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Abstract: Development of sensor materials based on metal oxide semiconductors (MOS) for selective
gas sensors is challenging for the tasks of air quality monitoring, early fire detection, gas leaks search,
breath analysis, etc. An extensive range of sensor materials has been elaborated, but no consistent
guidelines can be found for choosing a material composition targeting the selective detection of
specific gases. Fundamental relations between material composition and sensing behavior have not
been unambiguously established. In the present review, we summarize our recent works on the
research of active sites and gas sensing behavior of n-type semiconductor metal oxides with different
composition (simple oxides ZnO, In2O3, SnO2, WO3; mixed-metal oxides BaSnO3, Bi2WO6), and
functionalized by catalytic noble metals (Ru, Pd, Au). The materials were variously characterized. The
composition, metal-oxygen bonding, microstructure, active sites, sensing behavior, and interaction
routes with gases (CO, NH3, SO2, VOC, NO2) were examined. The key role of active sites in
determining the selectivity of sensor materials is substantiated. It was shown that the metal-oxygen
bond energy of the MOS correlates with the surface acidity and the concentration of surface oxygen
species and oxygen vacancies, which control the adsorption and redox conversion of analyte gas
molecules. The effects of cations in mixed-metal oxides on the sensitivity and selectivity of BaSnO3

and Bi2WO6 to SO2 and VOCs, respectively, are rationalized. The determining role of catalytic noble
metals in oxidation of reducing analyte gases and the impact of acid sites of MOS to gas adsorption
are demonstrated.

Keywords: active sites; metal oxide semiconductor; gas sensor; gas-solid interaction; selectiv-
ity; nanoparticles

1. Introduction
1.1. Issues in the Design of Metal Oxide Sensors

Nanomaterials based on metal oxide semiconductors (MOS) have been extensively in-
vestigated for use in resistive gas sensors. The electronic properties of MOS are sensitive to
chemical processes occurring at the surface, which enables the detection of gas molecules in
the ppb-ppm concentration range in the environment [1–3]. Thermal stability in air, minia-
turization, low cost and ability of integration into wireless devices are the main advantages
of resistive sensors. The main drawback is the low selectivity, which is due to the sensing
principle. Redox conversion of reducing or oxidizing gas molecules at the surface of MOS
controls the thickness of a space charge region and electric conduction in the semiconduc-
tor [2,4]. Therefore, gas molecules with distinct compositions but similar redox properties
are indistinguishable by the sensor response. A number of approaches to improve the
selectivity of MOS sensors were elaborated. Those include technological ones, e.g., using
preconcentration or filtering membranes [5,6], modulation of the operation temperature
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regime, use of multisensor arrays with appropriate data treatment algorithms (“electronic
nose”) [7–9]. The fundamental approach is modification of the chemical composition of
the sensor material. It can be performed by functionalization of MOS surfaces [9–12], bulk
doping of MOS [13,14], use of p-type MOS and mixed-metal oxides instead of conven-
tionally employed n-type MOS (SnO2, ZnO, WO3, TiO2, Ga2O3, In2O3, etc.) [15–17], or
MOS-based composites with different additives, e.g., noble metals, metal oxides, graphene
and carbon nanotubes, polymers [18–21]. Although there are numerous reviews available
on MOS-based materials for gas sensors, a comprehensive materials design concept for the
creation of sensors with predetermined selectivity for a desired analyte gas or a group of
gases can hardly be found. In a recent review by Korotcenkov, et.al., the criteria for choos-
ing the chemical composition of a gas-sensitive MOS were proposed [22]. For example,
simple metal oxides conventionally used in sensors combine thermal stability (high melting
and decomposition points above 1200 ◦C), and electronic configuration d0 for transition
metal cations (in TiO2, WO3) or d10 for post-transition metal cations (in In2O3, ZnO, SnO2)
that conditions the wide bandgap n-type semiconductor behavior. These cations may be
partially reduced through the formation of oxygen vacancies, and the concentration of
point defects in these metal oxides falls in the 1016–1019 cm−3 range, which is appropriate
for the sensitivity of bulk conduction of localized charges at the surface [22]. However,
no guidelines can be found for choosing the chemical composition of a sensor material.
Even the choice between the listed simple MOS is an issue when the selectivity of analyte
gas adsorption and redox interaction with the surface is considered. A more sophisticated
problem is an appropriate selection of constituents when gas sensitive mixed-metal oxides
or composites are elaborated. Besides the predictable effect on electronic properties of the
semiconductor, the additives influence the adsorption capacity and chemical reactivity of
the material surface, and the latter has often been disregarded in the gas sensor studies.

1.2. Gas Sensing Principles of Metal Oxide Sensors

The mechanism of gas sensing consists of three principle steps: (i) adsorption and
redox interaction of gas molecules with the MOS surface (“reception”); (ii) transduction
of the electric signal produced by the redox reaction from the surface to the bulk of
MOS; and (iii) transduction of the electric signal through the network of contacting MOS
particles [1,2,23]. The reception is a chemical process involving the active sites at MOS
surface and is discussed in detail below.

1.2.1. Oxygen Vacancy Formation and Oxygen Chemisorption

Oxygen vacancies are formed due to partial oxygen loss from the surface of oxides in
which metals have the highest oxidation states for the respective elements group:

O2−
(bulk) ↔

1
2

O2(g) + VO
2− ↔ 1

2
O2(g) + VO

− + e− ↔ 1
2

O2(g) + VO + 2 e− (1)

Electron donor states associated with oxygen vacancies (or, reduced metal cations) are
available for oxygen chemisorption in air yielding chemisorbed species (Equation (2)), or
restoring the lattice O2− anions on the oxide surface (Equation (3)):

O2(g) + 4 e− ↔ O2
−

(ads) + 3 e− ↔ 2 O−(ads) + 2 e− ↔ 2 O2−
(ads) (2)

O2(g) + 2 VO + 4 e− ↔ 2 O2−
(bulk) (3)

As a result, in the subsurface region the donor states become less occupied by electrons,
negative charge is localized at the chemisorbed oxygen and surface potential barrier arises
leading to reduced conductivity of the n-type MOS decrease (Figure 1). The chemisorption
equilibria described in Equation (2) shift to the right at increasing temperature, so that
predominant chemisorbed oxygen species changes from molecular O2

− (160–200 ◦C) to
atomic O− (200–350 ◦C) and O2− ones (above 350 ◦C). It was established for polycrystalline
SnO2 using numerous spectroscopic techniques and indirect measurements [5,24,25], and
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the agreeing conclusions were done for other n-type MOS (ZnO, In2O3, WO3) using the
conduction measurements under variable oxygen pressure [26–28].
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before (a) and after oxygen ionosorption (b); and the corresponding modulation of band energy
levels (bottom): vacuum level (Evac), conduction band bottom (EC), Fermi level (EF), donor states
level (ED), valence band top (EV), potential energy surface barrier (−eVS).

There are two models describing the sensor response as the interaction of analyte
gases with: (i) chemisorbed oxygen species (ionosorption model), and (ii) lattice oxygen
anions at the oxide surface (oxygen vacancy model) [29,30].

1.2.2. The Ionosorption Model of Sensor Response

Within the ionosorption model, sensor response to a reducing gas (Red) is due to
oxidation of gas molecules by chemisorbed oxygen species (On

m−) [4,6–8,29,30]:

Red(g) + On
m−

(ads) → ROn(g) + m e− (4)

where ROn is the oxidation product. The removal of chemisorbed oxygen species releases
the trapped electrons back to the semiconductor and decreases the surface potential barrier
(Figure 2), which results in increasing conductivity. For example, the reducing gases
H2, CO, H2S, NH3, and VOCs are commonly considered to be oxidized to H2O, CO2,
H2O + SO2, H2O + N2, and H2O + CO2, respectively [2,4,5,31–35]. The surface reaction
is described similarly as the mechanisms of heterogeneous oxidation catalysis within the
Langmuir-Hinshelwood model (reaction between co-adsorbed Red molecule and oxygen)
or Iley-Rideal model (reaction of gas-phase Red and adsorbed oxygen) [36,37]. Unlike
the mechanisms of catalysis which have been the subject for careful kinetic studies, the
interaction of reducing gases with chemisorbed oxygen at the sensors surfaces has hardly
been experimentally proven. The ionosorption model, i.e., oxidation by ionosorbed oxygen
species, has often been speculatively used to describe the sensing mechanisms of reducing
gases [32–35,38–40]. The major issue is the lack of techniques for the observation of
chemisorbed oxygen species, especially under in situ reaction conditions [25]. The response
to an oxidizing gas (Ox) is attributed to the competitive chemisorption of target molecules
(e.g., NO2, O3, Cl2) which are stronger electron acceptors than O2:

Ox(g) + m e− → Oxm−
(ads) (5)
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Figure 2. Schematic representation of the surface of n-type MOS with ionosorbed oxygen species
(b) and after its interaction with reducing gas CO (c) and oxidizing gas NO2 (a) within the
chemisorption model of sensor response (top); and the corresponding modulation of band energy
levels (bottom).

This leads to trapping of more electrons in the surface states and a higher potential
barrier at the MOS surface, resulting in decreased conductivity in the presence of oxidizing
gases (Figure 2). The sensing mechanism related to chemisorption of oxidizing gases
(Equation (5)) was experimentally proven by spectroscopy studies, e.g., NO2 adsorption
on the MOS surfaces with the formation of NO2

− was observed by in situ Raman measure-
ments [41] and diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy [42].

1.2.3. The Oxygen Vacancy Model of Sensor Response

The oxygen vacancy model describes the sensor response of n-type MOS in terms of
reversible shift of equilibria between bulk oxygen anions and oxygen vacancy formation
(Equation (1)) depending on the ambient gas composition [29,30]. The reducing gas (Red)
favors the formation of oxygen vacancies via the binding with lattice O2− anions at the
oxide surface and desorption of the oxidation product (ROn):

Red(g) + n O2−
(lat) → ROn(g) + n VO

2− ↔ ROn(g) + n VO
− + n e− ↔ ROn(g) + n VO + 2n e− (6)

As a result, the concentration of donor states with loosely bound electrons increases
(Figure 3), and the conductivity of n-type MOS rises. The reaction of target gas with lattice
O2− anions (Equation (6)) with simultaneous cleavage of metal-oxygen bonds is considered
within the Mars-van Krevelen model of catalytic oxidation over metal oxide catalysts [36].
It has been accepted that the oxygen vacancy mechanism of sensor response takes place
under oxygen-lean conditions, e.g., when the reducing gases (CO, hydrocarbons, H2) are
detected in inert gases [43,44]. Such conditions are unfavorable for oxygen chemisorption
at the MOS surface, and the ionosorption model of sensor response is unsuitable. Response
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to an oxidizing gas (Ox) is attributed to the fulfilment of an oxygen vacancy by an oxygen
atom and restoration of lattice O2− anions and metal-oxygen bonds:

Ox(g) + VO + 2 e− → R(g) + O2−
(lat) (7)

where the Ox molecule contains oxygen atoms and R is the reduction product. The
participation of oxide anions in the interaction of MOS with analyte gases was confirmed
experimentally in a number of works. The evolution of Sn2+ cations was observed by
Mossbauer spectroscopy as a result of partial lattice oxygen reduction in SnO2 during the
interaction with CO in inert atmosphere [45]. By DRIFT spectroscopy it was established
that the W-O bonds were cleaved on the surface of WO3 in presence of CO in air [46].
On the contrary, the W-O bonds restored when WO3 was oxidized by NO2 or even H2O
molecules in humid air [46,47]. Thus, the sensor response of tungsten oxide has been
appropriately described by the oxygen vacancy model.
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1.3. The Concerns on Sensor Materilals from Heterogeneous Catalysis

The reception of gas molecules at the sensor surface consists of same processes as on
the surface of heterogeneous catalysts: adsorption and redox conversion of gas molecules.
The correlations of sensitivity with catalytic activity of MOS have been observed experi-
mentally [48–50]. Typical studies of heterogeneous catalysts consist of in-depth materials
characterization, including the determination of active surface sites and the investigation
of gas-solid interactions (adsorption, redox conversion) which are controlled by the surface
sites [36,51]. On the contrary, in studies of sensors the greater attention has been paid
to electrophysical phenomena (charge transfer, surface charging, band bending, conduc-
tion paths); and the sensitivity was successfully modelled depending on semiconductor
type, donor states concentration, particle size, materials morphology, heterojunctions
etc. [1–4,8,23,52,53]. Characterization of active sites at sensors surfaces was hardly per-
formed, therefore, the chemical routes of analyte gas adsorption and redox interaction
with the surface was incompletely understood. Catalytic activity of MOS and additives
used in the composites is often referred to when gas sensing is discussed; however, the
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characterization of the surface sites and the direct experimental evidences for the catalytic
interaction with gases was most often missing. The additives utilized in MOS-based sensors
have traditionally been grouped as the catalytic (chemical) and the electronic ones [4,8,21].
The disadvantage of such classification is that the origin and mechanism of the catalytic
activity in the process of target gas conversion is disregarded, and, consequently, the
improvement of selectivity is not substantiated from the viewpoint of surface chemistry.
Moreover, the additives (noble metals, metal oxides, carbon nanomaterials, polymers) can
simultaneously exhibit the catalytic behavior and electronic interaction, i.e., heterojunction
formation with MOS.

1.4. The Comparison of Energetic Parameters of n-Type Metal Oxide Semiconductors

In this review, we summarize our recent works aimed at reveling the active sites at
the surface of gas sensitive MOS-based materials and the impact of surface sites on the
adsorption and redox interactions with gas molecules which influence the sensing behavior.
We show that the paradigm of heterogeneous catalysts research is worth applying for
the investigation of sensor materials, since the reasons for selectivity in gas sensing may
be fundamentally rationalized in terms of surface chemical reactivity. The approaches
conventionally used for catalysts research were successfully transferred to the studies of
gas sensors, including the qualitative and quantitative determination of active sites by
surface science techniques such as temperature-programmed reduction and temperature-
programmed desorption of probe molecules. Using in situ infrared spectroscopy the roles of
adsorption sites and redox sites were revealed in the processes of gas molecules interaction
with the sensors surfaces. The dependence of materials functional behavior on gas-solid
interaction is the common point for heterogeneous catalysts and sensors. The sensitivity of
sensors is much influenced also by the transduction of charge carriers between the surface
and bulk of semiconductor and through the network of conduction paths. However, in the
present review we propose that the selectivity of sensor response is mainly controlled by
gas molecules reception, which in turn depends on active sites at the sensor surface. The
nature and concentration of active sites depend on the chemical composition of sensing
materials. Revealing these correlations will be useful for predictable control of sensors
selectivity through appropriate tailoring the materials composition. Herein, the effect of
chemical composition of simple n-type MOS (In2O3, ZnO, SnO2, TiO2, WO3) and mixed-
metal oxides (BaSnO3, Bi2WO6) on the acid sites, oxidizing sites (surface oxygen species)
and donor sites (oxygen vacancies) is discussed. The materials are wide-bandgap n-type
semiconductors and differ in energetic parameters of the oxides and constituent cations
(Table 1) [54,55]. Electronegativity of the cations increases in the order Zn2+, In3+, Sn4+,
Ti4+, W6+; it agrees with the increment of charge/radius ratio. Accordingly, the metal-
oxygen bond energy (EM-O) increases in respective metal oxides (Table 1) [54,56], and
electron energy band positions (valence band top Ev, conduction band bottom Ec, middle
of bandgap χ) decrease (Figure 4). The conduction band minima are mainly contributed by
empty cationic s-orbitals (In3+, Zn2+, Sn4+) or d-orbitals (Ti4+, W6+), and the valence band
maxima—by filled oxygen 2p-orbitals [57,58]. Energy levels of the orbitals shift deeper
below the vacuum level as the electronegativity of cations increases (Figure 4). Bandgap
width of oxides is related to cationic Pearson’s hardness (or, ionic-covalent parameter),
which is close for the mentioned cations (intermediately hard) and, therefore, the oxides
have wide bandgaps (Eg = 2.8–3.6 eV) [54]. In the following, we use M-O bond energy as
the fundamental descriptor parameter of the active sites and gas sensitivity of metal oxides.
The roles of acid sites, chemisorbed oxygen and oxygen vacancies in adsorption and redox
conversion of gas molecules NH3, SO2, H2S, volatile organic compounds (VOCs), and NO2
is discussed in relation to sensing behavior. The key role of noble metal clusters (Pd, Ru) in
specific catalytic oxidation of analyte molecules (CO, NH3) improving the selectivity of
sensor response of catalytically functionalized MOS is discussed.
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Table 1. Parameters of n-type metal oxide semiconductors (MOS): cationic radius r, electronegativity χ and ionic-covalent
parameter ICP; metal-oxygen bond energy EM-O and bond distance dM-O; negative formation enthalpy per oxygen atom
−1/x·∆fH; bandgap width Eg.

MOS r, Å [59] χ , 1 P.u. [54] ICP 2 [54] EM-O
3, eV [55] dM-O, Å −1/x·∆fH [55], eV Eg [54], eV

ZnO 0.74 1.65 0.45 10.4 1.96–1.98 [57] 3.6 3.4
In2O3 0.79 1.78 0.53 12.4 2.18 [60] 3.2 2.8
SnO2 0.69 1.96 0.61 15.5 2.02 [61] 6.0 3.6

TiO2 0.61 2.01 0.52 20.7 1.95 (rutile)
1.96 (anatase) [62] 9.8 3.4

WO3 0.58 2.36 0.49 36.6 1.74–2.17 [63] 8.7 2.8
1 P.u. is Pauling units; 2 Ionic-covalent parameter (dimensionless) correlates to Pearson’s hardness of cations [54]; 3 Bond energy in
metal oxides MOx estimated from thermodynamic parameters [55]: EM-O = {−∆fH◦(MOx) + ∆subH◦(M) + x/2·∆disH◦(O2) + x·∆el.af.H◦(O)
+ Σ∆ion.H◦(M)}/(x·CNO), where ∆subH◦(M)—sublimation enthalpy of metal, ∆disH◦(O2)—dissociation enthalpy of oxygen molecule,
∆el.af.H◦(O)—electron affinity of oxygen atom, Σ∆ion.H◦(M)—sum of ionization potentials of metal cation, CNO—coordination number of
oxygen in the oxide.
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2. Types of Active Sites at the MOS Surface

In the literature there is no strict definition of an active site at the metal oxide surface;
rather, it is conditional according to the materials and processes under consideration.
In catalysts, the proper representation of an active site is the surface atom or ensemble
which binds to a foreign molecule, thus loosening the intramolecular chemical bonds and
forming the intermediates and/or final products of the catalytic reaction [36,64]. Yet, such
defined active sites are hardly observable experimentally and unmeasurable due to their
low fraction in the overall number of surface atoms, the specificity of catalytic reaction and
the dynamic lability of active species in course of reaction. The other way demonstrated in
some works was to regard the active sites as the adsorption sites for the specific reactant
or probe molecule (e.g., isopropanol [65], aromatics [66,67]). Such defined active sites, i.e.,
adsorption sites, were quantified by the adsorption measurements and their concentration
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correlated with the catalytic activity; yet, no observations under in situ reaction conditions
were available.

Herein, we use the conditional term of an active site as the surface species that possess
a definite chemical behavior, like acidity/basicity, redox reactivity, electron donor/acceptor
behavior, specific chemisorption capacity for probe molecules [64–68]. The observation
of actual reactivity of surface sites under in situ reaction conditions is an unresolved
problem; and the above definition refers to a potential participation of certain types of
active sites in real-life chemical reactions that determine the functionality of catalytic and
sensing materials.

In general, the active sites at a metal oxide surface can be constituted by coordinately
unsaturated cations and oxygen anions, atomic ensembles, molecular and atomic adsor-
bates [69,70]. Defects are also considered as important active sites in catalytic reactions;
including the point defects (cationic or anionic vacancies, atomic interstitials), and the
extended defects like steps, corners, edges, dislocations, perimeter between metal oxide
support and catalytic clusters [71–73]. The adsorption capacity and reactivity of surface
sites is due to dangling bonds and unsaturated coordination of the peripheral atoms.
The surface sites can form localized electron energy states and influence the band energy
levels in MOS, thus influencing the electric response to surface processes. Coordinately
unsaturated cations, oxygen anions and defects (vacancies, interstitials, dislocations, etc.)
are the possible intrinsic active sites. Adsorbed oxygen, OH-groups, hydrogen adatoms
resulting from spontaneous adsorption of oxygen and humidity represent the intrinsic
adsorbate sites at the surface of pristine metal oxides. The extrinsic active sites can be
created via the introduction of additives: atoms, atomic groups, clusters, nanoparticles
of metals or metal oxides. In accordance with the chemical reactivity, the intrinsic active
sites can be grouped into acid/base and reducing/oxidizing (or, donor/acceptor) ones [68].
The distinct chemical reactivity allows for the experimental determination of these species
using appropriate techniques. In Figure 5 the types of active sites at the surface of tin oxide
are shown schematically.

The concentration of different active sites depends on the nature of metal oxide
(cationic charge and size, metal-oxygen bond energy), the synthesis conditions, microstruc-
ture, and additives. In the following sections, these relationships are reviewed based on
our experimental studies of nanocrystalline n-type MOS: ZnO, In2O3, SnO2, BaSnO3, TiO2,
WO3, Bi2WO6. The materials were synthesized via the standardized aqueous precipitation
of metal hydroxides followed by calcination at temperature 300–700 ◦C [63,74–78].

Sensors 2021, 21, x FOR PEER REVIEW 8 of 44 
 

 

observation of actual reactivity of surface sites under in situ reaction conditions is an un-
resolved problem; and the above definition refers to a potential participation of certain 
types of active sites in real-life chemical reactions that determine the functionality of cat-
alytic and sensing materials. 

In general, the active sites at a metal oxide surface can be constituted by coordinately 
unsaturated cations and oxygen anions, atomic ensembles, molecular and atomic adsorb-
ates [69,70]. Defects are also considered as important active sites in catalytic reactions; 
including the point defects (cationic or anionic vacancies, atomic interstitials), and the ex-
tended defects like steps, corners, edges, dislocations, perimeter between metal oxide sup-
port and catalytic clusters [71–73]. The adsorption capacity and reactivity of surface sites 
is due to dangling bonds and unsaturated coordination of the peripheral atoms. The sur-
face sites can form localized electron energy states and influence the band energy levels 
in MOS, thus influencing the electric response to surface processes. Coordinately unsatu-
rated cations, oxygen anions and defects (vacancies, interstitials, dislocations, etc.) are the 
possible intrinsic active sites. Adsorbed oxygen, OH-groups, hydrogen adatoms resulting 
from spontaneous adsorption of oxygen and humidity represent the intrinsic adsorbate 
sites at the surface of pristine metal oxides. The extrinsic active sites can be created via the 
introduction of additives: atoms, atomic groups, clusters, nanoparticles of metals or metal 
oxides. In accordance with the chemical reactivity, the intrinsic active sites can be grouped 
into acid/base and reducing/oxidizing (or, donor/acceptor) ones [68]. The distinct chemi-
cal reactivity allows for the experimental determination of these species using appropriate 
techniques. In Figure 5 the types of active sites at the surface of tin oxide are shown sche-
matically. 

The concentration of different active sites depends on the nature of metal oxide (cat-
ionic charge and size, metal-oxygen bond energy), the synthesis conditions, microstruc-
ture, and additives. In the following sections, these relationships are reviewed based on 
our experimental studies of nanocrystalline n-type MOS: ZnO, In2O3, SnO2, BaSnO3, TiO2, 
WO3, Bi2WO6. The materials were synthesized via the standardized aqueous precipitation 
of metal hydroxides followed by calcination at temperature 300–700 °C [63,74–78]. 

 
Figure 5. Types of active sites at the surface of tin oxide: noble metal cluster (NM), chemisorbed 
oxygen species (O2(ads), O2−, O−), charged oxygen vacancies (VO−), partially reduced cations (Sn3+), 
coordinately unsaturated cations (Sn4+cus), hydroxyl species (OH, Sn-OH), surface oxygen anions 
(O2−). Adapted with permission from ref. [79]. Copyright 2014 American Chemical Society. 

2.1. Acid/Base Sites 
Surface metal cations are the Lewis acid sites, since the positive charge and unsatu-

rated coordination favor the acceptation of lone electron pairs from the adsorbate to the 
cationic empty orbitals. From the electrostatic attraction law, Lewis acidity is expected to 
increase with increasing charge/radius ratio of the cation. On the contrary, the covalent 
contribution to cation-adsorbate bonding can be crucial for the acid-base bond strength. 
For example, it was shown that Sn2+ cations at the surface of partially reduced SnO2 are 

Figure 5. Types of active sites at the surface of tin oxide: noble metal cluster (NM), chemisorbed
oxygen species (O2(ads), O2
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coordinately unsaturated cations (Sn4+
cus), hydroxyl species (OH, Sn-OH), surface oxygen anions

(O2−). Adapted with permission from ref. [79]. Copyright 2014 American Chemical Society.
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2.1. Acid/Base Sites

Surface metal cations are the Lewis acid sites, since the positive charge and unsaturated
coordination favor the acceptation of lone electron pairs from the adsorbate to the cationic
empty orbitals. From the electrostatic attraction law, Lewis acidity is expected to increase
with increasing charge/radius ratio of the cation. On the contrary, the covalent contribution
to cation-adsorbate bonding can be crucial for the acid-base bond strength. For example, it
was shown that Sn2+ cations at the surface of partially reduced SnO2 are formally stronger
Lewis acid sites than Sn4+ due to more covalent binding with adsorbed ammonia [80]. An
alternative approach to quantitative scaling of the Lewis acidity is based on the concept
of optical basicity (Λ); it is related to the ability of cations to shift electron density from
oxygen anions in metal oxides [81].

Adsorption of H2O molecules (Lewis base) and strong binding to surface cation (Lewis
acid) results in water molecule dissociation producing the OH-groups (Figure 6). In case
of binding to strongly Lewis acidic cations and/or binding to more than one cation in a
bridging conformation, the OH-group possesses an acidic proton and behaves as Brønsted
acid site. Hydroxyl groups which are loosely bound to weakly acidic cations in a terminal
conformation can behave as Brønsted base or acid sites depending on the counterpart inter-
acting species. The OH-groups can be distinguished using FTIR spectroscopy: the terminal
hydroxyls give rise to separate O-H peaks with wavenumbers above 3600 cm−1 [82,83].
The broad O-H bands centered at about 3400 cm−1 are indicative of the families of bridging
hydroxyls associated via hydrogen bonds (Figure 7).
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Sarmadian, Saniz, Partoens and Lamoen Creative Commons Attribution License (CC BY); ref. [78]
copyright 2021 Elsevier; ref. [79] copyright 2014 American Chemical Society.
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Surface oxygen anions O2− are the intrinsic base sites at a metal oxide surface, and
can act as the Lewis or Brønsted base depending on the adsorbate. The oxide anions can
be determined by X-ray photoelectron spectroscopy (XPS). The asymmetric O 1s signal of
nanocrystalline metal oxides can be simulated by two components (Figure 8): the major
signal with binding energy 530.0–530.5 eV due to bulk O2− anions and the lower peak of
surface oxygen species at higher binding energy (531.0–533.0 eV) [34,85,86].
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2.2. Oxidizing Sites

The oxidizing surface sites are most often associated with adsorbed oxy-
gen [2,8,12,85,86,88,89]. There are several types of adsorbed oxygen species on a metal
oxide surface:

• physisorbed O2 molecules held at the surface via van der Waals attraction, the ph-
ysisoption dominates at temperature below −70 ◦C [90];

• chemisorbed O2 molecules covalently bound with surface cations via a local redis-
tribution of electron density, the chemisorbed oxygen was found to dominate at the
surface of tin oxide at temperature below 200 ◦C [91];

• ionosorbed species O2
−, O−, and O2− are formed by molecular and dissociative

oxygen adsorption and acceptation of delocalized electrons from the bulk of MOS
(Equation (2)) [5].

Besides, hydroxyl species were found to possess oxidizing activity to reducing gases:
CO, H2 [82,83,92]. Metal cations in high oxidation states (Sn4+, Ti4+, V5+, Mo6+, W6+)
represent the other type of oxidation sites at the surface of respective metal oxides. Of
particular interest are the double M=O bonds which end up the metal-oxygen framework
at the surface of V2O5, MoO3, WO3, and have been considered as the active oxidizing
sites on these metal oxides and composites [93]. The reduction of surface metal cations to
lower oxidation state proceeds through the cleavage of metal-oxygen bonds leaving oxygen
vacancies in the surface structure of metal oxide. It is the so-called Mars-van Krevelen
mechanism in heterogeneous oxidation catalysis.



Sensors 2021, 21, 2554 11 of 44

2.3. Electron Donor Sites

Oxygen vacancies (VO
2−, VO

−) and reduced metal cations possess loosely bound
electrons and behave like donor sites [4]. Oxygen vacancies which diffuse into the oxide
bulk form donor states and account for the n-type conductivity of MOS: In2O3, ZnO,
SnO2, TiO2, WO3 [22,58]. In these oxides, metals have the highest oxidation states for
the respective elements group and, hence, can be reduced to a lower oxidation state by
trapping electrons liberated from oxygen desorption and ionization of oxygen vacancies
(Equation (1)).

3. Active Sites Concentrations at the Surface of Nanocrystalline n-Type MOS

In Table 2, we summarized the concentrations of active sites determined in our works
on n-type simple MOS (ZnO, SnO2, TiO2, WO3) with different phase compositions and
microstructure parameters, and mixed-metal oxides (BaSnO3, Bi2WO6). The simple MOS
were synthesized by aqueous deposition of metal hydroxides with subsequent annealing
at temperature 300–700 ◦C. Mixed-metal oxides were obtained by co-precipitation of metal
hydroxides and hydrothermal treatment with subsequent annealing at 300–500 ◦C. The
materials consisted of phase-pure nanocrystalline wurtzite-like ZnO, rutile-like SnO2,
monoclinic γ-WO3, cubic perovskite-like BaSnO3, and Aurivillius phase Bi2WO6 with
the crystallite size in the range dXRD = 3–50 nm and specific surface area 4–100 m2/g
(Table 2) [63,74–78]. Mixed-phase TiO2 with the rutile:anatase ratio of 3:2 was obtained after
calcination at 700 ◦C [78]. TEM and SEM micrographs of the materials in Figures 9 and 10
demonstrate the random shaped morphology of the nanoparticles of materials. Active
sites of different types were determined by electron paramagnetic resonance (EPR) and
probe molecules techniques: temperature programmed desorption of ammonia (TPD) and
temperature programmed reduction by hydrogen (TPR). The principles and procedures of
the active sites determination are described in the Appendix A.
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Figure 9. HRTEM images of nanocrystalline ZnO, In2O3, and SnO2, and TEM image of WO3; the
sample were annealed at 300 ◦C. The insets show electron diffraction patterns. Adapted with
permissions from ref. [42] copyright 2019 by the authors (CC BY); ref. [76] copyright 2019 by the
authors (CC BY); ref. [94] copyright 2015 Elsevier; ref. [95] copyright 2013 American Chemical Society.
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Table 2. Concentration of active sites at the surface of n-type MOS obtained at different annealing temperature (Tanneal) and
having different mean crystallite size (dXRD) and specific surface area (SSA) [63,76–79,94,96].

MOS Tanneal, ◦C dXRD, nm SSA, m2/g

Active Sites Concentration, 10−6 mole/m2

Acid Sites 1 Oxidizing Sites
Donor Sites

VO− 3Weak
(Broensted)

Strong
(Lewis)

Total
n (H2,TPR) 2 O2− 3

ZnO 300 11–13 45 0.4 ± 0.1 1.8 ± 0.4 6.6 ± 0.5 4.4 × 10−5 8 × 10−6

In2O3
300 7–8 100 n.d. 4 n.d. 4 5.8 ± 0.4 1.3 × 10−2 -
500 16–19 35 0.5 ± 0.1 1.7 ± 0.4 4.1 ± 0.8 1.5 × 10−2

SnO2 300 3–5 95 0.6 ± 0.1 2.4 ± 0.5 23.6 ± 0.8 1.4 × 10−5 3.5 × 10−4

500 10–12 25 0.5 ± 0.2 1.5 ± 0.4 14.0 ± 1.2
700 16–20 10 0.5 ± 0.2 1.2 ± 0.5 12.6 ± 2.6

BaSnO3 500 20–22 8 0.4 ± 0.2 0.7 ± 0.3 12.2 ± 2.8 2.5 × 10−4 -

TiO2 700 27–30 (rutile),
38–46 (anatase) 5 3.3 ± 0.8 8.2 ± 1.9 20.8 ± 3.1 6 × 10−6 6.8 × 10−4

WO3

300 7–9 35 6.1 ± 0.2 21.7 ± 0.9 5.4 ± 0.6 - 3.1 × 10−3

450 19–22 9 5.1 ± 0.9 15.6 ± 1.2 -
600 23–25 4 3.1 ± 0.6 8.9 ± 2.0 -

Bi2WO6 300 14–15 9 0.8 ± 0.3 1.7 ± 0.6 16.4 ± 2.0 - -
1 Evaluated by TPD of ammonia. 2 Evaluated by TPR with hydrogen. 3 Evaluated by EPR. 4 No data for TPD from In2O3 annealed at
300 ◦C because of ammonia oxidation caused by residual nitrate species [78,97].

3.1. Acid Sites

Acid sites were determined by TPD of ammonia [63,75,78,79,98]. Desorption patterns
are shown in Figure 11a. The low-temperature bands at 50–200 ◦C were due to desorption
of weakly bound probe molecules. Molecular NH3 evolved at this temperature, as was
confirmed by mass-spectrometry (Figure 11b). These bands were ascribed to weak (Brøn-
sted) acid sites, i.e., acidic OH-groups. At higher temperature (above 200 ◦C, Figure 11a)
ammonia desorbed from stronger (Lewis) acid sites, i.e., coordinately unsaturated cations
at the oxides surfaces. Concentration of Brønsted and Lewis acid sites increased in the
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order ZnO ≈ In2O3 < SnO2 < TiO2 < WO3 (Figure 12). It agrees with the increment of
metal-oxygen bond energy, electronegativity and charge/radius ratio of cations (Table 1).
In the same order does the optical basicity of oxides decrease [81]. The coincident trends of
surface acidity, EM-O and electronegativity should be due to increasing charge/size ratio
for the cations Zn2+, In3+, Sn4+, Ti4+, W6+. The higher positive charge density at a cation
(Lewis acid) favors stronger attraction of lone electron pair donor (Lewis base).
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3.2. Donor Sites (Oxygen Vacancies)

Donor paramagnetic sites attributed to single charged oxygen vacancies VO
− were

recognized on the EPR spectra of ZnO, SnO2, TiO2, WO3, by the signals with g-factor
below 2.00 (Figure 13). The signal intensity was highly sensitive to temperature because
of relaxation of excited VO

− spin states on lattice phonon vibrations [79]. Concentration
of VO

− in MOS increases with increasing EM-O (Figure 14a). The concentration was
calculated per unit surface area (Table 2), although the sensitivity to phonon vibrations
suggests that oxygen vacancies are mainly inside the oxide nanoparticles. Nevertheless,
the values normalized per 1 mole of MOS followed the same tendency as in Figure 14a.
Noteworthy, oxygen vacancies were detected in oxides under ambient conditions. The
increasing concentration of VO

− in SnO2, TiO2 and WO3 agrees with the renowned oxygen
deficiency of these compounds, e.g., the existence of Magneli phases (TinO2n−1) and
numerous WO3-x phases [99]. The stability of oxygen vacancies in MOS with high EM-O
can be explained by the relatively high electronegativity of the cations which can trap the
loosely bound electrons, and, thus, be reduced to Sn2+ (and Sn3+ [100]), Ti3+, W5+ (and
W4+), respectively. The formation of oxygen vacancy reduces the coordination number of
cations, which is favorable for stronger (more covalent) bonding of electronegative cations
with oxygen anions. On the other hand, the more stable are oxygen vacancies, the less
readily should they donate electrons to chemisorbed acceptor molecules like O2. Therefore,
the concentration of chemisorbed oxygen (including ionosorbates O2

−) is lower on the
surface of these oxides (Figure 14b). Oxidation of gas molecules (e.g., H2 in TPR) on the
surface of oxides which are prone to oxygen deficiency is likely limited by the interaction
with lattice oxygen anions (Equation (6)), i.e., described by Mars-van Krevelen mechanism
in heterogeneous catalysis or oxygen vacancy model of sensor response.
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−) determined

by EPR (c). The values are taken from Table 2.

3.3. Oxidizing Sites (Chemisorbed Oxygen)

The paramagnetic ionosorbates O2
− with the triplet EPR signal (g1 = 2.00, g2 = 2.01,

g3 = 2.02–2.03 [25,103]) were observed on EPR spectra of nanocrystalline In2O3 [94,97],
ZnO [102], SnO2 and TiO2 [96,101,104] (Figure 13). The concentration of O2

− at the oxides
surfaces (10−2–10−5 micromole/m2) was by 2–6 orders of magnitude lower than that of
oxidizing sites evaluated by TPR (Table 2). Hence, the active sites responsible for probe
molecules oxidation were mainly constituted by other adsorbed and/or oxygen species
and OH-groups, rather than O2

−. The small concentration of O2
− is in line with Weisz

limitation, which states that maximum coverage of ionosorbates at the semiconductor
surface cannot exceed 10−3–10−2 monolayer, i.e., 1.7 × 10−2–1.7 × 10−1 micromole/m2

assuming that O2
− has normal orientation and radius close to r(O−) = 1.76 Å [8]. The

concentration of O2
− determined by EPR decreased as the metal-oxygen bond energy

increased (Figure 14b). As an assumption, from the oxides with lower EM-O (ZnO, In2O3)
lattice oxygen anions are desorbed into gas phase (Equation (1)). Thus formed oxygen
vacancies are unstable due to low electronegativity of the cations In3+, Zn2+ and readily
adsorb oxygen, including the formation of O2

− (Equation (2)). Noteworthy, the fraction of
O2
− in oxidizing sites concentration was larger in In2O3: n(O2

−):2n(H2(TPR)) ≈ 4 × 10−2.
Thus, the donor sites (oxygen vacancies) at the surface of oxides with low EM-O are mostly
blocked by chemisorbed oxygen species from air; it limits the surface population by other
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adsorbates (e.g., neutral adsorbed O2, OH-groups) which could serve as the oxidizing
surface sites.

Oxidizing surface sites were evaluated using TPR with hydrogen [63,75,76,78,79].
TPR profiles are shown in Figure 15. The oxides SnO2, In2O3 and WO3 were reduced to
metals at temperature 400–900 ◦C. Temperature of reduction rates maxima (Tm) shifted
from Tm = 500–660 ◦C for In2O3 and SnO2 to Tm = 700–900 ◦C for WO3, which agrees with
increasing thermodynamic stability of the oxides, as follows from increasing EM-O and
decreasing formation enthalpy (Table 1). The maxima of bulk reduction rates of SnO2
and WO3 also shifted to higher temperature with the increase of particle size. It can be
due to higher thermodynamic stability with increasing crystallinity, as well as due slower
reduction kinetics of larger MOS nanoparticles. TiO2 cannot be reduced completely by
hydrogen, and the reduction of ZnO was not completed under the TPR conditions to
prevent the evolution of Zn vapor. Low intense hydrogen consumption bands below
300 ◦C were attributed to the reduction of oxidizing surface sites like chemisorbed oxygen
(O2(ads), O2

−, O−), surface oxygen anions (O2−) and hydroxyl species:

On
m−

(surf) + 2n H2(g) = 2n H2O(g) + m e− , (n = 1, 2; m = 0, 1, 2)

OH−(surf) + 1/2 H2(g) = H2O(g) + e− (8)
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Concentration of oxidizing surface sites n(H2,TPR) in Table 2 was calculated equivalent
to micromoles of H2 consumed per 1 m2 of surface area. It was shown to be affected
by the microstructure parameters. On the examples of SnO2 or TiO2 it can be seen that
the increment of particle size and decrease of BET area results in the drop of n(H2,TPR)
(Table 2). It can be assumed that smaller nanoparticles possess more defect-site atoms
(at the edges, steps, corners, etc.) which hold the adsorbed oxygen and OH-groups more
strongly (or, the smaller particles are more easily reducible) than regular atoms on a crystal
surface, and the number of adsorbates per unit surface area increases. To estimate the
effect of the metal oxide composition on the surface reducibility, the n(H2(TPR)) values
were plotted in relation to metal-oxygen bond energies in Figure 14c. Noteworthy, the
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higher concentration of oxidizing sites was found for the oxides with intermediate EM-O
(SnO2, TiO2), in comparison to In2O3 (lower EIn-O) and WO3 (higher EW-O). The origin
of the volcano-shape dependence may be deduced from the trends of descending O2

−

(Figure 14b) and growing VO
− concentrations with increasing EM-O (Figure 14a). The

enhanced surface reducibility of MOS with intermediate metal-oxygen bond energy might
result from a proper balance between oxygen vacancy formation (Equation (1)) and oxygen
chemisorption (Equations (2) and (3)). On the one hand, the oxides ZnO, SnO2, TiO2
possess oxygen vacancies which are persistent in ambient air (in contrast to those in In2O3)
and may serve as adsorption sites for oxygen species (including O2

− observed by EPR)
and OH-groups. On the other hand, oxygen vacancies associated with the cations Zn2+,
Sn4+, Ti4+ should be rather unstable and adsorptive, in comparison to those associated by
electronegative W6+ cations in oxygen-deficient WO3.

4. From Simple to Mixed-Metal Oxides: Metal-Oxygen Bond Energy and Active Sites

The complication of chemical composition of MOS is a powerful tool for tailoring the
functional properties, including gas sensing behavior. The impurities may be introduced
into the bulk of metal oxides or deposited onto the surface. Bulk additives can be grouped
into dopants which do not alter the phase composition (e.g., Sb-doped SnO2 [105]; Sn-
doped In2O3 [106]; Nb-doped TiO2 [107], etc.), and second components which condition
the formation of new phases. Being incorporated into crystal lattice, dopants have minor
effect on surface reactivity and are used for regulation of electronic properties of MOS. In
this section, we focus on the examples of mixed-metal oxides which can be considered as
derivatives of simple MOS, but exists in distinct crystalline phases: BaSnO3 in relation to
SnO2, and Bi2WO6 in relation to WO3. The mixed-metal oxides were synthesized under
hydrothermal conditions starting from freshly deposited SnO2·xH2O and H2WO4. The
former was mixed with Ba(OH)2 to obtain BaSnO3, and the latter—with Bi(OH)3 to obtain
Bi2WO6 [63,77].

4.1. Crystal Structure and Metal-Oxygen Bonding

BaSnO3 has a perovskite-like cubic structure, which differs from the tetragonal rutile
structure of SnO2 (Figure 16a). The structure of Aurivillius phase Bi2WO6 consists of
alternating fluorite-like (Bi2O2)2+ and the perovskite-like (WO4)2− layers. The latter are
comprised by corner-shared octahedra {WO6}, which is relative to the structure of WO3
(Figure 16b). Semiconductor properties of the pairs of compounds BaSnO3–SnO2 and
Bi2WO6–WO3 are similar: the simple and mixed-metal oxides are n-type semiconductors
with close bandgap widths of Eg = 3.4–3.6 eV (BaSnO3, SnO2) [61,108] and Eg = 2.7–2.8 eV
(Bi2WO6, WO3) [109,110]. Thus, the introduction of cations Ba2+ or Bi3+ and the accordant
change of crystalline phases when the mixed-metal oxides are formed from SnO2 and WO3,
respectively, do not affect semiconductor properties. The latter are determined by the
framework of interconnected octahedra {SnO6} or {WO6}, which exist in the structures of
simple oxides and mixed-metal oxides (Figure 16). Actually, DFT simulations showed that
valence band maxima (VBM) in these compounds are mainly contributed by filled non-
bonding O 2p-states [63,111,112]. The conduction band maximum (CBM) in SnO2 is mainly
due to antibonding Sn 5s and O 2p states; and they are slightly contributed by Ba 6s states
in the CBM of BaSnO3. The antibonding Sn 5s- and Ba 6s-orbitals are empty in both cases,
which does not deteriorate metal-oxygen bonding in SnO2 and BaSnO3. Nevertheless, a
slightly weaker Sn-O bonding in BaSnO3 can be deduced, respective to SnO2. Firstly, Sn-O
distance is a little longer in BaSnO3 (2.06 Å [113]), respective to SnO2 (2.02 Å [61]). Secondly,
from the TPR patterns (Figure 15) it can be inferred that bulk reduction of BaSnO3 started
at a lower temperature (about 390 ◦C), than that of SnO2 (430 ◦C), judging by the data for
materials with comparable particles sizes. Tin oxide was completely reduced in one step
with the maximum rate of H2 consumption at Tm = 600–660 ◦C:

SnO2(s) + 2 H2(g) = Sn(l) + 2 H2O(g) (9)
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Although BaSnO3 was incompletely reduced during TPR, the 1st hydrogen consump-
tion peak centered at Tm = 500 ◦C was due to partial reduction of the oxide and, thus,
corresponded to the cleavage of Sn-O bonds in the crystal lattice:

BaSnO3(s) +
1
2

H2(g) =
1
2

Ba2SnO4(s) +
1
2

SnO(s) +
1
2

H2O(s) (10)

The 2nd peak on the TPR pattern of BaSnO3 with the maximum at 890 ◦C was due to
reduction of residual SnO.

In WO3 and Bi2WO6, the CBM is equally impacted by W 5d- and O 2p-states [63].
The empty Bi 6p-states do not contribute to CBM, but the filled Bi 6s states do affect the
VMB. The Bi 6s–O 2p interaction is antibonding, which decreases the energetic stability of
Bi2WO6 and diminishes W-O bond energy in the structure, respective to WO3. It follows
from the comparison of integral partial crystal orbital Hamilton population (-IpCOHP) as a
measure of bond energy, bond lengths and partial charges (Bader charge analysis) of atoms.
Bi2WO6 possesses lower W-O bond energy (lower-IpCOHP), longer average W-O distance
and increased ionicity of W-O bonds (higher partial atomic charges), in comparison to
WO3 [63]. In agreement with the first-principles calculations, TPR data support the lower
W-O bond stability in Bi2WO6 than in WO3 (Figure 15). Reduction of WO3 proceeded
sequentially [63,75]:

WO3(s) + H2(g) = WO2(s) + H2O(g), Tm = 700 ◦C (11)

WO2(s) + 2 H2(g) = W(s) + 2 H2O(g), Tm = 880 ◦C (12)

In Bi2WO6, bismuth was first reduced to metallic Bi at temperature Tm = 550 ◦C:

Bi2WO6(s) + 3 H2(g) = 2 Bi(l) + WO3(s) + 3 H2O(g) (13)

The peaks of two-step reduction of residual WO3 were observed at Tm = 680 ◦C and
Tm = 780 ◦C, i.e., at lower temperature than the respective ones for pristine WO3 (Figure 15).
It indicates on the lower W-O bonds stability in the structure of Bi2WO6, in comparison
to WO3 [63].

4.2. Concentration of Active Sites

The concentration of oxidizing surface sites estimated by hydrogen consumption
in the lower temperature intervals (below 300 ◦C) on TPR patterns (Table 2) was close
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for SnO2 and BaSnO3, if samples with similar particle sizes were compared. The higher
surface reducibility was observed for Bi2WO6, respective to WO3, which agrees with lower
metal-oxygen bonds energy in the former.

Surface acidity of MOS is strongly influenced by the constituent cations. The con-
centration of Brønsted and Lewis acid sites evaluated by TPD was lower at the surfaces
of BaSnO3 and Bi2WO6, in comparison to SnO2 and WO3, respectively (Table 2). It was
shown that microstructure had minor impact on the difference of surface acidity between
Bi2WO6 and WO3; it was mainly due to distinct chemical composition [63]. The lower
acidity of mixed-metal oxides was attributed to the presence of Ba2+ or Bi3+ cations at the
surfaces of BaSnO3 and Bi2WO6, provided that these cations have lower charge/radius
ratio and, hence, lower electronegativity and weaker Lewis acidity than Sn4+ in pristine
SnO2 or, moreover, W6+ in pristine WO3.

5. Impact of Active Sites on Gas Sensitivity of Nanocrystalline n-Type MOS

In this section, the correlations in active sites concentrations and the sensitivities of
nanocrystalline n-type MOS to four analyte gases (NH3, CO, VOCs, NO2) are discussed
based on our previously published research works. These correlations were deduced from
the plots of sensitivity vs. metal-oxygen bond energy (Figures 17–20) compared with the
relations of active sites concentrations and EM-O (Figures 12 and 14). The specific cases of
improved selectivity of mixed-metal oxides to SO2 and H2S are outlined.

The sensitivity (S) was defined as the relative change of resistance in presence of
reducing (Red) or oxidizing (Ox) gases:

SRed = (Rair−RRed)/RRed,

SOx = (ROx−Rair)/Rair (14)

where Rair is sensor resistance in air, RRed—resistance in presence of reducing gases (NH3,
CO, VOCs, SO2, H2S, etc.), ROx—resistance in presence of oxidizing gas (NO2). It known
that the sensitivity in general increases with the increment of specific surface area and the
decrease of particle size [22,23,114], and we also observed it on the particular examples of
nanocrystalline MOS and analyte gases [42,75]. In the syntheses of nanocrystalline MOS,
the microstructural parameters could not be finely matched between different materials
due to distinct energetics and kinetics of oxides crystallization. Therefore, in order to uni-
formly compare the sensitivities we defined an effective sensitivity (Seff) as the sensitivity
normalized per 50 m2/g of the specific surface area of each sensor material [78]:

Seff = S·50/SSA (15)

where SSA is the main value of the specific surface area of materials (Table 2). The value of
50 m2/g was chosen as an average expected SSA of nanocrystalline MOS obtained by the
aqueous deposition or hydrothermal routes.

The effective sensitivities of MOS to the fixed concentration of analyte gases were
compared in dry air conditions and measured at optimal operation temperature, i.e., at
temperature of maximum sensitivity of the sensors to the given analyte gas. The large
scattering of the Seff data in Figures 17–20 arouse from the sets of data compared, e.g.,
samples with same composition and different microstructure parameters, as well as errors
in BET area evaluation.

5.1. Sensitivity to Ammonia and Surface Acidity

The sensitivity of different MOS to ammonia tends to increase for the MOS with
increasing metal-oxygen bond energy (Figure 17a). Ammonia is a reducing gas, which is
oxidized on the surface of pristine MOS mainly to N2 [31,115–117]:

NH3(ads) + 3/2n On
m−

(surf) =
1
2

N2(g) + 3/2 H2O(g) + 3m/2n e− (16)
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although NOx species were observed by mass-spectral analysis of desorbed gas in TPD of
NH3 from NO3-contaminated In2O3 [78] or doped SnO2 [116].

DRIFT studies showed that basic NH3 molecules were chemisorbed on the acid
sites and the binding with Lewis acid sites (surface cations) was strong enough, so that
molecular adsorbates were predominant at the surfaces of MOS exposed to ammonia gas
at elevated temperature [75,116,118]. Thus, the oxidation reaction (Equation (16)) which
determines the sensor response is preceded by NH3 chemisorption on surface acid sites.
The concentration of acid sites increases with the increment of metal-oxygen bond energy
(Figure 12), which agrees with the increasing sensitivity to NH3 (Figure 17b). Thus, the
sensitivity of MOS to NH3 is contributed by surface acidity that controls the chemisorption
of analyte gas molecules.

Sensors 2021, 21, x FOR PEER REVIEW 20 of 44 
 

 

although NOx species were observed by mass-spectral analysis of desorbed gas in TPD of 
NH3 from NO3-contaminated In2O3 [78] or doped SnO2 [116]. 

DRIFT studies showed that basic NH3 molecules were chemisorbed on the acid sites 
and the binding with Lewis acid sites (surface cations) was strong enough, so that molec-
ular adsorbates were predominant at the surfaces of MOS exposed to ammonia gas at 
elevated temperature [75,116,118]. Thus, the oxidation reaction (Equation (16)) which de-
termines the sensor response is preceded by NH3 chemisorption on surface acid sites. The 
concentration of acid sites increases with the increment of metal-oxygen bond energy (Fig-
ure 12), which agrees with the increasing sensitivity to NH3 (Figure 17b). Thus, the sensi-
tivity of MOS to NH3 is contributed by surface acidity that controls the chemisorption of 
analyte gas molecules. 

  
(a) (b) 

Figure 17. Sensitivity of pristine and RuO2-functionalized nanocrystalline n-type MOS to 20 ppm NH3 at temperature 150–
250 °C in relation to metal-oxygen bond energy in MOS (a) and acid sites concentration at the MOS surfaces (b). Adapted 
with permissions from ref. [75] copyright 2018 Elsevier; ref. [98] copyright 2018 Elsevier; copyright [116] 2019 John Wiley 
and sons; ref. [117] copyright 2012 Elsevier. 

5.2. Sensitivity to CO and VOCs Impacted by Oxidizing Sites and Acid Sites 
The relation of CO sensitivity to metal-oxygen bond energy in MOS (Figure 18a) re-

sembles that of oxidizing sites concentrations estimated by TPR (Figure 14c). Sensor re-
sponse to CO is due its oxidation by surface oxygen and hydroxyl species at the surface 
of MOS [75,82,87]: 

CO(g) + 1/n Onm−(surf) = CO2(g) + m/n e− (17) 

CO(g) + OH(surf) = CO2(g) + H+(surf) + e− (18)  

Besides CO2, carbonate species were detected by infrared spectroscopy on the surface 
of ZnO, In2O3 and SnO2 exposed to CO under certain conditions [5,76,119]. Carbon mon-
oxide has no acid-base properties; hence, its adsorption is not influenced by surface acid-
ity of metal oxides. Thus, it is reasonable that the sensitivity to CO is dependent on the 
surface reducibility of MOS which reflects the concentration of active species for CO oxi-
dation (Equations (17) and (18)). In agreement with this is the increasing sensitivity with 
the concentration of oxidizing sites at the MOS surface (Figure 18b). 

Figure 17. Sensitivity of pristine and RuO2-functionalized nanocrystalline n-type MOS to 20 ppm NH3 at temperature
150–250 ◦C in relation to metal-oxygen bond energy in MOS (a) and acid sites concentration at the MOS surfaces (b).
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5.2. Sensitivity to CO and VOCs Impacted by Oxidizing Sites and Acid Sites

The relation of CO sensitivity to metal-oxygen bond energy in MOS (Figure 18a)
resembles that of oxidizing sites concentrations estimated by TPR (Figure 14c). Sensor
response to CO is due its oxidation by surface oxygen and hydroxyl species at the surface
of MOS [75,82,87]:

CO(g) + 1/n On
m−

(surf) = CO2(g) + m/n e− (17)

CO(g) + OH(surf) = CO2(g) + H+
(surf) + e− (18)

Besides CO2, carbonate species were detected by infrared spectroscopy on the sur-
face of ZnO, In2O3 and SnO2 exposed to CO under certain conditions [5,76,119]. Carbon
monoxide has no acid-base properties; hence, its adsorption is not influenced by surface
acidity of metal oxides. Thus, it is reasonable that the sensitivity to CO is dependent on
the surface reducibility of MOS which reflects the concentration of active species for CO
oxidation (Equations (17) and (18)). In agreement with this is the increasing sensitivity
with the concentration of oxidizing sites at the MOS surface (Figure 18b).
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The sensitivity to VOCs (methanol, acetone) increased with metal-oxygen bond energy
and reached a plateau for SnO2, TiO2 and WO3 (Figure 19) [78]. On the one hand, it agrees
with increasing concentration of oxidizing surface sites (Figure 14c). However, in contrast
to the case of CO, the sensitivity of WO3 to VOCs did not drop, in spite of lower concen-
tration of oxidizing sites. DRIFT study of MOS interaction with methanol and acetone
vapors indicated that VOCs molecules adsorbed on surface cations and the adsorption
enhanced with increasing surface acidity of MOS. It is likely due to Lewis basicity of oxygen
atoms in CH3OH and CH3COCH3. At raised temperature that corresponds to sensors
operation temperature, the adsorbed VOCs molecules were oxidized with the formation of
carboxylate species [78,121]:

CH3OH(ads) + 5/2 On
m−

(surf) = HCOO−(surf) + 3/2 H2O(g) + 5m/2n e− (19)

CH3COCH3(ads) + 9/2 On
m−

(surf) = CH3COO−(surf) + CO2(g) + 3/2 H2O + 9m/2n e− (20)

Thus, the sensitivity of MOS to oxygen-containing VOCs should be contributed by
both processes: adsorption on Lewis acid sites and the adsorbates oxidation by oxidizing
surface species (Equations (19) and (20)). The optimal sensitivity to VOCs could be expected
for the oxides that have relatively high surface acidity balanced by surface reducibility, as it
was observed for SnO2 and TiO2 (Figure 19). Then, the persistence of sensitivity in case of
WO3 may be explained by its stronger surface acidity (Figure 12). The lower concentration
of oxidizing sites at the surface of WO3 is compensated by the abundance of acid sites,
which enforces the adsorption of VOCs and thus enhances the sensitivity. To illustrate this
conclusion, the sensitivity to VOCs was plotted against the sum of Lewis acid sites and
oxidizing sites n(H2,TPR) concentrations in Figure 19c,d.
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5.3. Sensitivity to NO2 Determined by Donor Sites

The sensitivity to NO2 was found to enhance with increasing metal-oxygen bond en-
ergy of MOS (Figure 20), i.e., following the same trend as the sensitivity to NH3 (Figure 17).
It is not an issue of selectivity, since the sensor resistance changes in opposite directions
when exposed to oxidizing gas NO2 or reducing gas NH3. It has been established that
sensing mechanism of NO2 relies on analyte molecules ionosorption with the formation
of NO2

−:
NO2(g) + e− = NO2

−
(ads) (21)

which undergoes disproportionation and/or conversion resulting in NO3
−, NO+,

etc. [41,42,122]. Loosely bound electrons in n-type MOS are associated with oxygen vacan-
cies (Equation (1)), the concentration of which (as suggested for VO

− by EPR) increases in
MOS with increasing EM-O (Figure 14a). Thus, the trend of increasing sensitivity to NO2 is
due to higher concentration of electron donor sites in metal oxides with increasing EM-O.
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5.4. Effect of Cations on Sensitivity and Selectivity of Mixed-Metal Oxides

The sensitivities of mixed-metal oxides and simple MOS to sets of various analyte
gases are compared in Figure 21 for the pairs BaSnO3–SnO2 and Bi2WO6–WO3 [63,77].
Comparing the sensitivities of SnO2 to definite concentrations of analyte gases (Figure 21a),
it may noticed that tin oxide was unselective in the detection of reducing gases and the
difference in sensor signals might be attributed to different concentrations of analyte gases
(e.g., higher sensitivity to 100 ppm H2 and lower sensitivities to 2–20 ppm CO, NH3, H2S,
etc.). On the contrary, BaSnO3 demonstrated an improved sensitivity selectively to SO2
and, to a lesser extent, to alcohols; the sensitivity of BaSnO3 to other reducing gases was
comparable with that of SnO2 (Figure 21a).
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Figure 21. Sensitivity of nanocrystalline SnO2 and BaSnO3 to NO2 (2 ppm) at 100 ◦C, CO (50 ppm), NH3 (20 ppm),
H2S (2 ppm), H2 (100 ppm), SO2 (10 ppm), ethanol (20 ppm), methanol (20 ppm) at 300 ◦C (a) [77]; and sensitivity of
nanocrystalline WO3 and Bi2WO6 to NO2 (1 ppm) at 100 ◦C, ethanol (20 ppm) at 150 ◦C, SO2 (2 ppm), formaldehyde
(400 ppb), H2S (2 ppm) at 250 ◦C, CO (20 ppm), H2 (50 ppm), NH3 (20 ppm), acetone (2 ppm), benzene (2 ppm) at
300 ◦C (b) [63].
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DRIFT spectroscopy revealed that the selectivity of BaSnO3 to SO2 was related with
specific enhancement of target molecules oxidation due to binding the produced sulfate
species with the Lewis basic sites (lattice O2− anions) associated with Ba2+ cations [77]:

SO2(g) + 1/n On
m−

(surf) + Ba2+
(lat) + O2−

(lat) = BaSO4(surf) + m/n e− (22)

Comparative sensing tests of Bi2WO6 and WO3 demonstrated the commonly higher
sensitivity of bismuth tungstate to reducing gases [63]. The improved sensitivity of Bi2WO6
to VOCs, including formaldehyde and benzene, may be outlined (Figure 21b). Based on
DFT simulations of W-O bonding in these structures, the higher sensitivity of Bi2WO6
to reducing gases was ascribed to the lower W-O bond strength and, hence, easier W-O
cleavage on the surface during the oxidation of analyte gas molecules. On the other hand,
the lack of sensitivity to NO2 was in line with the decreased concentration of donor sites
(oxygen vacancies) in Bi2WO6, in comparison to WO3. It was evidenced by XPS evaluations
that showed lower content of reduced W5+ cations in Bi2WO6 than in WO3 [63]. Also,
the sensitivity of BaSnO3 to NO2 was lower than that of SnO2 (Figure 21a); it could be
due to lower concentration of oxygen vacancies in the mixed-metal oxide. Indirectly, it
was evidenced by the higher energy of oxygen vacancy VO formation in BaSnO3 (above
4 eV [113]) than that in SnO2 (3.5 eV [124]). The other evidence for lower concentration of
donor states in mixed-metal oxides is the higher baseline sensors resistance, in comparison
to simple MOS [63,77]. Aside from the high sensitivity of WO3 to NO2, tungsten oxide
displayed poor selectivity to reducing gases, as inferred from the comparable sensor
signals in the range SRed = 1–10 for the WO3 sensor (Figure 21b). On the contrary, Bi2WO6
displayed the selectively high sensitivity to H2S, which was also in the spotlight of other
works [39,40]. It should be due to specific H2S-Bi3+ binding between the soft Pearson’s acid
(bismuth cation) and base (sulfur atom in H2S).

6. Crucial Role of Catalytic Clusters in Sensitivity and Selectivity of Functionalized
n-Type MOS

Surface functionalization by catalytic noble metal (NM) clusters (Figure 22) is a pow-
erful approach to improve sensor characteristics of MOS. Well-documented advantages of
catalytically modified MOS sensors include the enhanced sensitivity, decreased operation
temperature, shortened response and recovery times, and improved selectivity to analyte
gases [8,9,18,19]. Selectivity is a major issue in the sensing of reducing gases, since most
of toxic, pyrogenic, flammable or explosive impurities in air belong to this group. The
oxidizing pollutants are few; these molecules that have stronger electron affinity than
oxygen, e.g., NO2, ozone, halogens. Therefore, the search for selective oxidation catalysts
is challenging for the functionalization of MOS sensors to improve the sensing behavior
in the detection of reducing gases. Based on the Sabatier principle, a proper oxidation
catalyst enables the adsorption of reactants (reducing gas and oxygen) and intermediates,
as well as desorption of reaction products [64]. The optimal activity and specificity is
anticipated when the binding energies with the catalyst surface are balanced between these
species [125]. Platinum group metals have moderate adsorption energies for various gases,
since almost completed d-shell enables chemical bonding through electron acceptation
from adsorbate as well as back-donation to the adsorbate [37]. Elements with less occupied
d-orbitals as well as s-, p-, and f-elements easier donate electrons and too strongly adsorb
oxygen (resulting in oxide formation) which deteriorates its oxidation activity. The adsorp-
tion capacity of elements with fully occupied d-orbitals (Ag, Au) is relatively low and is
limited by the formation of electron vacancies in d-shell and nano-size effect [125–127].

The additives of NM form new (extrinsic) active sites at the surface of MOS (Figure 5),
as well as influence its intrinsic active sites. The immobilized catalyst may impose the route
of analyte gas conversion at the surface of MOS, which results in improved selectivity and
sensitivity. The sensing mechanism in this case is dominated by the catalytic sites at the
functionalized MOS surface [49]. In this section, we summarize our research on the effects
of catalytic additives of PdOx, RuO2, and Au on the active sites and sensitivity of n-type
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MOS to CO, NH3, and VOCs. The concentration of noble metals was fixed at 1 wt.%, and
the additives were introduced by impregnation of MOS with alcohol solutions of Pd(acac)2
or Ru(acac)3. The impregnated materials were annealed at minimum temperature required
for the decomposition of acetylacetonates to maintain the dispersion of NM clusters and
prevent aggregation [74,75,117]. Gold was introduced via the colloid adsorption technique
in aqueous suspensions of MOS [78].

6.1. Role of PdOx in Room-Temperature Sensitivity to CO

Palladium- and platinum-based catalysts have long been known as efficient catalysts
for CO oxidation. The adsorption energy of oxygen on these metals (340–360 kJ/mole) is
comparable to that of CO which is favorable for co-adsorption of reacting species [128].
The additives of Pd and Pt have often been recognized to improve sensing behavior of
MOS to CO [33,75,87,129,130].

In our works, the nanocomposites MOS/PdOx obtained after decomposition of de-
posited Pd(acac)2 consisted of agglomerated MOS nanocrystals covered by amorphous
PdOx clusters and nanoparticles with the size 1–15 nm (Figure 22a). Palladium was observed
in mixed oxidation states PdO + Pd, with the dominance of the oxidized form [75,87,95].
Investigation of the active sites by surface science techniques suggested that PdOx induced
an increased concentration of aqueous species (adsorbed H2O, OH-groups, OH·spin cen-
ters) at the surface of SnO2 [79]. However, no such effect was observed for WO3-based
materials [75].

The notable effect of PdOx clusters was the increased sensitivity of functionalized
MOS sensors to CO (Figure 18). Valuably, the higher sensitivity was observed at room
temperature [75,120]. Conventional MOS sensors require raised operation temperature
(200–500 ◦C) [2,4,8,12], because of the activation barrier for analyte gas conversion at the
oxide surface (Equations (4) and (6)). At room temperature the sensitivity of MOS-based
sensors is usually vanished. Therefore, the outstanding room-temperature sensitivity of
MOS/PdOx can be utilized to improve the selectivity of CO detection and, by the way, to
diminish the power consumption of the sensor device. DRIFT studies revealed that CO
was chemisorbed specifically on Pd-sites at room temperature (Figure 23). It was deduced
that Pd-CO binding loosened the interatomic bond in the adsorbate and thus catalyzed its
oxidation by surface oxygen and hydroxyl species [75,118]:

Pd-CO(ads) + 1/n On
m−

(surf) = Pd(surf) + CO2(g) + m/n e−,
Pd-CO(ads) + OH(surf) = Pd(surf) + CO2(g) + H+

(surf) + e
(23)

Raising temperature suppressed CO chemisorption, which explained the drop of
sensitivity to CO with increasing temperature [74,75,120].
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Chemical Society.

6.2. Impact of RuO2 on Sensitivity and Selectivity to NH3

Ruthenium in the metallic Ru or oxidized RuO2 state is an efficient active phase
of catalysts for selective processing of ammonia: synthesis, decomposition or oxida-
tion [125,131,132]. DFT simulations suggested that due to moderate Ru-N bond energy, the
chemisorption of NH3 is not too strong and its conversion to NHx-intermediates and final
products (N2, NOx) proceeds with low activation barriers [125,133]. The catalytic effect
of ruthenium in the oxidation of ammonia was found promising for the improvement of
sensitivity and selectivity of Ru-modified MOS sensors [134–136].

In the nanocomposites MOS/RuO2 obtained via thermal decomposition of MOS-
impregnated Ru(acac)3 at 265 ◦C, the additive was observed in the form of randomly
shaped clusters and nanoparticles with the size ranging from 2–20 nm (Figure 22b) to few
hundred nm [75,95]. Chemical state analysis indicated on the predominantly RuO2 state of
ruthenium with a fraction of Ru3+ [74,75,95,117]. Agreeing results were obtained by TPR
of SnO2- and WO3-based materials that the concentration of oxidizing sites increased at
the surface of Ru-modified MOS [75,79].

Ru-modified MOS demonstrated substantially improved sensitivity and selectivity to
NH3 at raised operation temperature (150–250 ◦C) [75,117,135,136]. It was demonstrated
that SnO2/RuO2 was capable to discriminate NH3 traces in presence of interfering CO
gas in air [120]. Comparing different ruthenated metal oxides, an increasing sensitivity to
NH3 was found with increasing EM-O and surface acidity of MOS (Figure 17). Similarly
to the case of pristine MOS, this trend is explained by the increasing adsorption of NH3
on Lewis acid sites at the oxides surfaces. By DRIFT spectroscopy, the specific route of
NH3 oxidation catalyzed by RuO2 was evidenced [75,118]. Although NH3 adsorption was
almost unaffected by the NM additives, it was only on the Ru-modified MOS that Ru-bound
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NO species evolved from the interaction with ammonia (Figure 24) [75,118,136]. Nitrosyl
species were further oxidized to NO2 gas [117]. Thus, the reason for improved sensitivity
and selectivity to NH3 is that supported RuO2 nanoparticles specifically catalyze deep
oxidation of adsorbed ammonia at the sensors surfaces, while in the absence of ruthenium
the oxidation of ammonia likely stopped at the stage of N2 formation:

NH3(ads) + 5/2n On
m−

(surf) + Ru4+
(surf) = Ru4+-NO(ads) + 3/2 H2O(g) + 5m/2n e−,

Ru4+-NO(ads) + 1/n On
m−

(surf) = NO2(g) + m/n e−
(24)

Sensors 2021, 21, x FOR PEER REVIEW 28 of 44 
 

 

demonstrated that introducing the comparable amounts (1–3 wt.%) of the acidic SO4- and 
catalytic RuO2 additives properly enhanced the adsorption of NH3 balanced by its oxida-
tion, resulting in the optimum sensitivity. 

 
(a) 

 
(b) 

Figure 24. DRIFT spectra of pristine and functionalized by noble metal additives nanocrystalline 
SnO2 (a) and WO3 (b) exposed to NH3 (100 ppm (a); 200 ppm (b)) at 200 °C for 1 h. Adapted with 
permissions from ref. [75] copyright 2018 Elsevier; ref. [118] copyright 2015 American Chemical 
Society. 

6.3. Au-Promoted Oxidizing Sites and Sensitivity to VOCs 
Gold nanoparticles supported on metal oxides have been in focus of extensive re-

search in catalysis [37,72,126]. Although Au itself is inactive in the bulk state, it was re-
ported that the catalytic activity of nanosized gold exceeded that of platinum group met-
als in low-temperature CO oxidation [126]. Gold nano-catalysts were also shown to be 
efficient for total oxidation of VOCs [137,138]. Functionalization of MOS sensors by Au 
resulted in improved sensitivity to CO [139] and VOCs [139,140], which was also at-
tributed to catalytic activity of Au, electronic cluster-support interaction and spillover of 
oxygen. Catalytic activity of Au strongly depends on cluster size and on the support. Re-
ducible metal oxides, including MOS, are the proper supports enabling the adhesion of 
Au clusters and active oxygen species for the catalytic reaction cycle [141]. Among the 
various metal oxides, TiO2-supported Au catalysts have attracted the great interest 
[72,92,126,142,143]. The higher extent of surface oxygen activation on TiO2/Au was as-
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The distinction between the surface sites of NH3 adsorption (acid sites) and oxidation
(catalytic RuO2 sites) suggested an idea of independent co-functionalization of MOS surface
by acidic and catalytic species for tailoring the sensor characteristics. For this purpose,
SnO2 was loaded by different amounts of sulfate SO4-groups and RuO2 clusters [98]. It
was demonstrated that introducing the comparable amounts (1–3 wt.%) of the acidic SO4-
and catalytic RuO2 additives properly enhanced the adsorption of NH3 balanced by its
oxidation, resulting in the optimum sensitivity.

6.3. Au-Promoted Oxidizing Sites and Sensitivity to VOCs

Gold nanoparticles supported on metal oxides have been in focus of extensive research
in catalysis [37,72,126]. Although Au itself is inactive in the bulk state, it was reported
that the catalytic activity of nanosized gold exceeded that of platinum group metals in
low-temperature CO oxidation [126]. Gold nano-catalysts were also shown to be efficient
for total oxidation of VOCs [137,138]. Functionalization of MOS sensors by Au resulted
in improved sensitivity to CO [139] and VOCs [139,140], which was also attributed to
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catalytic activity of Au, electronic cluster-support interaction and spillover of oxygen.
Catalytic activity of Au strongly depends on cluster size and on the support. Reducible
metal oxides, including MOS, are the proper supports enabling the adhesion of Au clusters
and active oxygen species for the catalytic reaction cycle [141]. Among the various metal
oxides, TiO2-supported Au catalysts have attracted the great interest [72,92,126,142,143].
The higher extent of surface oxygen activation on TiO2/Au was ascribed to the proper Ti-O
bond energy favorable for facile interplay between oxygen vacancy formation and oxygen
chemisorption from gas phase [144]. However, the origin of active sites in oxide-supported
Au catalysts has still been questionable: periphery Au and O atoms, charged Au+ species,
Au-OH groups, etc., were suggested [92,126,145].

Functionalization of MOS surfaces by small gold clusters is challenging, since the
mobility of Au atoms induces the aggregation of gold in larger nanoparticles at raised
operation temperature of sensors. Furthermore, chloride ions evolved from the precursor
HAuCl4 decomposition promote the aggregation of gold. To minimize it, the colloid ad-
sorption technique of MOS modification by freshly deposited Au(OH)3 is preferable, rather
than the impregnation by HAuCl4 [126]. Recently, we reported on a comparative study of
Au-modified MOS sensors obtained by colloid adsorption and thermal decomposition of
Au(OH)3 at above 200 ◦C [78]. The additive was observed in the metallic state Au0 in the
form of nanoparticles with the size 5–30 nm. Investigation of active sites showed that in
presence of Au the concentration of oxidizing sites increased at the surfaces of n-type MOS,
and the relation n(H2,TPR –EM-O had the volcano shape with the maximum for TiO2/Au
(Figure 25a), similarly to that for pristine MOS (Figure 14c).

The Au-functionalized sensors displayed higher sensitivity to methanol and acetone,
respective to pristine MOS (Figure 25b,c). Noteworthy, the dependence of VOCs sensitivity
on EM-O in MOS was similar to that of oxidizing sites concentration (Figure 25a), i.e.,
with the maximum for TiO2/Au. On the other hand, it was dissimilar to the relation
VOCs sensitivity–EM-O for pristine MOS which had a plateau for SnO2, TiO2, and WO3
(Figure 19a,b). The plateau could be ascribed to increased adsorption of VOCs at the
abundant acid sites of WO3 which compensated the lower oxidizing sites concentration
at its surface. The sensitivity of Au-functionalized MOS to VOCs was less dependent
on surface acidity and to a larger extent determined by the concentration of oxidizing
sites (Figure 25d,e). DRIFT measurements showed no significant changes in the oxidation
routes of CH3OH and CH3COCH3 on Au-functionalized MOS, respective to pristine oxides
(Equations (19) and (20)) [78]. Thus, in presence of Au the oxidation of VOCs by surface
oxygen was enhanced leading to higher sensitivity, but the sensing mechanism was not
altered. The volcano-shaped relation with the maximum for TiO2/Au allows assuming that
the oxidation reactions (Equations (19) and (20)) influence the sensitivity of MOS/Au to a
larger extent, than the adsorption on the acid sites of MOS. It is in line with the concept of
Au-promoted surface oxygen activation, which was most noticeable on titania-supported
catalysts [144].
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7. Conclusions

In this review of the authors’ research on sensor materials based on nanocrystalline
n-type MOS (In2O3, ZnO, SnO2, TiO2, WO3) with particle sizes in the 3–50 nm range,
the direct correlations between material composition, concentrations of active sites at the
surface, and gas sensing behavior was substantiated. The active sites were classified as
acid sites of Brønsted type (acidic OH-groups) and Lewis type (coordinately unsaturated
cations), oxidizing sites (adsorbed oxygen, OH-species, and/or surface oxygen anions),
and donor sites (oxygen vacancies and/or reduced cations). In line with the increment
of charge/radius ratio and electronegativity of the constituent cations, the metal-oxygen
bond energy reported in literature and surface acidity probed by TPD of ammonia increase
in the order: In2O3, ZnO, SnO2, TiO2, WO3. Concentration of oxidizing sites evaluated by
TPR was higher at the surface of the oxides with moderate EM-O (SnO2, TiO2). Probably,
it was due to interplay of two opposite trends: enhancing oxygen vacancies formation
and decreasing oxygen chemisorption with the increase of EM-O, as was shown by the
concentrations of paramagnetic sites VO

− and O2
− measured by EPR. The extrinsic cat-

alytically active sites were formed via the functionalization of MOS surfaces by PdOx
and RuO2 clusters with the size 1–20 nm, and Au nanoparticles with the size 5–30 nm
surfaces. Mixed-metal oxides BaSnO3 and Bi2WO6 obtained by hydrothermal synthesis
were considered in comparison with SnO2 and WO3, respectively. In the pairs BaSnO3–
SnO2 and Bi2WO6–WO3 there are similar structural units and semiconductor properties
determined by the Sn-O and W-O networks, respectively. The introduction of Ba2+ slightly
elongated Sn-O bond in BaSnO3, respective to SnO2. First-principles analysis showed that
the filled 6s-level of Bi3+ deteriorates the stability of crystal structure and W-O bonding
in Bi2WO6, in comparison to WO3. Due to the relatively low charge/radius ratio and
electronegativity of Ba2+ and Bi3+ cations, the concertation of acid sites was lower at the
surfaces of mixed-metal oxides, compared with SnO2 and WO3. Due to lower W-O bond
energy, Bi2WO6 had higher oxidizing surface reactivity than WO3.

The trends in active sites concentration and sensitivity to different analyte gases
(NH3, NO2, CO, VOCs) were compared for MOS using metal-oxygen bond energy as a
descriptor parameter. It was shown that sensitivity of pristine and RuO2-modified MOS to
NH3 increased with surface acidity reaching maximum for WO3-based sensors. Diffuse-
reflectance infrared spectroscopy suggested that it was due to enhanced adsorption of NH3
on Lewis acid sites that favors the oxidation of adsorbed molecules and sensor response
formation. The sensitivity to CO which has no acid-base behavior is likely determined
by the oxidation reaction at the surface. The sensitivity of pristine and PdOx-modified
MOS to CO correlated with the concentration of oxidizing sites which was higher for SnO2
and TiO2. The sensitivity to VOCs molecules possessing Lewis-basic O atoms (methanol,
acetone) was contributed by the processes of adsorption on acid sites and the conversion
on oxidizing sites. For pristine MOS, the sensitivity to VOCs reached a plateau for SnO2,
TiO2, WO3. The higher surface acidity of WO3 and enhanced adsorption of VOCs could
compensate its lower oxidizing sites concentration, respective to SnO2 and TiO2. The
sensitivity to oxidizing gas NO2 increased with the increment of donor sites concentration
(oxygen vacancies) in MOS with the maximum for pristine WO3.

Changing the composition of sensor materials modifies the metal-oxygen bonding and
intrinsic active sites, as well as results in the formation of specific active sites and improved
selectivity. Mixed-metal oxides BaSnO3 and Bi2WO6 possessed lower concentration of
donor sites and decreased sensitivity to NO2, respective to SnO2 and WO3. The presence
of Ba2+ cations at the surface of BaSnO3 favored the oxidation of sulfur dioxide to sulfate-
species, which provided the selectively high sensitivity to SO2. The lower W-O bond
energy and higher surface reducibility of Bi2WO6 correlated with its improved sensitivity
to reducing gases including VOCs, in comparison to WO3. The selectivity of Bi2WO6 to
H2S should be due to specific binding of hydrogen sulfide to Bi3+ cations.

Clusters and nanoparticles of noble metals (or noble metal oxides) with specific cat-
alytic activity in the oxidation of certain gas molecules can significantly change the sensing
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mechanism. Pd sites specifically bind CO which imposes the sensitivity and selectivity
of Pd-functionalized MOS to carbon monoxide at room temperature. Moreover, the lack
of target molecules adsorption at raised temperature determines the drop of MOS/PdOx
sensitivity to CO. RuO2 clusters specifically catalyze oxidation of NH3 adsorbed at the
surface of MOS producing NOx. It leads to a pronounced improvement in the selectivity
to ammonia for RuO2-modified sensors, and the sensitivity increases with the surface
acidity of MOS reaching maximum for WO3/RuO2. Gold nanoparticles promote oxidizing
sites at the surface of MOS, likely due to activation of surface oxygen species. It results in
improved sensitivity to reducing VOCs molecules. Although the route of methanol and
acetone conversion did not change in presence of Au, the sensitivity of Au-functionalized
sensors was mainly determined by the oxidation reaction and was higher for the SnO2/Au
and TiO2/Au nanocomposites.

Further research is necessary to improve fundamental understanding of the interrela-
tion “materials composition—active sites at the surface—sensing behavior”. We believe
that surface science techniques like TPR, TPD, infrared spectroscopy (FTIR, DRIFT) are
worth being included into the portfolio of characterization tools for sensing materials.
Finding out the correlations between sensitivities to analyte gases and concentrations of
adsorptive (acid/base) and reactive (redox) surface sites is informative on the processes
which determine the sensitivity and selectivity, and DRIFT spectroscopy sheds the light
on sensing mechanisms. The possible directions of future research on the active sites and
gas sensitivity of nanocrystalline MOS include but are not limited to the following ones.
(i) Design of new sensor materials based on simple MOS, mixed-metal oxides, and com-
posites possessing specific active sites at the surface. The parameters that could be varied
are the chemical composition, crystal structure and facets, morphology, concentration of
additives. Experimental approaches for creating and controlling the concentrations of acid
sites, reactive surface oxygen and oxygen vacancies should be developed, e.g., thermal
quenching, chemical etching, surface modification, etc. It is challenging to stabilize the
active sites in air under heating, so as to maintain the sensors stability during long-term
operation. (ii) Extending the research of mixed-metal oxides, evaluation of the effects of
cationic composition on metal-oxygen bonding, active sites, semiconductor properties and
selectivity of gas—solid interaction. (iii) The search for new catalytic additives with specific
reactivity towards redox conversion of definite analyte gases is challenging for theoretical
and experimental studies, since the catalytic functionalization of MOS sensors is a powerful
approach to improve selectivity and specify the temperature regime of gas sensing. Besides
the conventionally used additives of noble metals and transition metal oxides, the poten-
tially efficient catalysts may be found among bimetallic clusters, organically hybridized
complexes, metal-organic frameworks, chalcogenides, carbon-based compounds, etc. The
main issue would be stability of the catalytic additives under sensors operation conditions.
Metal-oxygen bonding and active sites at the surface of MOS influence the cluster/support
interplay which conditions the successive catalytic functionalization of sensors. Hence,
different MOS should be comparatively investigated as the gas sensitive composites with a
certain catalyst. (iv) Development of in situ and operando techniques for the revelation of
kinetics and energetics of gas molecules interaction which with the active sites at the MOS
sensors surfaces.
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Appendix A. Techniques for Determination of Active Sites

The oxidation states and coordination environments of metal cations, oxygen anions
and surface oxygen species can be obtained by standard techniques of materials charac-
terization, e.g., X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance
(EPR), X-ray absorption spectroscopy (XAS), Mossbauer spectroscopy (if applicable for
given cations) [45,100,146]. Fourier-transformed infrared (FTIR) spectroscopy is inevitable
for the detection of polar adsorbates that have the functional groups with O-H, N-O, N-H,
C-H, C-O, S-O bonds, etc. However, in most of the procedures the whole material is
the subject of investigation, and the information on surface sites can hardly be extracted.
Specific techniques should be used for probing the chemical reactivity and concentration of
surface sites.

Appendix A.1. Determination of Acid/Base Sites

Acid sites can be determined by the adsorption of probe basic molecules: ammo-
nia, amines, pyridine. The base sites are usually probed by the adsorption of CO2, since
carbon dioxide has almost no redox behavior and does not undergo undesirable side
reactions at the metal oxides surfaces. The strength and quantity of adsorption can be
measured by spectrophotometric titration in presence of indicators, thermal desorption
spectrometry (TDS), temperature programmed desorption (TPD) [147–149]. The strength
of acid sites is characterized by a Hammett parameter (H0) related to acidity constant (Ka)
of the indicator: H0 = pKa − lg{a(IH+)/a(I), where IH+ and I are the concentrations of
protonated and deprotonated forms of the indicator. The concentrations are measured
by spectrophotometry [150]. The experiments are performed in liquid phase with the
suspensions of metal oxides. A number of indicators with different acidity constants are
used to find out the distribution of acid sites by their strength. Yet, the nature of acid sites
scarcely correlates with the Hammett parameter. An alternate technique is potentiometric
titration using a pH-sensitive electrode. An electrode potential scale was proposed to quali-
tatively discriminate the strength of acid sites: >100 mV—very strong, 0–100 mV—strong,
−100–0 mV—weak, and <−100 mV—very weak acid sites [151]. The informative method
to identify the acid/base sites is infrared spectroscopy. From the characteristic vibrational
frequencies of the adsorbed probe molecules and their derivatives (Table A1), the Brøn-
sted sites (OH-groups) and Lewis sites (surface cations) can be distinguished [98,152,153].
The adsorption of probe molecules can be detected in situ by DRIFT spectroscopy, and
no heating is required in the measurements. It is applicable for the characterization of
reactive surfaces (metal oxides with low M-O bond energy or functionalized by catalytic
additives), since the redox conversion of probe molecules is inactivated without at low
temperature. For example, DRIFT measurements of NH3 adsorption was used to determine
the acid sites at the surface of Ru-modified sulfated tin oxide. The catalytic activity of
the supported ruthenium oxide clusters in the oxidation of ammonia ruled out the use of
temperature-programmed techniques. From the observed evolution of vibrational peaks
of adsorbed NH3 and NH4

+ it was found that Lewis and Brønsted acidity of the surface
of SnO2/Ru decreased when the percentage of ruthenium increased [98]. The shift of
vibrational peaks of adsorbed probe molecules to higher wavenumbers correlates with
the strength of acid/base sites [154]. However, for the quantitative analysis of surface
acidity/basicity by infrared spectroscopy, the extinction coefficients for the respective
vibrational bands should be known.
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Table A1. Infrared vibrational wavenumbers of adsorbed probe molecules on acid/base sites at
metal oxide surface.

Acid/Base Site Probe
Molecule Adsorbate Vibration Wavenumber,

cm−1 Ref.

Mn+ cation
(Lewis acid)

NH3(g)

NH3(ads)

ν (N-H) 3260–3380
[152,155]δas (NH3) 1600–1630

δs (NH3) 1150–1300

OH-group
(Brønsted acid) NH4

+
ν (N-H) 3170–3230

[152,155,156]δas (NH4) 1480–1400
δs (NH4) 1680–1670

Mn+-O2−

(Lewis
acid-base pair)

NH2− + OH−
δ (NH2) 1490–1580

[152]
ν (O-H) 3600–3700

O2− anion
(Lewis base)

CO2(g)

CO3
2−

bidentate

ν (C=O) 1530–1670

[153,157]

νas (COO) 1220–1290
νs (COO) 980–1030

CO3
2−

bridging

ν (C=O) 1640–1730
νas (COO) 1280–1285
νs (COO) 1000–1020

CO3
2−

monodentate

νas (CO3) 1450–1530
νs (CO3) 1300–1370
ν (C-O) 1040–1080

OH-group
(Lewis base) HCO3

−
νas (COO) 1600–1625

[153]νs (COO) 1415–1440
δ (C-OH) 1180–1250

Thermal desorption techniques are proper for quantitative determination of sur-
face sites with different acidity/basicity strengths. In a typical experiment, a granulated
powder is pretreated in inert gas and/or dry air to clean the surface from adsorbed hu-
midity. Next, the probe molecules are adsorbed at room temperature. To perform the
temperature-programmed desorption, the sample is heated at a constant rate in a flow of
inert gas (He) or in vacuum. The amount of desorbed probe molecules can be measured
by mass-spectrometry (TDS spectrometry) or with the thermoconductivity detector (TPD
measurements) [158,159]. NH3 probe is advantageous for the determination of acid sites
due to small molecular size, high penetrating ability, and relative stability to oxidation,
in comparison to amines. The basicity of ammonia (pKb = 4.75) is sufficient for the dis-
crimination between strong (Lewis) and weak (Brønsted) acid sites. However, on highly
acidic surfaces NH3 can be adsorbed in multilayers and the concentration of acid sites
can be overestimated. Pyridine has weaker basicity (pKb = 5.2) and, therefore, is rather a
probe of strong (Lewis) acid sites, and due to a larger molecule size it does not penetrate
into pores with diameter less than 5 Å. Brønsted acid sites (OH-groups) can selectively be
probed by isopropyl amine. The protonated molecules i-PrNH3

+ decompose to ammonia
and propylene during thermal desorption [158].

The acid/base sites are quantitatively determined by TPD under the assumption that
each site is occupied by a single probe molecule (A):

A(ads) ↔ A(g) (A1)

Thermodynamic condition for desorption is:

∆Gdes = ∆Hdes − T∆Sdes + RTlnpA ≤ 0 (A2)

where enthalpy and entropy of desorption are positive ∆Hdes > 0 and ∆Sdes > 0. The enthalpy
of desorption corresponds to binding energy of probe molecules A with the acid/base site
(Eads). It is also assumed that binding energy is independent on the surface coverage by
adsorbate (the Redhead model) [160]. The residual pressure of A is due to desorption of
physisorbed probe molecules and temperature-induced desorption during the TPD. The
entropy is mainly contributed by the gas-phase molecules A(g) and is independent on the
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adsorption sites. Thus, the desorption temperature is a characteristic of the strength of
acid/base sites:

Tdes ≥ Eads/(∆Sdes− RTlnpA) (A3)

In the analysis of acid sites by TPD of ammonia, a conditional threshold temperature
for the identification of Brønsted (weak) and Lewis (strong) acid sites is about 200 ± 50 ◦C
depending on heating rate [161,162]. Below this temperature ammonia is desorbed from
the acidic OH-groups, and at higher temperature—from surface cations. The concentration
of weak and strong acid sites (Table 2) was calculated integrating the plots in the respective
temperature ranges: 30–200 ◦C for Brønsted acid sites; 200–600 ◦C for Lewis acid sites. For
the accuracy of quantification, it is important to control that the thermoconductivity signal
in TPD is due to desorption of NH3 and the adsorbed probe molecules are not oxidized
at the surface of MOS. For this, the composition of evolved gas should be monitored by
mass-spectrometry or gas-chromatography.

Appendix A.2. Determination of Oxidizing Sites

The surface species containing oxygen (adsorbed oxygen, OH-groups, lattice anions on
the oxide surface) are typically regarded as the active sites for the oxidation of reducing gas
molecules at the surface of sensors and catalysts. These species can be deduced from XPS
data. However, due to ambiguous peaks deconvolution and ultra-high vacuum condition
of XPS experiment, this method is not informative for the determination of the nature and
concentration of oxidizing sites under real-life conditions. FTIR spectroscopy is proper
for the detection of hydroxyl groups at the surface of metal oxides; yet, the characteristic
O-H stretching vibrational band is broad due to contributions from various adsorbed
aqueous species.

The experimental observation of adsorbed oxygen species is a non-trivial challenge;
in particular, atomic O− species had hardly been detected [25]. One of the reasons is
high electron affinity, instability and reactivity of atomic oxygen, which is believed to
take place in oxidation reactions at the surface of catalysts and sensors [88,90,163–165].
Molecular oxygen adsorbates can be detected by the vibrational stretching O-O peaks in
the infrared spectral range 1050–1150 cm−1 [25,70,85]. However, this peak is broad and
low-intense, since the vibration of non-polar adsorbed O2 molecule has weak activity
in the infrared spectra. The M-O vibrational region (400–1000 cm−1) in infrared and
Raman spectra of metal oxides is dominated by the lattice metal-oxygen vibrations and,
hence, not informative on the bonds of cations with surface oxygen species. However,
in Raman spectra the peak of stretching vibration of double W=O bond at the surface of
WO3 is resolved at 960 cm−1 [166]. Electron paramagnetic resonance (EPR) is a specific
spectroscopic technique which is sensitive to species with unpaired electrons. By means
of EPR, the paramagnetic adsorbates O2

− and ·OH were identified and quantified on the
surfaces of In2O3, SnO2 and TiO2 [74,94,96,97,101,104].

Temperature programmed desorption of oxygen is used for quantitative determination
of surface oxygen species which differ in the strength of bonding to adsorption sites and
desorption temperature (Equation (A3)). Comparing the data of O2 TPD with the results of
EPR measurements of chemisorbed oxygen the temperature ranges were established in
which molecular (O2(ads)) and ionic (O2

−, O− or O2−) adsorbates existed (Section 3.1) [24].
In an experiment, O2 probe molecules are adsorbed on the dehydrated metal oxide surface,
and desorption is carried out in a flow of helium under heating with a constant rate.
Desorbed species should be identified with a mass-spectrometer.

The oxidizing reactivity of oxides can be investigated by temperature programmed
reduction (TPR). Hydrogen is the proper probe molecule, since the only product of the
reaction is water:

1/x MOx (s) + H2 (g) = 1/x M(s/l) + H2O(g) (A4)

This is a generalized reduction scheme. Actually, metal oxide (MOx) may be reduced
via distinguishable steps, like surface species reduction, bulk oxide reduction to an interme-
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diate state and complete reduction to metal. Water vapor can be isolated from the gas flow
using a cold trap or desiccant, and then hydrogen consumption can be reliably measured
by thermoconductivity detector. Argon or nitrogen are used as the carrier gases, since
thermoconductivity of Ar (or N2) contrasts to that of H2. In particular works, the reactivity
of metal oxides was studied by TPR using specific probe molecules (e.g., CO, H2S, etc.)
depending on the materials applications [167,168]. From thermodynamics, the reduction
processes (Equations (A4) and (A5)) are possible when:

∆Gr = ∆Hr − T∆Sr + RTln(p(H2O)/p(H2)) ≤ 0 (A5)

For the bulk oxide reduction (Equation (A4)), entropy change is:

∆Sr = S H2O(g) − S H2(g) − (S MOx − S M) (A6)

Since entropy is mainly contributed by gas phase, its change in Equation (A5) is
usually positive ∆S > 0, so that Gibbs free energy for the reduction of most metal oxides
by H2 decreases with increasing temperature [169]. However, metal oxides with complex
compositions and/or defect-rich structures, like spinels M3O4, U3O8, precious metal oxides,
mixed-metal oxides, can diminish significantly the reduction entropy (Equation (A6)).
Reduction enthalpy in Equation (A5) depends on the oxide formation enthalpy (∆fH0 MOx)
and fusion enthalpy of metal if reduction completes above its melting point:

∆Hr = ∆fH H2O(g) − 1/x·(∆fH MOx − ∆fH M (l)) (A7)

According to thermodynamic definition of metal-oxygen bond energy EM-O (Table 1),
the oxide formation enthalpy can be reformulated:

−1/x·∆fH MOx = EM-O − 1/x·∆atH M − 1/x·∑IE M − 1
2
·∆dissH O2(g) + ∑AE (A8)

where ∆atH M is atomization energy of metal, ∑(IE M) is the sum of ionization energies for
the metal-to-cation transition, ∆dissH O2 (g) is dissociation energy of oxygen and ∑(AE O)
is the sum of electron affinities for atomic oxygen-to-oxide anion transition [55]. Thus,
temperature of bulk reduction of metal oxides depends on metal-oxygen bond energy and
other thermodynamic parameters:

Tbulk ≥ EM-O/{∆Sr−RTln(p(H2O)/p(H2))} + {∆fH H2O(g) + 1/x·(∆fH M(l)−∆atH M − ∑IE M) − 1
2 ·∆dissH O2(g) +

∑AE O}/{∆Sr − RTln(p(H2O)/p(H2))}
(A9)

In case that only surface oxygen is reduced, solid phases MOx and M in Equation (A4)
are almost same (i.e., small x in MOx), and the reaction entropy may be approximated
as ∆S ≈ S H2O(gas)−S H2(gas) which is 58 J/K·mol (0.6 meV) under standard conditions.
Enthalpy change in this case is contributed by bond energy of metal cations with surface
oxygen and, in case of atomic and/or ionosorbed species,—by dissociation energy of
O2 and/or the difference in electron energy between the surface and bulk states in the
semiconductor ∆Ee:

∆Hr = ∆fH H2O(g) + 1/x(EM-O −
1
2
·∆dissH O2 (g) + ∆Ee) (A10)

Thus, surface oxygen species would be reduced at temperature:

Tsurf ≥ EM-O/{∆Sr−RTln(p(H2O)/p(H2))} + {∆fH H2O(g) − 1
2 ·∆dissH O2(g) +

∆Ee }/{∆Sr − RTln(p(H2O)/p(H2))}
(A11)

Surface oxygen is reduced at lower temperature mainly due to lower bond energy
M-O at the oxide surface, in comparison to the bulk. Thus, the reduced species can be
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identified by the characteristic reduction temperature in TPR patterns. From the amounts
of hydrogen consumed at lower and higher temperature ranges, the concentration of
adsorbed oxygen species can be quantified and the staging of bulk reduction can be
estimated. For example, WO3 is reduced to WO2 at 600–750 ◦C and further to metallic
tungsten at higher temperature (Figure 15). Temperature of bulk reduction correlates to
the energetic parameters of oxides (Table 1): higher metal-oxygen bond energy and lower
formation enthalpy generally agree with higher reduction temperature (Figure 15). An
exception is ZnO, since it is reduced to volatile Zn metal and bulk reduction temperature
increases due to addition of vaporization enthalpy in Equation (A9). Temperature of metal
oxide reduction in TPR cannot be predicted from thermodynamics only (Equations (A9)
and (A11)), since it is much influenced by kinetic parameters of gas-solid interaction, such
as activation energy, mechanism of nucleation of the reduced phase, rate of gas diffusion,
and experimental conditions (heating rate, hydrogen flowrate).

Appendix A.3. Determination of Electron Donor Sites

Partially reduced metal cations and oxygen vacancies are the intrinsic electron donor
sites responsible for chemisorption of oxygen and oxidizing gases at the surface of n-type
MOS. The techniques of chemical elemental analysis like XPS, XANES, Mess-Bauer spec-
troscopy, and EPR can be used to determine the oxidation states of cations; however, the
distinction between surface and bulk atoms can hardly be achieved by spectroscopic inves-
tigations.

Oxygen vacancies (VO
2−, VO

−) which possess loosely bound electrons have been
regarded as the key surface sites in the gas sensing mechanisms (Equations (1) and
(7)) [170–172]. Due to lability and accessibility for ambient molecules adsorption, sur-
face vacancies are hardly detectable experimentally. Quantitatively the oxygen deficiency
in metal oxides can be determined by thermodesorption of oxygen, thermal gravimetric
analysis, coulometric titration under variable oxygen pressure [173–175]. The occurrence
of intrinsic oxygen vacancies was inferred from indirect investigations by conduction
measurements, optical spectroscopy, photoluminescence and cathodoluminescence [170].
Directly oxygen vacancies, i.e., missing oxygen atoms, were observed by atomically re-
solved scanning tunneling microscopy (STM) on single crystalline surfaces of SnO2 and
TiO2 [176,177]. As well as the native position of O2− lattice anions, oxygen vacancies are
adjacent with metal cations on the oxide surfaces. Therefore, facile electron exchange
occurs between the cations and oxygen vacancies. The resultant reduced cations associated
with oxygen vacancies have been detected in spectroscopic investigations of metal oxides.
Sn2+ was detected by Mossbauer spectroscopy in SnO2 under oxygen-lean conditions [45].
Raman vibrational modes at 234, 573 and 618 cm−1 were attributed to oxygen vacancies
formation in SnO2 [178]. To paramagnetic single-charged oxygen vacancies VO

− could be
attributed the EPR signal with the g-factor 1.80–2.00 on the spectra of ZnO, SnO2, TiO2, and
WO3 (Figure 13) [42,96,104,179–182]. Alternatively, these EPR signals could be attributed
to reduced cations Sn3+, Ti3+, W5+, respectively [96,100]. Ti3+ associated with oxygen va-
cancies were deduced from atmospheric pressure XPS (APXPS) study of TiO2 [183]. Since
the partially reduced cations and oxygen vacancies can hardly be discriminated, in the
present work the EPR signals with the g-factor below 2 observed in the spectra of different
n-type MOS (Figure 13) was assigned to VO

− for the sake of quantitative comparison of
donor sites concentrations (Table 2).

Appendix A.4. In Situ and In Operando Investigation Techniques

The characterization techniques discussed above are mostly performed ex situ and
represent the active sites at the materials surfaces under ultra-high vacuum (XPS, STM),
under ambient conditions (FTIR, EPR, Raman spectroscopy), or after pretreatment (probe
molecule techniques). The roles of active sites in gas sensing can be deduced from the
comparison of initial surface sites concentrations and sensor properties through a series
of samples and analyte gases. More reliably the routes of gas-solid interactions can be
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established from in situ or in operando studies. The adsorption and transformation of gas
molecules at the oxide surface is investigated by in situ vibrational spectroscopy: diffuse
reflection infrared Fourier-transformed (DRIFT) [42,118,119] and Raman spectroscopy [41].
DRIFT is proper for tracing the adsorbates, since it is sensitive to vibrations of polar
bonds (O-H, C-O, N-H, N-O, C-H, etc.) or asymmetric vibrations of nonpolar adsorbates.
However, the minimum wavenumber measured in DRIFT is restricted to transmittance of
the chamber window, e.g., ZnSe—above 700 cm−1, BaF2—above 900 cm−1, CaF2—above
1300 cm−1, so that vibrations of metal-oxygen and metal-adsorbate bonds are not de-
tected. DRIFT chamber windows of alkaline metal halides have lower transmission limits
(KBr > 400 cm−1, KCl > 500 cm−1, NaCl > 600 cm−1), but cannot be used in presence of
humidity. On the other hand, Raman spectroscopy allows for screening low vibrational
wavenumbers down to 30–60 cm−1, which is suitable for screening the bulk and surface
bond vibrations of metal oxides, but has low sensitivity to polar bond vibrations of the
adsorbate species. Thus, Raman and DRIFT spectroscopies could be used cooperatively
to get an overview of adsorbates transformation at metal oxide surfaces. Gas chromatog-
raphy and mass spectrometry can be used for the analysis of gases evolved from such a
reaction [134]. Through the appropriate MOS sampling the spectroscopic measurements
can be performed in operando under real working conditions of gas sensors [29,184]. The
advanced techniques were elaborated for the in situ investigations of gas-solid interactions,
e.g., atmospheric pressure XPS (APXPS) [183], in situ EPR [115], in situ XAS [185].

Indirect data on the interaction of MOS with analyte gases can be obtained by in situ mea-
surements of electric conduction, work function (Kelvin probe) and impedance [87,118,186].
Simultaneous work function and conduction measurements allow to distinguish between
chemisorbed (dipolar uncharged adsorbates) and ionosorbed (charged adsorbates) species
resultant from gas molecules adsorption on the surface of MOS [118,186]. By in situ
impedance spectroscopy, the ionic current carriers like protons may be traced during the
adsorption and conversion of gas molecules on the hydroxylated oxide surface [87].
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