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Abstract: Siamese fighting fish (Betta splendens) are freshwater fish that are commonly found in
Thailand and other Southeast Asian countries. In the present study, chrysin-loaded polymeric
micelles (CPs) were developed and investigated for the masculinizing effects, survival rate, growth
indices, and toxicity on Siamese fighting fish. CPs were prepared using a poloxamer. The micelle
system of CPs that were formed at a chrysin-to-polymer ratio of 1:2 was found to be the most suitable
monodispersed system and exhibited a nanosized diameter (74.2 ± 1.6 nm) with a narrow size
distribution (0.288 ± 0.012). In vivo studies were performed using Siamese fighting fish larvae as
animal models. In the in vivo toxicity study, the fish larvae were immersed in aqueous systems
containing CPs that had five different chrysin concentrations of 1, 10, 100, 1000, and 10,000 ng/mL
for 24, 48, and 72 h. Blank polymeric micelles and water were used as controls. The in vivo
masculinization effect of CPs with different chrysin concentrations on the fish larvae was evaluated
after 5 weeks of exposure. The results demonstrated that CPs with a chrysin concentration of
1000 ng/mL showed a masculinization effect of 94.59 ± 2.76% with a high fish larvae survival rate of
72.45 ± 5.09% and low toxicity. It was concluded that the developed CPs had a significant effect on
the sex reversal of Siamese fighting fish larvae with a high survival rate.

Keywords: chrysin; aromatase inhibitor; pluronic; polymeric micelles; flavonoid; male ratio; sex-reversal

1. Introduction

Fish species of the Betta genus are known for their fighting behavior. These fish fight
with their kinds and others to protect their territories [1]. Betta splendens is a famous fighting
freshwater fish in Thailand [2]. This species is known and widely accepted internationally
as the “Siamese fighting fish” or “Siamese betta”. These fish have unique and beautiful
characteristics. By nature, male Siamese fighting fish have a more beautiful body shape
(long tail and fins) and are more colorful than females [3]. The price of male Siamese fighting
fish individuals can even be four to ten times higher than that of females. Therefore, male
Siamese fighting fish are cultured for sale and export. This is a business that generates
a lot of income for farmers in Thailand [4,5]. Currently, obtaining male fish naturally is
a problem because the proportion of male formation (approximately 40%) is always less

Vet. Sci. 2021, 8, 305. https://doi.org/10.3390/vetsci8120305 https://www.mdpi.com/journal/vetsci

https://www.mdpi.com/journal/vetsci
https://www.mdpi.com
https://orcid.org/0000-0001-9069-4509
https://orcid.org/0000-0001-9552-3629
https://orcid.org/0000-0001-7259-4694
https://orcid.org/0000-0001-6077-5017
https://doi.org/10.3390/vetsci8120305
https://doi.org/10.3390/vetsci8120305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/vetsci8120305
https://www.mdpi.com/journal/vetsci
https://www.mdpi.com/article/10.3390/vetsci8120305?type=check_update&version=1


Vet. Sci. 2021, 8, 305 2 of 12

than female formation. Accordingly, monosex male formation would be an advantage
to breeders.

There are common techniques and methods of masculinization according to the sex
cell orientation of an organism from female to male. The most common technique is
to give steroid hormones to undifferentiated fish. Steroid hormones play an important
role in sex direction by stimulating sex hormones in male and female organisms during
gonadal differentiation in nonmammalian vertebrates [6,7]. Several studies report the
masculinization of Siamese fighting fish using the dietary administration of synthetic
steroid hormones [8,9]. Nevertheless, synthetic steroid hormones can cause environmental
and public health problems [10]. Therefore, searching for a better fish masculinization
technique is an important issue to be addressed.

In the last several years, fish masculinization with an aromatase inhibitor has been
used in aquaculture. Aromatase is involved in sex differentiation and ovarian development
via the estrogen biosynthesis pathway in many animal species [11,12]. Aromatase is an
enzyme complex that plays an important role in converting androgens to estrogens with
CYP19a and CYP19b expressions [13], as shown in Figure 1. Therefore, the inhibition of
the aromatase enzyme can enhance androgen production. A previous study reported the
effects of fadrozole, an aromatase inhibitor, on the androgen-induced masculinization of
Japanese flounder (Paralichthys olivaceus) and showed the downregulation of CYP19a after
the treatment [14]. Therefore, the lack of estrogen synthesis from the effects of aromatase
inhibitors results in more androgens that are responsible for the differentiation of the
testicles [15].
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Figure 1. Mechanism of action of the aromatase enzyme [16].

Chrysin, a natural flavonoid, is recognized as a potent aromatase inhibitor [17,18].
Honey, propolis, many plants, and even mushrooms are sources of chrysin [19,20]. In addi-
tion, chrysin was reported to be abundant in the fruit of Oroxylum indicum [21]. Previous
studies have reported on several biological properties of chrysin, such as its antioxidant,
anti-inflammatory, anticancer [20], and anti-neurodegenerative activities [22]. However,
the low water solubility of chrysin causes limitations in its application.

Nanodelivery systems currently receive increasing interest and are popular approaches
for solubilizing and stabilizing water-insoluble active ingredients, as well as enhancing
their bioavailability [23]. A polymeric micelle is one of the attractive nanodelivery sys-
tems due to its simplicity of fabrication and high stability [24]. Polymeric micelles are
self-assembling nano-constructs of amphiphilic polymers or copolymers. They show high
benefits in medicinal and pharmaceutical applications for the delivery of various active
agents [25,26]. They have received immense popularity due to their biocompatibility
and capacity to solubilize poorly soluble pharmaceutical agents [27–29]. A poloxamer
(a biocompatible polymer) is one of the suitable polymers for the potential dissolution
of hydrophobic active compounds since it can improve the aqueous solubility, stability,
and bioavailability of the drugs [30,31]. Generally, the hydrophobic compounds can be
entrapped in the hydrophobic core of the poloxamer micelles and the whole system can
be soluble in water. In previous studies, chrysin was used as a masculinization agent
in zebrafish [32]. However, as far as we know, there have been no reports on the use of
chrysin to masculinize Siamese fighting fish. This might be one of the first studies using
this compound in the masculinization of Betta species.
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The aim of the present study was to investigate the masculinization effects of poly-
meric micelles entrapping chrysin that were developed for male formation in Siamese
fighting fish. In addition, the effects on the survival rate, growth indices, and toxicity to
the fish were also evaluated.

2. Materials and Methods
2.1. Materials

Chrysin and polyoxyethylene 20 sorbitan monooleate (Tween 80) were purchased from
Sigma-Aldrich, St. Louis, MO, USA. Absolute ethanol was purchased from Merck Millipore
(Darmstadt, Germany). Moina siamensis cysts were purchased from the ornamental fish
market in Lampang, Thailand. Pluronic F-127, a trade name of poloxamer 407, was
from BASF Ludwigshafen, Germany. Nylon filter membrane was purchased from Anpel
Laboratory Technologies (Shanghai) Inc. (Shanghai, Chaina). Milli-Q water was obtained
from a Milli-Q water purification system manufactured by Millipore (Billerica, MA, USA).
All solvents and other materials were of analytical grade.

2.2. Fish and Rearing Conditions

The mature Siamese fighting fish males (weight 2.00 ± 0.42 g and total length
7.54 ± 0.55 cm) and females (weight 1.08 ± 0.37 g and total length 4.74 ± 0.46 cm) were
purchased from the ornamental fish market in Lampang, Thailand. They were individually
acclimated to laboratory conditions in aquaria of 2 L with dechlorinated tap water (at 25 ◦C,
pH 7.54, total hardness 118 ppm, alkalinity 101 ppm) and fed twice a day with M. siamensis
cysts for 2 weeks. One female inside a floating transparent plastic shelter was placed
in each male aquarium to familiarize them and stimulate the release of pheromones for
spawning. After the bubble nest formation by a male spawner, the shelter was removed to
allow them to start mating. After finishing the process of spawning, the female was moved
out from the aquaria. The fertilized eggs were facilitated by oxygenation and attended
by the male spawner. The hatching took place within 24–48 h; then, the male spawner
was removed. After the yolk-sac was absorbed, the 4 days post hatch (dph) larvae were
transferred to a new container with aeration, held in natural light conditions, and started
with twice-daily feeding with fish meal powder for 4 weeks before the in vivo toxicity
and masculinization experiments. The methods of these experiments were approved by
the Naresuan University Animal Care and Use Committee (NUACUC), protocol number
NU-AQ 600710. All experiments were performed in accordance with relevant guidelines
and regulations.

2.3. Development of the Polymeric Micelles Containing Chrysin

Chrysin-loaded polymeric micelles (CPs) were prepared according to a method that
was previously described [32]. Briefly, chrysin was dissolved in ethanol at a ratio of 1:1
(w/v). The obtained chrysin solution was added dropwise with Pluronic F-127 solution
to obtain various mixtures containing chrysin-to-polymer weight ratios of 1:1, 1:2, 1:3,
1:4, 1:5, 1:10, and 1:15. After that, a proper amount of Tween 80 (approximately 10% of
the chrysin) was added. Subsequently, deionized water was added to the mixture to
obtain a water content of approximately 10 times that of the amount of chrysin. The
obtained mixtures were centrifuged at 12,000× g for 10 min and filtered through a 0.22 µm
nylon membrane (13 mm diameter) to remove the non-encapsulated precipitated chrysin.
CPs were obtained in the filtrates. The filtrates were frozen at −20 ◦C and subsequently
lyophilized under vacuum for 24 h. The lyophilized CPs were kept in the refrigerator for
further use. To obtain the desired final concentration of chrysin for the in vivo studies,
a sufficient amount of the lyophilized product was rehydrated in deionized water and
vigorously mixed using a vortex mixer for 10 min at room temperature. The concentration
of chrysin in the rehydrated stock CP solution was determined using high-performance
liquid chromatography (HPLC). The blank polymeric micelles (blank PMs) were prepared
according to the same protocol without chrysin.
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2.4. HPLC Analysis

The chrysin concentration of the rehydrated stock solution was quantitated on an
Agilent 1260 Infinity HPLC system (Agilent Technologies, Inc., Waldbronn, Germany). The
separation was done using Hypersil™ ODS C18 HPLC Columns (4.0 mm × 250 mm, 5 µm)
(Agilent Technologies, Inc., Santa Clara, CA, USA). A mixture composed of methanol and
1 M acetic acid in water (80:20) was used as a mobile phase. The separation was performed
by injecting 10 µL of the sample with a flow rate of 1.0 mL/min at 25 ◦C and detected at
270 nm. The chrysin content was calculated from the equation of the chrysin standard
curve in the concentration range of 31.25–500.00 µg/mL.

2.5. Characterization of the CPs

The lyophilized CPs were diluted with Milli-Q water at a weight ratio of 1:100
(CPs:water). The average droplet size and size distribution of the obtained CPs were
investigated via dynamic light scattering using photon correlation spectroscopy (PCS) with
Zetasizer version 7.03 software (Zetasizer Nano ZS, Malvern Instruments Ltd., Worcester-
shire, UK). Measurements were carried out at a fixed angle of 173◦ at 25 ◦C. The experiments
were performed in triplicate with at least three independent experiments. Among the de-
veloped CPs, those with a small droplet size and narrow size distribution were selected for
trials in the in vivo studies; see Table 1 and the corresponding results.

Table 1. Particle size and size distribution of the CP samples at various chrysin-to-polymer ratios.

CP Samples and Control Particle Size (nm) Size Distribution

Blank PMs 21.3 ± 0.8 a 0.218 ± 0.011 a
1:1 84.7 ± 1.2 b 0.420 ± 0.018 b
1:2 74.2 ± 1.6 c 0.288 ± 0.012 c
1:3 72.5 ± 2.2 c 0.322 ± 0.019 cd
1:4 72.4 ± 2.1 c 0.286 ± 0.013 c
1:5 70.0 ± 2.2 c 0.279 ± 0.014 ac

1:10 68.9 ± 2.6 c 0.256 ± 0.012 ac
1:15 68.3 ± 2.0 c 0.250 ± 0.019 ac

Data are presented as the mean ± S.E.M. of three independent replicates. Different letters indicate significant
differences between treatment groups (p < 0.05).

2.6. In Vivo Toxicity Study

An in vivo toxicity assessment was performed using 140 gender-undifferentiated
Siamese fighting fish larvae per experiment. The fish larvae were divided into seven
groups. Each group (n = 20) was placed into 6 mL of water in 60 mm diameter glass Petri
dishes (Petriq, Darmstadt, Germany). Each sample group was added with the selected
CPs rehydrated stock solution to obtain final chrysin concentrations of 1, 10, 100, 1000, and
10,000 ng/mL in glass Petri dishes containing 10 mL of dechlorinated tap water. Blank PMs
and pure water were used as the vehicle and negative control, respectively. In addition, the
systems were maintained at 26 ± 2 ◦C throughout the experiment. The mortality of the fish
larvae after exposure to different concentrations was observed at 24, 48, and 72 h under
a stereomicroscope (Nikon, Tokyo, Japan). The experiments were carried out with three
independent replications. At the end of the experimental period, the fish that survived
were maintained in a laboratory until they were in a healthy condition and then were
donated to the aquarist as pet fish.

2.7. In Vivo Masculinization Effect

In this study, 120 gender-undifferentiated Siamese fighting fish larvae were used per
experiment. The larvae were divided into 6 groups. Each group (n = 20) was placed into
6 mL of water in 60 mm diameter glass Petri dishes. Each sample group was subjected to
the selected rehydrated CP stock solution to obtain final chrysin concentrations of 1, 10, 100,
and 1000 ng/mL in glass aquaria (150 × 150 × 225 mm) containing 2 L of dechlorinated tap
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water. The other two groups were exposed to blank PMs and pure water as the vehicle and
negative control, respectively. The water system was maintained at 26 ± 2 ◦C throughout
the experiment. The treatment media in the glass aquaria were changed every 48 h by
replacing the media with fresh preparations of treatment media. The water quality was
checked before each treatment media replacement. The fish larvae were fed three times
daily and held under natural light conditions (light/dark cycle of 14/10 h). After 5 weeks
of treatment, the sex ratio, expressed as a male ratio percentage, and the survival rate (SR)
of the fish were evaluated using Equations (1) and (2), respectively:

Male ratio (%) = (MF/TF) × 100, (1)

SR (%) = (TF/TFb) × 100, (2)

where MF and TF are the number of male fish and total fish (male and female) at the end of
the experiment, and TFb is the total number of the fish (male and female) at the beginning
of the experiment.

An important criterion that is used to distinguish the sexes of Siamese fighting fish
is the visibility of an ovipositor or egg tube in the female, as shown by the red arrow
in Figure 2. In addition, the body size and shape, fin size, gill cover, color pattern, and
behavior were also used to distinguish the sexes [33].
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Figure 2. The anatomy of male (a) and female (b) of Siamese fighting fish.

In addition, the weight and total length of each fish were measured weekly after
hatching using a digital balance and digital vernier caliper, respectively. The experiments
were carried out with three independent replications. At the end of the experiment period,
the fish that survived were maintained in a laboratory until they were in a healthy condition
and then they were donated to the aquarist as pet fish.

2.8. Statistical Analysis

The data are presented as the mean ± standard error of the mean (S.E.M.) from three
independent experiments; the normality of the data was checked using Kolmogorov–
Smirnov’s test, skewness, and kurtosis. Variance homogeneity was determined using
Levene’s test. The ANOVA followed by Tukey’s post hoc test was used to analyze the
data of CP characterization, in vivo toxicity, and in vivo masculinization studies. The
probability values less than 0.05 (p < 0.05) were considered statistically significant.

3. Results and Discussion
3.1. Development and Characterization of CPs

Pluronic F-127 is a polyoxyethylene-polyoxypropylene surface-active block polymer.
It is widely employed for drug delivery. It was used in this study because of its unique
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properties to form desirable polymeric micelles with high drug entrapment efficiency. In
our preliminary experiment, chrysin was loaded into the micelles of this polymer. The
results showed that the obtained CP system clearly indicated that high solubility of chrysin
entrapped in the polymeric micelles was immediately obtained. However, precipitation of
the drug was observed after a few minutes at room temperature (data not shown). Recently,
an interesting approach was reported regarding the adoption of mixed micelles for the
enhancement and overcoming of some disadvantages of the polymeric micelles [34]. The
mixed micelles of Pluronic F-127 with certain surfactants, such as Cremophor EL and
Tween 80, were reported to enhance the water solubility of norfloxacin and valsartan,
respectively [35,36]. Therefore, in the present study, Tween 80 was used to form mixed
micelles of Pluronic F-127 for entrapping chrysin. The obtained system was clear, and no
drug precipitation was observed, even after being left for a week in a closed container at
room temperature. The samples after lyophilization were in a semisolid form akin to a gel.
After diluting with water, the blank PMs showed a clear and colorless solution, whereas
the obtained CP system demonstrated a clear yellowish solution. These results indicated
that chrysin was successfully loaded in the poloxamer mixed micelles. In addition, all
developed CPs showed systems without any precipitation of chrysin, even after being kept
at room temperature for more than 30 days. The average size and size distribution of the
CPs and blank PMs are presented in Table 1.

It was found that loading chrysin in the polymeric micelles caused enlargement of the mi-
celles. The average particle size of the prepared CPs was in a range of 68.3 ± 2.0–84.7 ± 1.2 nm,
whereas that of the blank PMs was 21.3 ± 0.8 nm. The particle sizes of CPs of all ratios
were obviously larger than that of the blank PMs. In addition, it was found that increasing
the polymer content decreased the size of the micelles. The particle size distribution is one
of the important parameters for the evaluation of nanodelivery systems. It is a parameter
that is used to define the size range of the obtained particles and is commonly expressed as
the “polydispersity index” (PdI). This parameter can describe the degree of non-uniformity
of the obtained particles. A narrow size distribution indicates that the obtained particles
are uniform, whereas a larger PdI value indicates a polydisperse system. The results of
the present study showed that the PdI values of the CPs were slightly higher than that of
the blank PMs. Most of the CPs showed a PdI in the range of 0.250–0.388. PdI values in
the 0.2–0.3 range are acceptable for pharmaceutical applications. This is because such a
preparation contains a homogenous population of nanocarriers [37]. It was considered
that the system of CPs at a chrysin-to-Pluronic-F-127 ratio of 1:2 was the most suitable
formulation for further study due to the appropriate mean size (less than 100 nm) and
narrow distribution (PdI < 0.300). There was no significant difference in the mean size and
PdI between the CPs in the 1:2 ratio and other ratios with more polymer content (1:3, 1:4,
1:5, 1:10, and 1:15). Therefore, this system was selected for further experimentation.

3.2. In Vivo Toxicity of the Developed CPs

Nontoxicity to fish is one of the important criteria for ideal fish masculinization. The
masculinizing agent at the used concentration should be safe for fish. In general, the
concentration of a test sample that causes mortality of 20% or less is regarded as safe [38,39].
In the current study, the toxicity of the selected CPs in larvae of Siamese fighting fish was
investigated. The results are presented in Table 2.

It was found that the percentage of fish larvae mortality increased with an increased
concentration of chrysin. However, the systems with a chrysin concentration of less than
100 ng/mL were regarded as safe to the fish larvae because the mortality of these systems
throughout the experimental period was less than 20%. The results also demonstrated that
the fish larvae could safely be in contact with the CPs that had a chrysin concentration of
1000 ng/mL for 48 h as the mortality was not more than 20%. Further exposure to 72 h
led to a slight increase in mortality to 26%. According to a previous study [32], toxicity
was classified as moderate to severe when the mortality was 30–100%. Therefore, we
considered that mortality of less than 30% could be classified as mild toxicity (10–30%
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mortality). No mortality of the fish larvae was observed after transferring to the clean
media and monitoring for one week. It was concluded that the toxicity of chrysin in the
CP systems to the fish larvae was dose- and time-dependent. There was no significant
difference in fish larvae mortality (p < 0.05) between the four different concentrations of
chrysin (1, 10, 100, 1000 ng/mL) for 48 h of exposure, as well as for blank PMs and water.
Therefore, these systems were selected for further study. The CP system with a chrysin
concentration of 10,000 ng/mL was not selected because it was classified as a system that
displayed moderate-to-severe toxicity to fish larvae (30–100% mortality).

Table 2. Mortality of the Siamese fighting fish larvae after exposure to CPs.

CP Samples and Control
(Final Concentration of Chrysin (ng/mL))

Mortality (%)
after Exposure Time

24 h 48 h 72 h

1 16.00 ± 4.62 a 16.00 ± 4.62 a 16.00 ± 4.62 a
10 9.33 ± 3.53 a 9.33 ± 3.53 a 9.33 ± 3.53 a
100 16.00 ± 2.31 a 16.00 ± 2.31 a 16.00 ± 2.31 a

1000 20.00 ± 2.31 a 20.00 ± 2.31 a 26.00 ± 2.31 b
10,000 65.33 ± 7.42 b 73.33 ± 7.42 b 90.67 ± 5.33 c
Water 9.33 ± 1.33 a 9.33 ± 1.33 a 9.33 ± 1.33 a

Blank PMs 9.33 ± 1.33 a 9.33 ± 1.33 a 9.33 ± 1.33 a

Data are presented as the mean ± S.E.M. of three independent replicates. Different letters indicate significant differences between treatment
groups (p < 0.05).

3.3. In Vivo Masculinization Effect of the Developed CPs

The sex change of Siamese fighting fish depends on the presence of steroid hormones
in the early development of the animal [40]. Chrysin acts as an aromatase inhibitor where
it can inhibit the action of the aromatase enzyme involved in the process of estrogen
production. Thus, the formation or level of the testosterone hormone was relatively
increased and promoted the formation of male genital organs. The main factors that
affect the success of sex reversal in fish are the applied protocol and the appropriate
drug [41,42]. In the present study, the developed CPs showed a masculinization effect on
Siamese fighting fish larvae in a dose-dependent manner, as the results show in Table 3
and Figure 3.

Table 3. Effects of CPs on the male ratio and survival rate of Siamese fighting fish larvae after 5 weeks of maintenance.

CP Samples and Control
(Final Concentration of Chrysin (ng/mL))

Male Ratio
(%)

Survival Rate
(%)

1 56.41 ± 6.41 a 74.51 ± 5.19 a
10 74.53 ± 4.03 b 68.53 ± 5.11 a

100 76.67 ± 3.33 b 56.86 ± 1.96 a
1000 94.59 ± 2.76 c 72.45 ± 5.09 a

Water 46.00 ± 1.73 a 56.31 ± 1.94 a
Blank PMs 47.62 ± 2.38 a 57.17 ± 1.66 a

Data are presented as the mean ± S.E.M. of three independent replicates. Different letters indicate significant differences between treatment
groups (p < 0.05).

The results also demonstrated that sex reversal due to the developed CPs was signifi-
cantly higher than the negative and vehicle controls (p < 0.05). There was no significant
difference in the growth indices of fish larvae caused by different concentrations of chrysin
in the CPs and the control groups, as shown in Figure 4. The growth performance, weight,
and total length of the fish that survived in each treated group increased every week
during monitoring. External factors, such as the water quality, the quantity of feed, and
improper handling, also influence the survivability of the fish. Furthermore, water quality
and environmental cues have an effect on fish masculinization. Inappropriate temperature,
pH, ammonia or nitrate levels, and relative density can cause stress to the fish, resulting in
measurement error [43,44]. Therefore, water quality and environmental cues in the present
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study were checked and evaluated according to the criteria of water quality control. The
water quality in each aquarium during this experiment was monitored and controlled
as follows: temperature 25–26 ◦C, pH 7.9–8.4, total hardness 120–160 ppm, alkalinity
90–96 ppm, total ammonia nitrogen level 0.1–0.2 ppm, and NH3 0.01–0.015 ppm.
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All developed CPs were found to be effective at inducing male ratios to more than 50%,
even at low doses. The CPs containing the highest chrysin concentration (1000 ng/mL)
produced 94.59 ± 2.76% males with an SR of 72.45 ± 5.09%. Hence, the masculinization
of Siamese fighting fish larvae with developed CPs consisting of 1000 ng/mL chrysin
was successful and is recommended to aquarists to increase the male ratio of B. splendens.
In previous studies, successful male formation of Siamese fighting fish larvae (80–100%
male ratio) using a honey solution composed of 5 mL of honey in 1 L of water was
reported [45,46]. However, the SR of the fish exposed to the honey solution was less than
50% at the end of their studies. Furthermore, honey was reported to exhibit masculinization
of juvenile red claw crayfish with an 80% male ratio and a 70% SR [47]. As chrysin is a
compound that is commonly found in honey, this result revealed the potential of chrysin
as a masculinizing agent to other fish species. Therefore, the developed CPs have the
potential to be applied for male formation in other fish species. In addition, there was no
significant difference in the SR between different concentrations of chrysin in CPs and the
control groups. The SR of the fish that were exposed to the developed CPs was higher
than that of the control groups. Since chrysin is a potent aromatase inhibitor [16–18], the
level of testosterone in the fish that were exposed to CPs was likely higher than that of the
control groups. It is known that testosterone regulates several physiological mechanisms
that promote fish growth, such as protein synthesis and maintaining muscle mass and bone
formation [48]. Moreover, chrysin showed an immunostimulant effect [49].

Furthermore, both chrysin and the poloxamer are safe for the environment and ani-
mals. Pluronic F-127 is one of the biodegradable polymers; thus, it is safe to be used [50,51].
In the case of chrysin, it is a natural flavonoid and was reported to possess several bio-
logical activities. Moreover, chrysin was reported to prevent tissue damage by affecting
oxidation via anti-inflammatory and anti-oxidative effects of acute toxicity of rainbow
trout [51]. However, it was reported that it demonstrated cell toxicity and inhibition of
DNA synthesis at very low (2 µM) concentrations in a normal trout liver cell line [52].
Therefore, the masculinization of fish larvae with developed CPs needs further molecular
biology toxicity studies.

4. Conclusions

In the present study, CPs were successfully developed using mixed micelles of Pluronic
F-127 and Tween 80. The formulated CPs could effectively improve the water solubility of
chrysin permanently without any sign of precipitation, even after a long storage duration
at room temperature. The composition ratio of chrysin and Pluronic F-127 affected the size
and size distribution of the obtained CPs. The system of CPs that was obtained from a
chrysin-to-polymer ratio of 1:2 was suitable for further masculinization studies due to the
appropriate mean size and narrow distribution. The CPs with a chrysin concentration of
1000 ng/mL induced 95% masculinization with a high survival rate of the fish larvae. The
suitable CP systems containing chrysin concentrations up to 1000 ng/mL are recommended
for aquarists to increase the male ratio of Siamese fighting fish. The masculinization
technique presented in this study can be applied to other fish species.
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22. Stompor-Gorący, M.; Bajek-Bil, A.; Machaczka, M. Chrysin: Perspectives on Contemporary Status and Future Possibilities as

Pro-Health Agent. Nutrients 2021, 13, 2038. [CrossRef] [PubMed]
23. Khumpirapang, N.; von Gersdorff Jørgensen, L.; Müllertz, A.; Rades, T.; Okonogi, S. Formulation optimization, anesthetic activity,

skin permeation, and transportation pathway of Alpinia galanga oil SNEDDS in zebrafish (Danio rerio). Eur. J. Pharm. Biopharm.
2021, 165, 193–202. [CrossRef] [PubMed]

24. Naksuriya, O.; van Steenbergen, M.J.; Torano, J.S.; Okonogi, S.; Hennink, W.E. A Kinetic Degradation Study of Curcumin in Its
Free Form and Loaded in Polymeric Micelles. AAPS J. 2016, 18, 777–787. [CrossRef] [PubMed]

25. Okonogi, S.; Phumat, P.; Khongkhunthian, S.; Suttiat, K.; Chaijareenont, P. Denture-soaking solution containing Piper betle
extract-loaded polymeric micelles; inhibition of Candida albicans, clinical study, and effects on denture base resin. Antibiotics
2021, 10, 440. [CrossRef]

http://doi.org/10.1016/S0163-1047(80)91842-7
http://doi.org/10.1111/j.1749-7345.1997.tb00955.x
http://doi.org/10.1093/molbev/msab110
http://doi.org/10.1007/s10695-018-0495-z
http://doi.org/10.1007/s000180050344
http://doi.org/10.1007/978-3-0348-7781-7_9
http://doi.org/10.2306/scienceasia1513-1874.2011.37.277
http://doi.org/10.1111/j.1365-2109.1994.tb00702.x
http://www.ncbi.nlm.nih.gov/pubmed/26258087
http://doi.org/10.1016/0960-0760(92)90437-N
http://doi.org/10.1095/biolreprod29.2.310
http://doi.org/10.1016/j.ygcen.2007.03.005
http://doi.org/10.1002/(SICI)1098-2795(200005)56:1&lt;1::AID-MRD1&gt;3.0.CO;2-3
http://doi.org/10.1095/biolreprod.107.065961
http://www.ncbi.nlm.nih.gov/pubmed/18199883
http://doi.org/10.1016/S0303-7207(01)00433-6
http://doi.org/10.1016/j.heliyon.2020.e03557
http://doi.org/10.1080/15287394.2012.696517
http://doi.org/10.1016/j.lfs.2019.116797
http://doi.org/10.1016/j.phytochem.2017.09.016
http://www.ncbi.nlm.nih.gov/pubmed/29161583
http://doi.org/10.3390/nu13062038
http://www.ncbi.nlm.nih.gov/pubmed/34198618
http://doi.org/10.1016/j.ejpb.2021.04.022
http://www.ncbi.nlm.nih.gov/pubmed/33979660
http://doi.org/10.1208/s12248-015-9863-0
http://www.ncbi.nlm.nih.gov/pubmed/27038456
http://doi.org/10.3390/antibiotics10040440


Vet. Sci. 2021, 8, 305 11 of 12

26. Tima, S.; Okonogi, S.; Ampasavate, C.; Berkland, C.; Anuchapreeda, S. FLT3-specific curcumin micelles enhance activity of
curcumin on FLT3-ITD overexpressing MV4-11 leukemic cells. Drug Dev. Ind. Pharm. 2019, 45, 498–505. [CrossRef]

27. Okonogi, S.; Phumat, P.; Khongkhunthian, S. Enhancement of aqueous solubility and antibiofilm activity of 4-allylpyrocatechol
by polymeric micelles. Bioprocess Biosyst. Eng. 2021, 44, 1289–1300. [CrossRef]

28. Naksuriya, O.; Shi, Y.; Van Nostrum, C.F.; Anuchapreeda, S.; Hennink, W.E.; Okonogi, S. HPMA-based polymeric micelles for
curcumin solubilization and inhibition of cancer cell growth. Eur. J. Pharm. Biopharm. 2015, 94, 501–512. [CrossRef]

29. Anantaworasakul, P.; Okonogi, S. Encapsulation of Sesbania grandiflora extract in polymeric micelles to enhance its solubility,
stability, and antibacterial activity. J. Microencapsul. 2017, 34, 73–81. [CrossRef]

30. Kolašinac, N.; Kachrimanis, K.; Homšek, I.; Grujić, B.; Ðurić, Z.; Ibrić, S. Solubility enhancement of desloratadine by solid
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