it has been
suggested that ITGA6+/EpCAM+ mammary luminal pro-
genitor cells were possible transformation targets in basal-
like breast cancers, which have close associations with
poor prognosis. In addition, it was reported that ITGA6
may define the mesenchymal population and is necessary
for CSC function [30–32]. PROCR was reported to be
highly expressed in myoepithelial cells of the mammary
gland. In a recent study, Wang D et al. identified PROCR
as a marker of multipotent mammary stem cells. They
found that PROCR-positive mammary cells exhibited epi-
thelial-to-mesenchymal transition (EMT) characteristics,
and had high tumorigenesis ability in vivo, which sug-
gested that PROCR-positive mammary cells might be one
of the progenitor populations for breast CSCs (BCSCs)
[24]. Furthermore, PROCR also promotes tumour metas-
tasis in cancer cell lines [33, 34].
To explore the prognostic role of mammary stem cell

(MSCs) and BCSC markers, we have studied the ALDH
family (including ALDH1A1, ALDH1A3, ALDH3A1,
ALDH4A1, ALDH6A1, and ALDH7A1), PROCR, and
ITGA6/EpCAM. In a medium cohort of patients in pre-
vious studies, these findings revealed that ALDH1A3,
PROCR, ITGA6+, ITGA6+/EpCAM− and ITGA6−/
EpCAM+ were correlated with reduced RFS or overall
survival of these breast cancer patients [35–37]. In this
study, we defined these markers and CD44+/CD24low as
BCSC-associated markers and employed these bio-
markers to label stem cells among patients with early
stage breast cancer. ALDH1A3, CD44+/CD24−, ITGA6,

and PROCR were shown to be closely associated with
RFS. Then, they were integrated into the prognostic
panel to calculate an RRS. Patients were then divided
into two distinct risk groups, which effectively shows
promise in predicting prognosis and treatment. In
addition, several EMT transition associated markers,
proliferation factors and other clinicopathological pa-
rameters were also included in our study to improve the
efficiency of our model.

Materials and methods
Breast cancer patient dataset
Clinical information from 1036 patients with breast in-
vasive ductal carcinoma (BIDC) diagnosed from 2006 to
2011 was collected from West China Hospital. After se-
lection, 407 patients were enrolled into our study. All
the patients were adult females and were treated with
mastectomy or lumpectomy to negative margins and
with axillary lymph node dissection. Axillary nodes of
patients were observed to be without metastasis under
microscope. Patients with local invasion and distant me-
tastasis identified initially were ineligible. Patients with
neoadjuvant chemotherapy were removed from our
study group to avoid its impact on the characteristics of
tumour cells in paraffin embedded tissues. Patients en-
rolled in the study were considered to be early-stage
BIDC and defined as entire datasets. The end-point of
follow-up was occurrence of local recurrence or distant
metastasis. Detailed information of this dataset is listed
in Additional file 4: Table S1.

Breast cancer stem cell biomarkers
BCSC-associated biomarkers were selected from litera-
ture as well as our previously confirmed biomarkers in-
cluding CD44+/CD24−, ALDH1A3, EpCAM/ITGA6,
and PROCR, which showed prognostic value in BIDC
[21, 27, 28, 35–37].

Immunohistochemistry (IHC)
Single staining of CD44, CD24, EpCAM, ITGA6,
ALDH1A3, PROCR, Twist and Slug were performed
with the EnVision Staining System, while dual staining
of CD44/CD24 and EpCAM/ITGA6 were performed
with the EnVision G | 2 Doublestain System. The
haematoxylin and eosin (H&E) staining, as well as the
results of IHC staining were observed under bright field
microscopy. Pathological assessment of the tumours
were conducted by pathologists at West China Hospital
anonymously, including subtypes, histological grades,
oestrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor 2 (HER2)
etc. HER2 staining was analysed according to the guide-
lines of the American Society of Clinical Oncology. ER
and PR were analyzed by Allred system [38, 39]. The
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scoring of BCSC-associated markers, such as ALHD1A3,
PROCR, ITGA6, CD44/CD24 and EpCAM/ITGA6 were
performed as follows: 0, 0% positive tumour cells; 1, 1 to
10% positive cells; 2, 11 to 50% positive cells; 3, 51 to
75% positive cells; and 4, 76 to 100% positive cells [27].
Scores of Twist and Slug were interpreted as follows: the
percentage (P) of positive cells (score 0 for 0%, 1 for
≤1%, 2 for 1–10%, 3 for 10–33%, 4 for 33–66%, and 5
for 66–100% positive cells) and the intensity (I) of stain-
ing (score 0 for negative, 1 for weak, 2 for moderate, and
3 for strong staining) were included. A Quick score was
generated. (Q = P*I; score range, 0–12) [40].
Detailed information and specificity of these antibodies

were shown in Additional file 5: Table S2, Additional file 1:
Figure S1, respectively.

Statistical analysis and model construction
The associations between relapse-free survival (RFS) and
the expression panel were analysed by the Cox propor-
tional hazard regression model [41]. To investigate the
effectiveness of the BCSC-associated biomarker panel
for clinical outcome prediction, we assigned each patient
a risk score according to a linear combination of the ex-
pression level of BCSC-associated markers. The RRS for
sample i using the information from the significant bio-

markers was calculated as follows: RRS ¼ P4
j¼1Wj�Sj:

In the above formula, Sj is the IHC score for biomarker
j, and Wj is the weight of the IHC score of biomarker j.
Weights were obtained by the coefficients derived from
the univariate Cox proportional hazard regression [42].
The RRS was calculated out by the receiver operating
characteristic curve (ROC, non-parametric test), which
identifies the cut-off value based on the maximum sums
of specificity and sensitivity in the ROC curve. Mean-
while, to investigate the association between the relapse
and other clinicopathological variables, univariate Cox
proportional hazard regression analysis was adopted
using clinicopathological factors (including age, tumour
size, histological grade, ER status, PR status and HER2
status), proliferation factors (Ki67), and EMT related fac-
tors (including Twist and Slug) in the dataset. The cut-
off values of ER, PR, HER2 and Ki67 were 1, 1%, 1+/2+,
and 14%, respectively, according to the standards of clin-
ical practice. For twist and slug, the final score was 0 to
12 as the cut-off value for the analyses to obtain signifi-
cant results. Furthermore, multivariate Cox proportional
hazard regression analysis was applied to investigate
whether the predictive value of the panel was independ-
ent of other clinical variables.
The model was established using the and holdout

methods, an approach to out-of-sample evaluation,
where the dataset was randomly split into two exclusive
sets (70% training and 30% testing sets) [43]. The model

was then trained on the training group and tested on the
testing group 10 times. Additionally, bootstrapping was
used to overcome a possible biased error estimate and
obtain confidence intervals (CI). We reported the 95%
CI of the coefficients, hazard ratio, and relapse rate for
each model. Statistical analyses were performed using
GraphPad Prism version 6 and R 3.4.0. To enroll more
effective biomarkers and clinicopathological factors into
further modelling, a p-value less than 0.1 was defined as
statistically significant in the univariate Cox Proportional
Analysis. Then, potential significant factors were en-
rolled into the multivariate Cox Proportional Analysis,
with the p-value less than 0.05 considered to be statisti-
cally significant. The detail was shown in Additional file 3:
Figure S3.

Results
Characteristics of patients and IHC results
The mean age of the patients was 49.3 ± 9.9 years. The
youngest patient was 23 years old while eldest one was
78 years old. Among the 407 patients, the median fol-
low-up was 66months, and relapse was observed in 42
(10.3%) patients during five years after diagnosis, con-
sistent with results published in the literature. The char-
acteristics of clinicopathological, proliferation, and EMT
related factors of the 407 patients are depicted in Table 1
and Additional file 4: Table S1. IHC staining was per-
formed on slides of paraffin embedded blocks of those
407 BIDC samples. Results are shown in Fig. 1. We also
performed IHC in tissues of patients with reductional
mammoplasty. The prevalence of BSCCs biomarkers in
reductional mammoplasty samples were shown in
Additional file 2: Figure S2.

Construction and validation of the RRS model
A univariate analysis was performed to test whether the
expression level of each BCSC-associated marker was re-
lated to differences of patient RFS. Among all the BCSC
related biomarkers, four biomarkers (ALDH1A3, CD44+/
CD24−, ITGA6+, and PROCR) were confirmed to be sta-
tistically correlated with patient RFS (Table 2). The RRS
formula according to the expression coefficient of those 4
BCSC-associated biomarkers for survival is listed as fol-
lows: RRS = 0.30× (score of ALDH) + 0.34× (score of
CD44+/CD24−) + 0.24× (score of ITGA6) + 0.56× (score
of PROCR). Therefore, patients were classified into high-
risk and low-risk group individually using the optimal
RRS (RRS corresponding to the maximum sum of specifi-
city and sensitivity in the ROC curve) as the cut-off value.
With the aid of the method described in the Materials and
Methods, the cut-off value was calculated to be 2.05.
Then, Kaplan-Meier analysis showed that the propor-

tion of patients in the low-risk group who were free of
relapse at 5 years (97.68, 95% CI: 97.37–98.00%) was
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significantly higher than that in the high-risk group
(81.33, 95% CI: 80.50–82.16%) (p < 0.001) in the training
group. In another exclusive group (the testing group),
the proportion of patients in the low-risk group who
were free of relapse at 5 years (96.82, 95% CI: 95.88–
97.76%) was also higher than that in the high-risk group
(82.13, 95% CI: 79.93–84.33%) (p < 0.001). Distributions
of risk score, relapse status and BCSC-associated bio-
marker expression of patients in the training group and
testing group is displayed in Table 3 and Fig. 2.
Among all the clinicopathological factors (including

age at diagnosis, tumour size, histological grade, ER sta-
tus, PR status and HER2 status), proliferation factors
(Ki67), EMT related factors (including Twist and Slug),
age at diagnosis and tumour size were considered po-
tential significant factors in the univariate survival ana-
lysis. These factors were then fully enrolled to the
multivariate Cox model with RRS. In a multiple Cox
model, RRS demonstrated significant predictive power
that was independent of tumour size and age at diagno-
sis in both the training group (p < 0.001) and testing
group (p = 0.014) (Table 4).

Assessment of the RRS model in the entire dataset
Assessment of the RRS model in univariate survival analysis
(Kaplan-Meier method)
To validate our findings, the RRS model was assessed in
the entire dataset (n = 407). By using the same cut-off
value of training groups, patients in the entire dataset
were classified into the high-risk group (n = 131) and
low-risk group (n = 276) (Fig. 3a). Patients with high risk
scores demonstrated significantly reduced RFS when
compared to those with low risk scores (log-rank test
p < 0.001) (Fig. 3b). The relapse rate at 5 years was
19.30% (95% CI: 12.34–26.27%) and 2.67% (95% CI:
0.72–4.63%) in the high-risk group and low-risk group,
respectively. Distributions of risk score, relapse status
and BCSC-associated biomarker expression of each pa-
tient in the entire datasets were then analysed (Fig. 3c).

Assessment of the RRS model in multivariate survival
analysis (cox proportional analysis)
In the entire dataset, the correlation between RFS and
clinicopathological factors (including age, tumour size,
histological grade, ER status, PR status and HER2 sta-
tus), proliferation factors (Ki67), EMT related factors
(including Twist and Slug) was analysed by Kaplan-
Meier method. Reduced RFS was only demonstrated in
patients with smaller tumour size (log-rank p = 0.032)
and younger age (log-rank p = 0.016) (Table 1). Then,
multivariate survival analyses were adopted to explore
the association between relapse and age as well as
tumour size. As a result, younger age, larger tumour size
and RRS were implied to be significant predictors of re-
lapse (Table 5).

Hormone therapy benefit in different groups
Among the 407 patients, there were 282 ER-positive and
125 ER-negative patients. We found that our panel
worked in both of these two subgroups (Fig. 4a, b). In
the ER-positive group, all patients were treated with
chemotherapy, whereas only 89.72% (n = 253) of these
patients received hormone therapy. Our results demon-
strated no difference for the RFS between those hor-
mone-treated patients and non-treated patients in the
high-risk score group (p = 0.860 Fig. 4d). However, in
the low-risk score group, patients in the treated group
showed remarkably longer RFS than those in the non-
treated group (p = 0.038, Fig. 4c), which indicated that
patients with a high-risk score may not benefit from the
traditional hormone therapy.

Discussion
An increasing number of females are diagnosed with
node negative invasive breast carcinomas. Even though
most of patients with early-stage breast cancer have a
favourable outcome, the 5-year rate of local relapse or

Table 1 Characteristics of Clinicopathological, Proliferation, and
EMT Related Factors of the 407 Patients

Clinicopathological Factors Relapse or not(N,%) p-value
(log-rank)No Yes

Age >40y 307 30 (8.90) 0.016

≤40y 58 12 (17.15)

Tumor Size ≤2 cm 165 11 (6.25) 0.032

> 2 cm 200 31 (13.42)

Histological Grade Grade 1 19 0 (0.00) 0.271

Grade 2 126 18 (12.50)

Grade 3 220 24 (9.84)

ER Status ≤1%(p) 113 12 (9.60) 0.567

> 1%(n) 252 30 (10.69)

PR Status ≤1%(p) 135 16 (10.59) 0.722

> 1%(n) 230 26 (10.16)

Her2 Status 0/1+ 253 31 (10.92) 0.942

3+ 67 7 (9.46)

Menopausal status Premenopausal 215 23 (9.66) 0.858

Postmenopausal 147 15 (9.26)

Ki67 ≤14% 127 11 (7.97) 0.222

> 14% 238 31 (11.52)

Twist TS = 0 175 18 (9.33) 0.560

TS > 0 190 24 (11.21)

Slug TS = 0 231 27 (10.47) 0.722

TS > 0 134 15 (10.07)

Surgery Mastectomy 333 40 (10.72) 0.392

Lumpectomy 32 2 (5.88)
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distant metastasis in our dataset is still up to 10.3%. As
metastatic diseases are challenging to cure, accurate
evaluation for prognosis and more efficacious treatments
are needed. In our present study, we developed and vali-
dated a novel prognostic model based on 4 BCSC-asso-
ciated biomarkers to improve our accuracy of predicting
disease recurrence in patients with early stage BIDC

(T1–3N0M0). The four biomarkers incorporated into our
predictive model have been shown to be involved in
stem cell ability in vivo and in vitro, including self-re-
newal ability and tumorigenic capacity, which could con-
tribute greatly to metastasis of BIDC in vitro and in
vivo, or in tumour tissues [21–25, 44–46].
The holdout methods were adopted to establish our

RRS model, which assisted us to obtain a stable model
to calculate RRS in our study. Our model was further
validated in the entire dataset. The AUC value of ROC
curve is 0.781 which indicated that the RRS is a good
classifier for relapse among patients with early stage
breast cancer. The difference in the risk of relapse be-
tween patients with low risk scores and those with high-
risk scores was large and statistically significant. There
are 276 (67.81%) patients who were classified in the low-
risk group, while only 32.19% of patients were included

Fig. 1 IHC staining in early-stage BIDC patients. a Dual staining for CD44 (green arrow) and CD24 (yellow arrow); b Dual staining for EpCAM (green
arrow) and CD49 (yellow arrow); c-f Single staining for ALDH1A3 (cytoplasm), PROCR (membrane), Twist (nuclear) and Slug (nuclear), respectively

Table 2 Biomarkers Associated with Relapse in Training Group
by Univariate Cox Proportional Analysis

Biomarkers Coefficient (Wj, 95% CI) Hazard Radio(95% CI)a

ALDH1A3 0.30 (0.27–0.33) 1.35 (1.12–1.58)

CD44+/CD24− 0.34 (0.31–0.38) 1.41 (1.09–1.72)

ITGA6+ 0.24 (0.19–0.30) 1.27 (1.04–1.51)

PROCR+ 0.56 (0.52–0.60) 1.75 (1.49–2.00)
aCI confidence interval
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Table 3 Kaplan-Meier Estimation of the Rate of Recurrence at 5 Years, According to Recurrence-Score Risk Category

RRS Percentage of patients (%) Rate of recurrence at 5 years (%, 95 CI)a p-value

Training set Low-risk 67.54 2.32 (2.00–2.63) < 0.001

High-risk 32.46 18.67 (17.84–19.50)

Testing set Low-risk 68.46 3.18 (2.24–4.12) < 0.001

High-risk 31.54 17.87 (15.67–20.07)
aCI confidence interval

Fig. 2 Establishment and Validation of RRS of early-stage BIDC patients, a Kaplan-Meier analysis for RFS of early-stage BIDC patients in training
group. b Kaplan-Meier analysis for RFS of early-stage BIDC patients in testing group. c The distribution of the RRS, patients’ relapse status and
biomarker expression in training group. d The distribution of the RRS, patients’ relapse status and biomarker expression in the testing group. (We
conducted 10 times; Fig. 2 is only one example of them)
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in the high-risk group, and their rate of relapse at 5 years
was 19.30 and 2.67%, respectively. Therefore, the applica-
tion of the RRS predictor provides a good estimate of the
risk of local or distant recurrence in individual patients.
We also enrolled other biomarkers in the univariate

survival analysis in the training set, such as age, tumour
size, histological grade, Ki67, and EMT related bio-
markers. All those parameters have been reported to

play critical roles in accelerating the presence of distant
metastasis or local relapse [47, 48]. Despite the fact that
EMT has been reported to produce cells with stem cell-
like properties [49], we found that no parameter showed
significantly different RFS in different subgroups of
EMT related biomarkers. In this study, smaller tumour
size was validated as an independent factor protecting
patients from relapse. When the RRS was combined

Table 4 Multivariate Cox Proportional Analysis of Tumor Size,
age, and RRS in Relation to the Likelihood of Relapse

P-value Hazard Radio (95% CI) a

Training group

RRS (high vs. low) < 0.001 6.75 (2.90–15.72)

Tumor size (> 2 cm vs. ≤2 cm) 0.037 2.72 (1.16–6.38)

Age (>40y vs. ≤40y) 0.098 0.46 (0.20–1.05)

Testing group

RRS (high vs. low) 0.014 5.04 (1.52–16.81)

Tumor size (> 2 cm vs. ≤2 cm) 0.177 3.33 (0.80–15.85)

Age (>40y vs. ≤40y) 0.316 0.59 (0.15–2.41)
aCI confidence interval

Fig. 3 Assessment of RRS of early-stage BIDC patients. a The ROC curves for RFS prediction. b Kaplan-Meier analysis for RFS of early-stage BIDC
patients. c The distribution of the RRS, patients’ relapse status and biomarker expression in early-stage BIDC

Table 5 Multivariate Cox Proportional Analysis of Age, Tumor
Size, and RRS in Relation to the Likelihood of Relapse in Entire
Dataset

Variable p-value Hazard Ratio (95%CI)a

Analysis without RRS

Age (≤40y vs. >40y) 0.012 2.38 (1.21–4.69)

Tumor Size (> 2 cm vs. ≤2 cm) 0.022 2.22 (1.11–4.44)

Analysis with RRS

Age (≤40y vs. >40y) 0.022 2.22 (1.12–4.39)

Tumor Size (> 2 cm vs. ≤2 cm) 0.005 2.70 (1.34–5.41)

RRS (high vs. low) < 0.001 5.92 (3.01–11.6)
aCI confidence interval
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with data pertaining to tumour size to predict the risk of
relapse, the relapse score remained statistically signifi-
cant in a multivariate analysis.
Due to poor compliance of our patients, in the ER-

positive subgroups, only 89.72% of patients received
endocrine therapy systematically. The results indicated
that only patients with low risk responded well to endo-
crine therapy, while those with high risk showed no dif-
ference between the treated group and untreated group.
A previous study revealed that mesenchymal-like BCSCs
in hormone-sensitive luminal breast cancers were one of
the reasons for hormone-resistant [50]. Similar to above
finding, there was evidence suggesting that BCSCs
should be partially responsible for the endocrine-resist-
ant capacity of breast cancer cells. This is due to the fact
that CSCs could only respond to treatment by virtue of

paracrine signalling pathway from adjacent differentiated
ER-positive tumour cells [51–54], which were probably
responsible for the endocrine-resistance in the high-risk
group.
The RRS not only offers an approach to predict thera-

peutic sensitivity but also provides a new perspective to
eliminate BCSCs in early stage breast cancer. As been
reported, BCSCs were not as sensitive to hormone ther-
apy and conventional chemotherapy as non-BCSC tu-
mours. Thus, targeting BCSCs clinically might enhance
the therapeutic sensitivity among patients with high
risk scores. The most promising CSC treatment strat-
egies that target Notch, Hedgehog, Wnt and many
other BCSC self-renewal pathways provide a number of
opportunities for new clinical trials.20 In addition, the
strategy of “destemming” CSCs, including inducing

Fig. 4 Kaplan-Meier analysis for RFS using RRS in the subgroups stratified by ER status and endocrine therapy. a Kaplan-Meier curves for early-
stage BIDC patients with ER-positive status. b Kaplan-Meier curves for early-stage BIDC patients with ER-negative status. c Kaplan-Meier curves for
ER-positive patients with high risk scores stratified by endocrinotherapy. d Kaplan-Meier curves for ER-positive patients with low risk scores
stratified by endocrinotherapy
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CSC differentiation or inhibiting self-renewal capacity
were also recommended [55]. Combination of BCSC-
targeted therapy and traditional therapy may provide
our patients with high-risk scores more effective thera-
peutic strategies. However, the study of CSCs remains
an enigma, and further exploration is needed.
In terms of limitations, this study was a retrospective

analysis that selected patients who had not received neo-
adjuvant chemotherapy after resection in early stage
breast cancer, which may lead to a selection bias of pa-
tients with a relative lower risk of recurrence. However,
all our patients included in this study were T1–3N0M0 by
the TNM staging system, and the majority of them did
not receive neoadjuvant chemotherapy, according to the
NCCN guideline [12]. The total study size is modest in
absolute numbers, and some subgroup analyses may be
underpowered; however, this is one of the largest co-
horts of well-characterized early stage breast cancer that
employed a BCSC biomarker panel as a prognosis
model. The shortcomings of this panel should not be ig-
nored. First of all, though IHC staining is the most com-
mon method for semi-quantified the protein expression
level in carcinomous tissues, the subjectivity of evalu-
ation of this method couldn’t be avoided. Secondly, the
selection of antibodies should be cautiously considered,
as their quality will affect the result of IHC staining dir-
ectly. Performing immunofluorescence staining and q-
RT PCR may help us obtain a relative exact result; how-
ever, these two methods also have their disadvantages in
assessing BCSCs.

Conclusion
Though previous studies have combined different
BCSCs biomarkers for assessing prognosis in different
types of breast cancer, such as three-negative, HER2-
positive and metastatic breast cancer [56–59], no
BCSC-associated biomarkers have been combined to
form a model for evaluating the relapse risk of early-
stage breast cancer. We propose that BCSCs could be
used as a panel in prognostic or predictive tests of
early-stage breast cancer. Here, we conducted a pro-
spectively designed validation study of a multi-bio-
marker panel in a cohort of patients with early-stage
BIDC. In addition, this panel is promising for predic-
tion of early-stage BIDC recurrence, the efficacy of
which warrants further validation in a large-scale cohort.
In addition, it reminds us that further consideration is
needed to explore new therapeutic managements for
high-risk patients with therapeutic resistance. In addition,
it is of practical significance that the panel only involves
the use of routine slides of the tumour tissues and five
antibodies, which is not as time-consuming and expensive
as other gene profiles.

Additional files

Additional file 1: Figure S1. Different expression patterns of BSCCs
biomarkers expression pattern in external control and internal control
tissues. A. ALDH1A3 was shown positive in prostate cancer (external
control) and breast invasive ductal carcinoma (IDC, internal positive
control), and shown negative in lymphocytes (internal negative control);
B. PROCR was shown positive in intestine gland (external control) and
ductal carcinoma in situ (DCIS, internal positive control), and shown
negative in lymphocytes (internal negative control); C. CD44 was shown
positive in urothelium (external control) and IDC (internal positive
control), and shown negative in lymphocytes (internal negative control);
D. CD24 was shown positive in urothelium (external control) and IDC
(internal positive control), and shown negative in breast adenosis
(internal negative control); E. EpCAM was shown positive in intestine
gland (external control) and in breast adenosis (internal positive control),
and shown negative in lymphocytes (internal negative control); F. ITGA6
was shown positive in colorectal carcinoma (external control) and in IDC
(internal positive control), and shown negative in lymphocytes (internal
negative control). (JPG 5319 kb)

Additional file 2: Figure S2. The prevalence of BSCCs biomarkers in
reductional mammoplasty samples. A. Prevalence of ALDH1A3 in three in
reductional mammoplasty samples; B. Prevalence of PROCR in three in
reductional mammoplasty samples; C-D. Prevalence of CD44/CD24 in
three in reductional mammoplasty samples; E. Prevalence of EpCAM in
three in reductional mammoplasty samples; F. Prevalence of ITGA6 in
three in reductional mammoplasty samples. (JPG 4739 kb)

Additional file 3: Figure S3. Flow Chart for Construction of RRS model.
(JPG 293 kb)

Additional file 4: Table S1. The detailed information of end-point of
follow-up for local recurrence or distant metastasis. (XLSX 124 kb)

Additional file 5: Table S2. Antibodies used in the cohort of patients.
(DOCX 16 kb)
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