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Abstract: Plants as sessile organisms face daily environmental challenges and have developed highly
nuanced signaling systems to enable suitable growth, development, defense, or stalling responses.
Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they
produce additional variables adding to the complexity or fuzziness of biological systems. Here we
examine roles of moonlighting kinases that also generate 3′,5′-cyclic guanosine monophosphate
(cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate
cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches
surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of
kinase and other molecules in the immediate complex directly or indirectly modulating signal cas-
cades. Effects include downregulation of kinase activity, modulation of other members of the protein
complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent
degradation cascades terminating signaling. The additional layers of information provided by the
moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness
to effectively modulate cellular signaling cascades.

Keywords: guanylate cyclase; receptor like kinase; brassinosteroid insensitive 1 (BRI1); phytosul-
fokine receptor 1 (PSKR1); danger associated peptide receptor (PEPR1 and PEPR2); wall associated
kinase like 10 (WAKL10); nanodomains; moonlighting proteins; cryptic enzyme; 3′,5′-cyclic guano-
sine monophosphate (cGMP)

1. Introduction

Biological systems are best represented by fuzzy logic rather than Boolean logic [1]
and this stems from the molecular constituents, to cells, to entire organisms and ecosystems.
Unlike Boolean logic, fuzzy logic has variables that can be any real number between 0
and 1 and so reflects the complexities of natural systems. The molecular constituents,
particularly proteins in and outside cells, can have variable conformations, states of folding
and expression intensities that all contribute to levels of complexity and thus functional
“fuzziness” [1–3]. Together proteins and complementary molecules enact signaling and
metabolic cascades enabling cellular function and communication with other cells in
multicellular organisms. Some effects require specific levels of proteins within tightly
regulated cellular domains to generate functional outputs. These metabolic and signaling
cascades involve networks of proteins interacting closely due to intracellular crowding of
proteins and phase separation [4–6]. Small molecular products from protein catalytic and
signal outputs can act further afield [7–10]. However, if the small molecules bind to these
or nearby proteins, their diffusion is likely to be restricted [5,11,12]. On top of this a further
level of complexity exists as proteins can have moonlighting functions [3].

Moonlighting proteins are classified as single chain polypeptides that perform two or
more physiologically relevant and distinct functions which do not result from gene fusions,
splice variants, or multiple isoforms [3,13–16]. Combined with an inherent human desire
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to reduce function to its minimal components, this variety in potential additional functions
has obscured the fact that moonlighting activities add an extra layer of complexity to how
proteins modulate cellular function. Although these is no straightforward explanation why
some proteins acquire multitasking abilities, it can be speculated that conservation of energy
contributes to this evolutionary strategy as instead of producing two proteins the task can
be completed by one. However, it is important to note that a fraction of moonlighting
proteins is evolutionary derived from ancient enzymes—highly conserved proteins present
in many different organisms. This not only increases the chance of developing additional
functions by these proteins (e.g., through mutations occurring in the course of evolution),
but also signifies the importance of the protein multitasking phenomenon.

Moonlighting proteins can be cytosolic enzymes that have another catalytic activity,
join another protein or multiprotein complexes, bind additional small molecule ligands,
bind nucleic acid chains, or migrate to different intracellular or, in some cases, extracel-
lular locations [3,15,16]. Since the discovery of the first moonlighting protein, duck lens
delta-cristallin having argininosuccinate arginine-lyase activity [17], several examples of
moonlighting proteins have been articulated, including enzymes acting as transcription
factors, chaperones, extracellular growth factors, and cell surface adhesins. Most moon-
lighting functions of proteins have been found by serendipity and currently there is no
straightforward method to delineate moonlighting action of a protein. However, over the
last decade significant effort has been made to determine if the protein has the capacity
to moonlight. These include analyses of protein sequence and structure and functional
sites, conserved motifs and domains, protein-protein interaction patterns, assisted with
biochemical methods, to decipher protein structure—function relationships, and extensive
attempts to create software tools for prediction and annotation of moonlighting proteins
and a database of moonlighting proteins have been made [18–22]. Examples of additional
catalytic functions are in general less common in the literature [3,15]. One example is a
class of novel guanylate cyclases where a moonlighting or cryptic enzymatic function is
buried within a larger catalytic kinase domain [23,24]. This review will focus on normal
and moonlighting roles of these kinases and how they may be used to provide a layer of
“fuzziness” to effectively modulate cellular signaling cascades.

2. Moonlighting Kinases

Moonlighting kinases were first discovered via pattern motif searches for guanylate
cyclases in plants. 3′,5′-cyclic guanosine monophosphate (cGMP), the product of guany-
late cyclase, occurs in plants although generally at lower levels than in animal systems
which generated some controversy about its presence that was resolved through cGMP
detection by mass spectrometry [25–28]. Moreover, cGMP was implicated in mediating
hormonal and environmental modulation of physiological responses in plant growth and
development [29–34]. Therefore, it was surprising that no guanylate cyclases were assigned
following the release in 2000 of the full genome sequence of Arabidopsis thaliana [35,36].
Furthermore, credible candidates were not identified in Basic Local Alignment Search Tool
(BLAST) searches employing ancillary pattern-hit initiated- (phi-), position-iterated- (psi-),
and domain enhanced lookup time accelerated (delta-) BLAST with annotated guanylate
cyclases from prokaryotes and eukaryotes [35,37,38]. It was hypothesized that amino acids
critical to the catalytic action of guanylate cyclases would be conserved in plants like other
organisms [36,39]. Hence the pattern search motif was derived from an analysis of lower
and higher eukaryote guanylate cyclase enzymes [35] focusing on amino acids conserved
in the catalytic function [40–42]. The initial search motif revealed seven A. thaliana candi-
dates, including two kinases and the first characterized plant guanylate cyclase AtGC1
(AT5G05930) [35]. Since then, orthologs of AtGC1 have been characterized in Zea mays,
Pharbitis nil, and Hippeastrum hybridum [43–45] where they have quite diverse roles in
modulating pathogen or light responses. Positioning of the guanylate cyclase center varies
between known plant guanylate cyclases (Figure 1).
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Figure 1. Schematic showing domain architecture of the guanylate cyclases discussed in the text.
The guanylate cyclase is depicted in pink, predicted nucleotide binding sites are shown in yellow,
kinase domain in pale green, heme-NO/oxygen (H-NOX) domains in purple, transmembrane (TM)
domain in brown, ligand binding in orange and the death domain in grey. The schemes are relative
to the predicted protein size using the plant leucine rich repeat receptor like kinase (LRR RLK)
phytosulfokine receptor (PSKR1) receptor as the reference. The proteins are all plant proteins (GC1
refers to guanylate cyclase 1, NOGC1 as nitric oxide GC1, DGK4 is diacylglycerol kinase 4, and
WAKL is wall associated kinase like) except interleukin receptor 1 associated kinase 3 (IRAK3) which
is a mammalian protein. IRAK3 contains a kinase homology domain (pseudokinase) differing from
LRR RLK, WAKL, and DGK4 which are active kinases.

2.1. Wall Associated Kinase Like (WAKL)

One of the kinase candidate guanylate cyclases is wall associated kinase like 10 (At-
WAKL10, AT1G79680), a member of the wall associated kinase (WAK) clade of the receptor
like kinase (RLK) superfamily [46]. WAKs and WAKLs are very strongly connected with cell
walls and have an extracellular domain containing epidermal growth factor (EGF) repeat
regions, a transmembrane spanning domain and an intracellular serine/threonine kinase
domain [47–50]. WAKs and WAKLs are involved in regulating cell expansion in addition
to sensing and responding to abiotic and biotic agents possibly due to sensing pectin frag-
ments [48,51]. The recombinant kinase domain of AtWAKL10 where the guanylate cyclase
motif is found has both kinase and guanylate cyclase activity [52] and thus it is a moon-
lighting kinase. Congruently as cGMP is involved in plant responses to pathogens [53–55],
transcript expression and functional genomic studies positively implicate WAKL10 in basal
and R-gene mediated resistance [52,56]. Intriguingly, the guanylate cyclase activity of Rlm9
protein, a Brassica napus homolog of AtWAKL10, appears to be a key component of the
hypersensitive response to infection caused by fungal pathogen Leptosphaeria maculans
carrying the corresponding avirulence gene AvrLm5-9 [57]. In accordance with this notion,
the wheat Stb6 protein lacks the guanylate cyclase in its kinase domain and fails to trigger
a hypersensitive response [58]. This may imply the importance of cGMP generated by the
moonlighting kinases in biotic responses. Recently a rice (Oryza sativa) gene OsWAKL21.2
shown to have dual guanylate cyclase and kinase activity was found to be involved in
immune responses in rice and also, when heterologously expressed, in Arabidopsis [59].

2.2. Leucine Rich Repeat Receptor Like Kinases (LRR RLK)

Mutation of certain amino acids in the search motif covering the catalytic center of
recombinant AtGC1 had no effect on its guanylate cyclase activity [37], suggesting that
a relaxed search motif may detect more candidate guanylate cyclases. This was indeed
the case as more hits were revealed using the relaxed search motif and these hits included
many leucine-rich repeat (LRR) RLKs where the candidate guanylate cyclase center is
embedded in the kinase domain as described for WAKL10 [37,38,60,61].
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LRR RLKs form the major clade of membrane receptor proteins in plants and most
contain an extracellular ligand binding domain, a membrane spanning domain and an intra-
cellular kinase domain [46,62–67]. RLK is a large family with over 600 genes in Arabidopsis
forming over 2% of the total protein [65]. Plant RLKs form part of the monophyletic
RLK and Pelle gene family sharing common ancestors with animal receptor kinases; in
particular the kinase domain has similarities with Drosophila melanogaster Pelle kinase and
interleukin 1 receptor associated kinases (IRAK) [46,65,68]. Diversity between the RLK
and Pelle clades is massive amongst plants with rice for instance having more than twice
the number of RLKs found in Arabidopsis [46,64–66,68], but quite limited in animals with
four IRAK members in vertebrates [69]. This phenomenon is no doubt due to the need
of plants to recognize and respond actively to environmental challenges. Animals can
escape these challenges but plants due to their sessile nature need to withstand or tolerate
them [46,64–66,68,70]. Plant RLK diversification has resulted in great variation in the extra-
cellular domain that contributes to their diverse roles mediating all aspects of plant growth
and development and responses to the environment, notably to biotic stresses (for reviews,
see for instance: [65,71–73]). Many plant RLKs bind endogenous peptide ligands such as
phytosulfokine [74,75] or pathogen associated molecular patterns (PAMPs) and damage
associated molecular patterns (DAMPs) [73,76]. The degree of peptide signaling in plants is
perhaps surprising but can be considered an adaptive evolutionary investment [77]. Recent
work has attempted to resolve how extracellular domains of RLKs respond by binding or
recognizing PAMPs, DAMPs and other signals contribute to the diversity of plant RLKs
at genetic and structural levels [64,78,79]. Phylogenetic analyses reveal that the kinase
domain is relatively conserved compared to the extracellular domain of RLKs including
LRR RLKs [62–64,66]. Therefore, it is of interest that some members of the LRR RLK family
contain candidate guanylate cyclase centers embedded in the kinase domain, but most
do not.

Several of the LRR RLK candidate guanylate cyclases (moonlighting kinases) iden-
tified in Arabidopsis [37] have since been shown to contain both kinase and guanylate
cyclase activity at least in vitro. These include the brassinosteroid receptor, brassinos-
teroid insensitive 1 (AtBRI1; AT4G39400) [37,80], phytosulfokine receptor 1 (AtPSKR1;
AT2G02220) [81–83], the DAMP receptor for Arabidopsis plant elicitor peptide 1 (AtPEP1),
AtPEPR1 (AT1G73080), and its tomato homologs SlGC17 and SlGC18 [84,85]. BRI1 and
PSKR1 are both important in plant growth, while PEPR1 is involved in plant immunity.
Below we briefly describe the function of these molecules with guanylate cyclase activity.

BRI1 was first identified as being critically important in elongation growth [86] and
is part of clade Xb of the LRR RLKs [87]. Since, a recent extensive review explores
how BRI1 signaling interconnects with plant growth and environmental challenges [88],
we only briefly review BRI below. BRI1 recognizes brassinosteroids and forms het-
erodimers with BRI1-associated kinase (BAK1)/somatic embryogenesis receptor like kinase
3 (SERK3) [79,89–91]. Application of exogenous brassinosteroid elevates both colocalization
of BRI1 and BAK1/SERK3 and receptor hetero-oligomerization in the plasma membrane of
Arabidopsis root epidermal cells, while populations of BRI1 and BAK1/SERK3 colocalized
independently of the ligand [92]. Heterodimerization is followed by extensive auto- and
trans-phosphorylation [93] and phosphorylation of BRI1 substrate kinases (BSK) [94,95]
eventuating in induction of transcription factors inducing expression of genes involved
in cell elongation [89]. Interestingly, only about 10% of receptors present at the plasma
membrane need to be occupied to stimulate root growth [96]. In addition, stimulation
with brassinosteroids can induce increases in cGMP in leaf mesophyll protoplasts or root
tips [24,97] but this was not seen with root protoplasts [98]. This disparity in outcomes may
be due to differences in assessing cGMP amounts. The cellular increases in cGMP were mea-
sured with antibody-based cGMP detection methods and in transgenic FlincG Arabidopsis
seedlings [24,97] while root protoplasts were transiently transfected with FlincG [98].
FlincG is a chimeric fluorescent reporter containing the regulatory domain of type 1 protein
kinase G (cGMP-dependent protein kinase; PKG) fused in tandem to the circular permuted
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enhanced green fluorescent protein that was developed initially for animal systems [99] and
adapted to plant systems [100]. However, BRI1 downstream signaling appears to involve
cGMP. Brassinosteroid-induced transcripts are reduced in the presence of guanylate cyclase
inhibitors while mutation of cyclic nucleotide gated channel 2 (CNGC2) gene abolished the
cGMP-dependent cytosolic release of Ca2+ upon brassinosteroid perception [97]. BSK1, a
substrate of BRI1, is part of the rapidly activated cGMP phosphoproteome [80,101]. Recom-
binant kinase domains of BRI1 can generate cGMP [37,80], although this finding has been
questioned as other studies using less sensitive methods have not detected cGMP [102]. The
BRI1 kinase activation loop is critical for peptide substrate binding and displays structural
features reminiscent of both serine/threonine and tyrosine kinases, yet it is still unclear
whether the receptor can switch between these activities [102] and if cGMP is involved in
this process. Interestingly, mutations in the kinase domain modulate the guanylate cyclase
activity [80] suggesting that intramolecular cross-modulation occurs. BRI1 kinase activity
enhances guanylate cyclase activity while kinase activity itself is suppressed by cGMP [80]
suggestive of a very localized effect by this moonlighting enzyme. An increasing body
of evidence suggests BRI1 has functions that are independent of classical brassinosteroid
signaling outputs mediated by the canonical brassionsteroid signaling pathway, that are
mediated by receptor-like protein 44 (RLP44), which probably acts as a scaffold promoting
association of BRI1 and BAK1/SERK3 [103]. RLP44 is under transcriptional control of
BRI1 and is able to promote activity of a complex containing PSKR1, through an analogous
scaffolding mechanism as observed for the activation of brassinosteroid signaling [104],
with BRI1 and PSKR1 likely competing for RLP44 [105]. This is of interest as both BRI1 and
PSKR1 contain moonlighting guanylate cyclase function that may result in cGMP-enriched
scaffold complexes.

PSKR1 is one of the two Arabidopsis receptors for the sulfated pentapeptide phyto-
sulfokine [106,107] and was identified through elegant ligand binding studies [74]. PSKR1
is a member of the clade Xb of LRR RLKs [87] and has diverse roles in modulating cell
expansion, cell differentiation, and plant immunity [23,108]. Phytosulfokine binding to the
extracellular island domain in PSKR1 allosterically alters the entire receptor conformation
enhancing heterodimerization with SERKs including BAK1/SERK3 [109]. A membrane
associated complex forms involving H+ ATPases AHA1 and 2, and CNGC17 [110]. Auto-
phosphorylation of PSKR1 occurs and additional molecules are phosphorylated [82,111,112]
but the downstream signal pathway is unclear. Overexpression of PSKR1 in protoplasts
leads to 20-fold increases in cGMP levels in protoplasts, and wildtype protoplasts show
a transient increase in cGMP levels in response to the active phytosulfokine ligand [81].
Involvement of phytosulfokine-PSKR1 signaling in plant immune responses was sug-
gested by observations that genes encoding phytosulfokine precursors [113], processing
enzymes [114] and PSKR1 receptor [107,115,116] are induced by wounding, several bacte-
rial and fungal elicitors and necrotrophic pathogen Botrytis cinerea. Arabidopsis pskr1 mu-
tant plants displayed growth inhibition, enhanced defense gene expression and enhanced
immune responses to elf18 and virulent bacterial pathogen Pseudomonas syringae [115].
This is in line with a notion that PSKR-mediated signaling attenuates immune responses
and it was proposed that cGMP is the signaling component immediately downstream
of PSKR1 [115]. Elevation of cytosolic Ca2+ due to phytosulfokine-PSKR1 interaction re-
sults in auxin-dependent immunity of tomato plants against B. cinerea, and exogenous
application of phytosulfokine enhances resistance, while silencing of PSKR1 raises their
susceptibility to this fungal pathogen (Zhang et al., 2018). Of note, increases in calcium ions
at physiologically likely levels inhibit kinase activity of the recombinant kinase domain
while promoting cGMP production [83] and cGMP inhibits kinase activity [81] providing
further support that these moonlighting enzymes support a localized effect [23].

AtPEPR1 was identified via a series of cross-linking studies with the endogenous
Arabidopsis plant elicitor peptide 1 (AtPEP1), a degradation product of the C terminal of
precusor of peptide 1 (PROPEP1) [117], and is a member of clade XI of the LRR RLKs [87].
AtPEPs comprise a family of eight members [118] that mature from their AtPROPEP pre-
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cursors [119]. Expression of some PROPEPs and both PEPRs is induced by perception of
microbe-associated molecular patterns (MAMPs) and other molecules, including methyl
jasmonate and ethylene [119,120]. Plant elicitor peptide (PEP) signals are generated rapidly
(30 s) following wounding via cleavage of PROPEP through calcium dependent activation
of the proteases, metacaspases [121], where they cause medium alkalinization [122] and act
as DAMP signals. PEPR-mediated signaling is involved in immunity towards pathogens
with lifestyles ranging from hemibiotrophic to necrotrophic [123–127]. AtPEPs amplify
defense responses via initiating jasmonic acid [123], ethylene [124,126,128], salicylic acid,
Ca2+ and hydrogen peroxide [118,120,122,128] signal cascades. AtPEPR1 and AtPEPR2
share structural and functional similarity to the flagellin receptor Flagellin-Sensing2 (FLS2)
and the elongation factor Tu (EF-Tu) receptor [117,120,128] and are coupled with BRI1-
associated receptor kinase 1 (BAK1) [129,130] and BAK1-Like1 [131], and disruption of
BAK1 sensitizes PEPR signaling [127]. The kinase domain of PEPR1 interacts with and
directly phosphorylates the receptor-like cytoplasmic kinase Botrytis-induced kinase 1
(BIK1) required for PEP1-induced resistance against B. cinerea, while ET-induced expression
of defense genes and resistance to B. cinerea are compromised in the pepr1/pepr2 plants [124].
The downstream events are complex as BIK1 also undergoes monoubiquitination to medi-
ate immune signaling [132]. Exogenous PEPs activate mitogen-activated protein kinase 3
(MPK3) and MPK6 [118].

The PEP1-PEPRs system intersects both with auxin and ROS signaling, inhibiting root
growth [133,134]. It is noteworthy that PEP1 and both jasmonic acid and auxin have been
shown to stimulate increases in cGMP levels using the FlincG reporter system [98,125].
Although the PEP–PEPR system is principally considered as part of the plant defense
response, it is also involved in plant development and reproduction [118] and stress tol-
erance [135]. Both PEPR1/2 carry a guanylate cyclase catalytic center with conserved
residues crucial for catalysis embedded in its kinase domain [84,120], but so far only the
enzymatic activity of PEPR1 has been experimentally demonstrated [84]. Recombinant
protein studies have demonstrated that AtPEPR1, H. hybridum HhPEPR1, and tomato
homologs SlGC17 and SlGC18, can all generate cGMP [84,85,136]. Downstream signaling
following PEP activation involves characteristic pattern induced responses including in-
creased gene transcription that is enhanced in the presence of calcium possibly entering
cells by cyclic nucleotide gated channels (CNGC) [84,125]. It is tempting to speculate that
PEPR1 forms a complex with CNGCs where localized cGMP generated by PEPR1 can
activate CNGCs. Interestingly, PEPR signaling has recently been reported to function
downstream of CNGC19, which is activated by elicitors in the cell wall of Piriformospora in-
dica and known to be involved in AtPEP1-induced elevation of cytosolic calcium ions [137],
and modulate CNGC19-mediated basal immunity to regulate colonization of the fungus in
Arabidopsis roots [138].

Several other LRR RLKs were found to contain a guanylate cyclase center in the
relaxed searches [37] including ERECTA (ER), ER-like 1 and 2 (ERL1, ERL2), and CLAVATA
1 (CLV1). Like many other LRR RLKs, these molecules have roles in plant growth and
development including plant immunity. To date, their guanylate cyclase activity has not
been explored. However, some of these molecules have been shown to have links to cGMP
production. Although CLV1 has not yet been shown to directly generate cGMP, its peptide
ligand CLV3 induces increases in cGMP when applied to root tips of transgenic FlincG
Arabidopsis seedlings [139].

2.3. Nitric Oxide (NO)-Responsive Moonlighting Proteins

In total, two sensors of nitric oxide (NO) in plants have been identified through pattern
searches that recognized separate amino acid sequences in these proteins for both heme-
NO/oxygen (H-NOX) binding and guanylate cyclase centers [140,141] that both contain
guanylate cyclase centers (Figure 1). The first identified NO-dependent guanylate cyclase
1 (AtNOGC1; AT1G62580) protein is a flavin dependent monooxygenase, which has a
higher affinity for NO over O2 where NO induces cGMP production [141]. Similar pattern



Int. J. Mol. Sci. 2021, 22, 1367 7 of 21

searches predicted that diacylglycerol kinase 4 (AtDGK4; AT5G57690) found predominantly
in pollen tubes also contained H-NOX and guanylate cyclase center motifs [61,140]. The
two independent groups showed that AtDGK4 is important for growth and directional
responses of pollen tubes and AtDGK4 also generates cGMP which like NO can inhibit
the kinase activity [142,143]. Diacylglycerol kinases are cytoplasmic atypical (or lipid)
kinases that phosphorylate diacylglycerol forming phosphatidic acid and are important
in lipid metabolism necessary for plasma and endomembrane signaling. AtDGK4 is an
example of a plant cytoplasmic moonlighting kinase as it has both kinase and guanylate
cyclase activity [142,143].

3. Moonlighting Kinase Guanylate Cyclase Centers

Kinases play incredibly important parts in cell signaling regulating signal cascades,
metabolic pathways, transcription events, and cell cycles. The superfamily of eukaryotic
protein kinases contains 12 specific sequence motifs or conserved subdomains (linearly
numbered I–XI, inclusive of VIa and VIb) [144,145]. These motifs are scattered throughout
the conserved structural core of eukaryotic protein kinases. In their folded state kinases
have the superficial structure of a violin where the linear sequence folds over so that it
can dynamically and allosterically relay conformational changes to non-linear but adjacent
folded parts [146–150]. The fact that changes in other regions of the kinase molecule can
allosterically induce dynamic molecular vibrations across the kinase has furthered the
allusion to violins where disturbance at one point will induce different tonal and confor-
mational responses at other points [148]. An algorithm developed to identify community
boundaries based on central community indices in biological and social networks [151]
was used to identify community maps in protein kinases [150]. Community maps (Com
A through to Com H) are used to describe each of the three-dimensional folded regions
containing 40–60 amino acids of the kinase [146–148,150] (Figure 2a). Surprisingly, as their
sequence differs, atypical kinases which include the lipid kinases also form similar core
folds with an overall similar structure [152].

Of relevance here, the guanylate cyclase center in the RLKs (e.g., BRI1, PSKR1, PEPR1,
and WAKL10) is found in domain IX and arises from an α-helix to random loop in the
C-lobe [38,60,153] (Figure 2b,c). Changes in this lobe are predicted to modulate the catalytic
site via allosterically modulating ComC containing the catalytic site [148,150]. On the
other hand, the guanylate cyclase center of the lipid kinase DGK4 is found in domain I
of the N-lobe [140,143] (Figure 2b) and is also likely to impinge on substrate binding and
phosphorylation actions. These differences in location of the guanylate cyclase center are
of interest as they may pertain to their molecular action. However, if dynamic modulation
of the localized regions or community maps of the molecule is the key role of the guanylate
cyclase component, the regional positioning may not be so important as molecular tuning
will effectively occur across the molecule altering kinase activity.

Providing supplementary means of tempering kinase activity will add an extra layer of
“fuzziness” to downstream signal interactions smoothing cell function and potentially gen-
erating enriched signal niches or nanodomains. Molecular cross talk involving kinase and
guanylate cyclase activity is at least important for the function of BRI1 and PSKR1 [80,82].
Kinase dead mutants of BRI1 have reduced guanylate cyclase activity due to either lack
of kinase activity or phosphorylated residues [80]. It is conceivable that it is the number
of phosphorylated residues as mutations mimicking phosphorylated residues were more
effective in modulating guanylate cyclase activity of PSKR1 than those modulating kinase
activity [82]. Number of phosphorylated residues has long been recognized as a key tuning
event in regulating kinase activity [149]. However, mutations in the guanylate cyclase
center do not affect kinase activity of PSKR1 [83]. Small increases in cGMP levels are
sufficient to decrease kinase activity in BRI1, PSKR1, and PEPR1 [80,81,154]. DGK4 is an
interesting molecule as its kinase activity is reduced by cGMP and also NO—both com-
pounds that DGK4 can itself generate [142,143]. These findings involving intramolecular
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communication support a role for cGMP in dynamically and allosterically modulating the
kinase (discussed further in Section 4).
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Phosphorylation action of kinases is their main function, but interest has also de-
veloped in their non-catalytic functions as the kinase structure supplies a scaffold that
contributes to functions of pseudokinases [155–158]. At least one eukaryotic pseudokinase,
IRAK3 has a functional guanylate cyclase center that contributes to its activity [159]. IRAK3
is involved in regulating the innate immune system in animals [160,161]. The IRAK3 pseu-
dokinase domain is located between an N-terminal death domain and before C-terminal
domain (Figure 1). Homology modelling indicates that the pseudokinase domain forms
similar fold patterns to models of the kinase domain of PSKR1 with the guanylate cyclase
center in a similar position [153]. Phosphorylation status and kinase activity do not con-
tribute to the guanylate cyclase activity although small amounts of cGMP are important in
promoting the ability of IRAK3 to suppress nuclear factor kappa B (NFκB) activity [159].
Potentially, localized small amounts of cGMP allosterically modulate IRAK3 conformation
to promote down-stream effects.
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4. Nanodomains Surrounding Moonlighting Kinases

Nanodomains are the immediate areas surrounding the proteins, protein complexes,
and other intracellular or extracellular structures such as lipid rafts in membranes. Ad-
vances in microscopy techniques have allowed analysis of fluorescent protein (FP) tagged
membrane molecules such as BRI1-GFP at the nanoscale using single particle tracking.
BRI1 partitions into distinct plasma membrane nanodomains that are important for re-
ceptor endocytosis and exocytosis processes [162,163]. The majority of surface expressed
BRI1 is not involved in signaling [96] and these receptors have limited plasma membrane
mobility [162,163]. Conflicting results have been reported following ligand binding that
may be dependent on the cell type and the type of microscopy analysis. In root tips, brassi-
nosteroid activation promoted movement of BRI1 to nanodomains and association with
the nanodomain marker flotillin 1 (FLOT1) using variable angle total internal reflection
fluorescence (TIRF) microscopy [163]. In cotyledon or leaf epidermal cells, BRI1 was stabi-
lized in specific clusters associated with plant nanodomain marker remorin proteins [162].
Interestingly there are separate clusters of BRI1 and flagellin sensing 2 (FLS2) occurring in
the plasma membrane that each contain SERK signaling molecules [162]. In plants protein
and lipid movement in the plasma membrane is constrained by interactions with proteins
in the cytoskeleton and the cell wall which may act like a cellular exoskeleton [164]. In their
recent review [164], Jallais, and Ott discuss implications of lipid and protein interactions
with cell wall and cytoskeleton in terms of specific receptor nanodomains highlighting
unique features for plants in terms of signaling outcomes.

Moonlighting kinases such as WAKL10, BRI1, PSKR1, and PEPR1 are all examples of
RLKs that localize in specific regions in plasma membranes leading to signaling clusters.
This is certainly the case for BRI1 [162,163]. So how can this potential amplification
due to receptor clustering be further enhanced intracellularly to relay signals. Each of
these molecules is a kinase coupled receptor and therefore phosphorylation signaling
cascades form an important part of the signal relay system. Phosphorylation has long been
recognized as changing the nanodomain near the phosphorylated residue and contributing
to protein function by generating an acidic region that modifies protein conformation [165].
To create major conformational changes often more than one residue is phosphorylated
and additional kinases may be needed to sequentially phosphorylate the recipient proteins
to spark new signal cascades [149,166].

Effects of cGMP are likely to be more subtle but will still induce conformational
changes that may alter disordered regions of the protein in question. Such events may be
dependent upon the phosphorylation state of the intracellular kinase domain as suggested
by findings associated with interactions between kinase and guanylate cyclase activity
seen in PSKR1 and BRI1 [80,82,83]. Guanylate cyclase activity of moonlighting kinases
has mainly been determined using recombinant kinase domains or even ~100 amino
acid fragments containing the guanylate cyclase center. Typically, this guanylate cyclase
activity is very low, thereby raising questions about the biological significance of the
small amounts of cGMP generated which have been discussed [25,61,80,102,167,168]. Wild
type recombinant proteins containing the kinase domain of PSKR1 or BRI1 have greater
guanylate cyclase activity than proteins expressing point mutations in the guanylate cyclase
center predicted to reduce activity [80,81,83]. Generally mass spectrometry measurements
detect greater amounts of cGMP production from the recombinant proteins than antibody-
based detection measures [25,80]. Higher guanylate cyclase activities have been observed
with recombinant P. nil and H. hybridum orthologs of GC1 (PnGC1, HhGC1) and HhPEPR1
where variations in the buffer composition have been used including both magnesium and
manganese ions [43,44,136] while calcium ions promote guanylate cyclase activity of the
recombinant PSKR kinase domain [83].

An additional consideration may be that only small amounts of cGMP are needed to
regulate proteins in the immediate clustered receptor nanodomain and so enrich it and
stimulate signaling events. The localized nature of cryptic enzyme generated nanodomains
due to a lack of realization of receptor clusters has led to this aspect of signal transduction
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being previously overlooked. Nevertheless, we all recognize that transient and spatially
controlled levels of signaling molecules are necessary to generate appropriate responses to
environmental and developmental stimuli within defined cytoplasmic areas or cellular com-
partments. Therefore, cells need localized control mechanisms or “traffic lights” to guide
correct outcomes to external stimuli. Such traffic lights include localized spatial changes in
Ca2+ concentration and localized changes in phosphorylation, as well as changes in cyclic
nucleotides or combinations thereof [23,25,164,169,170]. Unregulated universal production
of cyclic nucleotides, such as cGMP due to overexpression of mammalian soluble guanylate
cyclase resulting in 50–250 fold higher cGMP levels than normal, significantly affect cellular
redox state, potentially due to the cross-talk between cGMP and the glutathione redox
system [171]. It also results in extensive changes in gene expression and inappropriate
protein expression [171] likely leading to many additional protein misfolding events [2].

We suggest that proteins containing cryptic enzymatic activities, such as the guanylate
cyclase in WAKL10, PSKR1, BRI1, and PEPR1 generating cGMP-enriched nanodomains, are
part of the solution to highly spatially differentiated stimulus-specific cellular signaling and
form a new paradigm in cellular signaling and homeostatic responses [23]. Interestingly,
auto-generation of a cGMP-enriched nanodomain is part of the mechanism of action of
the cytoplasmic protein IRAK3, which is involved in inhibiting animal cell responses to
DAMPs [153,159], indicating that this is potentially a universal paradigm in cell signaling.
Establishment of a cGMP-enriched niche or nanodomain in the vicinity of the protein is a
puzzle as physics suggests that small molecules will rapidly diffuse away unless they are at-
tached in some way [172]. Once stated, the obvious answer is that cGMP must be attaching
to either moonlighting kinases generating cGMP or to other members of the localized sig-
naling interactome. Dynamic cyclic adenosine monophosphate (cAMP) nanodomains have
recently been visualized in animal cells where cAMP leaving the nanodomain is rapidly
converted to AMP by localized cyclic nucleotide phosphodiesterases (PDE) [173], enzymes
that hydrolyze cyclic nucleotide monophosphate (cNMP) to 5′-nucleotide monophosphate.
In addition, cAMP-dependent protein kinase A type I regulatory subunit forms biomolecu-
lar condensates enriched in cAMP and active kinase [174]. Phase condensation of proteins
involves interactions with disordered protein states and is associated with accumulation of
specific small molecules such as drugs and cAMP [174,175]. In combination with protein
binding sites, phase condensation provides mechanisms of concentrating small molecules
(Figure 3). Plant PDEs degrading cGMP are elusive, as earlier bioinformatic searches failed
to identify homologs of animal PDEs. However, PDE activity has been detected in crude
protein extracts from different plant species in the 1970s [176] and partially purified PDE
from chloroplasts of Phaseolus vulgaris displayed enzymatic activity in the presence of
cAMP and cGMP [177]. A novel cGMP-activated PDE encoded by an ancient gene not
represented in animals, is encoded in Arabidopsis by PDE1 [178], and more plant PDEs
remain to be discovered and characterized. Numerous analogies between cGMP– and
cAMP–PDE signaling in plants and animals make it likely that PDE-mediated degradation
of cGMP and formation of condensates facilitating cGMP enrichment with scaffold proteins
and decomposition by PDE occurs in plants in a similar manner as it has been shown in
animals (Figure 3).

Initially bioinformatic studies were undertaken to identify plant cyclic nucleotide bind-
ing proteins looking for the evolutionary conserved cyclic nucleotide binding domain [179]
and the GAF domain (named for cGMP-regulated cyclic nucleotide phosphodiesterases,
some adenylate cyclases, and the bacterial transcription factor FhlA) [180]. Plant proteins
with predicted cyclic nucleotide binding domains were shaker type potassium channels,
CNGCs and acyl-CoA thioesters [181]. Experimental evidence supports cyclic nucleotide
regulation of shaker type potassium channels and CNGCs [182,183]. CNGC2 (also known
as defense no death1, DND1), conducts monovalent cations but excludes Na+ [184] and
is activated by cAMP to conduct calcium ions into cells downstream of nitric oxide pro-
duction stimulating hypersensitivity plant immune responses [185]. CNGC4 (also known
as DND2) is K+ and Na+-permeable channel implicated in a signaling pathway leading
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to hypersensitive responses, and is more efficiently activated by cGMP than cAMP [186].
CNGC2 and CNGC4 assemble into functional calmodulin-gated calcium channels phos-
phorylated by BIK1 in response to flg22, bridging the gap between the pattern-recognition
receptor complex and Ca2+-dependent programs in the PAMP-triggered immunity [187].
Interestingly, PSKR1 (and potentially other RLKs) and BAK1 assemble with CNGC17 and
AHA1 and 2 [110]. BAK1 also phosphorylates and regulates stability of CNGC19 and
CNGC20 that form a heteromeric Ca2+-permeable channel and contribute additively to
bak1/serk4 cell death [188]. Rice OsCNGC9 calcium channel is activated through phos-
phorylation by PAMP-triggered immune-related receptor-like cytoplasmic kinase (RLCK)
OsRLCK185 and regulates resistance to rice blast disease [189]. All these observations
provide fuel for speculation that RLKs [190] and possibly moonlighting proteins are ki-
nases that phosphorylate CNGCs and it would be interesting to investigate the impact of
cGMP concentration in the vicinity of such a nanocluster on this process. cGMP (with a
modest effect of cAMP) stimulates nonselective Ca2+-permeable cation channel activity of
CNGC5 and CNGC6 in guard cells, while mutations in CNGC1, CNGC2, or CNGC20 failed
to disrupt cGMP-activated currents [191].
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Figure 3. Schematic showing generation of cGMP by a moonlighting receptor like kinase (RLK) and the associated protein
complex enabling cGMP enrichment due to a combination of phase condensation of proteins with disordered states and
proteins with cGMP binding sites that occurs in the nanodomain surrounding the RLK complex. cGMP—3′,5′-cyclic
guanosine monophosphate; GTP—guanosine-5′-triphosphate; 5′-GMP—guanosine 5′-monophosphate; Ca2+—calcium;
CNGC—cyclic nucleotide gated channel; NO—nitric oxide; PDE—cyclic nucleotide phosphodiesterase; PKG—protein
kinase G/cGMP-dependent protein kinase; S—scaffold protein. The letter P in circle indicates phosphate group, while letter
U indicates ubiquitin. Arrows indicate positive regulation, while blunt-ends indicate inhibition. Regular lines indicate
experimentally confirmed processes, while dashed lines indicate hypothetical actions and processes relating to a subset of
the molecules.
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In addition, phytochrome proteins and ethylene receptors were predicted to con-
tain GAF domains [181]. The GAF domains may be functional in phytochromes where
cGMP is involved in their signaling [192–194] but structural studies suggest this may be
unlikely [195]. More recently, an affinity purification strategy was used to purify soluble
cyclic nucleotide binding proteins from Arabidopsis where eight proteins with cyclic nu-
cleotide binding or GAF domains that had not been annotated in the databases and four
other cyclic nucleotide binding proteins were identified [196]. Perhaps surprisingly several
of the proteins are enzymes in carbon fixation pathways (e.g., phosphoglycerate kinase
1 (PGK1), glyceraldehyde-3-phosphate dehydrogenase B subunit (GAPB), transketolase
(TKL), carbonic anhydrase 1 (CA1), serine hydroxymethyltransferase 1 (SHMT1), and
glycolate oxidase 1 (GOX1)) that appear to be directly modulated by cyclic nucleotides
and also involved in H2O2 signaling defense responses [196]. These findings highlight
the connections between metabolism and moonlighting proteins. For instance, enzymes
in the Kreb’s or citric acid cycle exhibit promiscuity that may be involved in regulating
potential metabolic damage [197], but enzymes such as aconitase have separate moon-
lighting roles [198,199]. Cytochrome c involved in the vital function of mitochondrial
respiration also is a key player in apoptosis and the formation of the apoptosome [200].
These additional functions of proteins involved in metabolism contribute to the overall
fuzziness associated with cell regulation [3].

The need for localized nanodomain signal niches involving cGMP is perhaps em-
phasized by the diverse range of responses dependent on cellular changes in cGMP.
Plant growth and development involves alterations in hormones such as auxin, cy-
tokinin, gibberellic acid and plant natriuretic peptide that mediate increases in cellular
cGMP [29,32,34,98,201]. At the cellular level these involve changes in ion movement,
phosphoproteome and transcriptome [98,101,202]. Localization of these responses to
specific regions containing moonlighting kinases (and other guanylate cyclases such as
GC1) may be one way to constrain signaling cascades to reflect the primary ligand. Such
cGMP enriched nanodomains likely involve protein phase condensation of complexes of
proteins with cGMP binding sites (Figure 3).

5. Degradation of Moonlighting Proteins

Although protein turnover and degradation are critical to the signaling competence of
moonlighting RLKs and plant cellular homeostasis, little is known about the role of ubiq-
uitination on their function, the determinants of recycling or degradation, and a possible
contribution of autophagy [203,204]. Nor is it known if the kinase or guanylate cyclase activ-
ity of moonlighting proteins have a potential impact on those activities. Clathrin-mediated
endocytosis is the major internalization route of many plasma membrane proteins, includ-
ing PEPR1 and BRI1 [205–207]. In contrast to PEPR1 where functional endocytic machinery
is important for downstream signaling activation [206,207], endocytosis of BRI1 is mainly
required for signaling attenuation [205] and is largely independent of the presence or
absence of brassinosteroids [208]. Insight into turnover and degradation of plant receptor
kinases is an emerging field, and ubiquitination of several moonlighting proteins, such as
BRI1 [209,210], PSKR1, and ERECTA [211] have already been reported. Nevertheless, the
process is far from being understood and extensive effort is required to decipher which
ubiquitin ligases and ubiquitin conjugating enzymes are needed for internalization and
sorting of most of the moonlighting proteins.

In vivo, BRI1 is post-translationally modified by K63 polyubiquitin chains and its
ubiquitination promotes BRI1 internalization from plasma membrane and is crucial for
its recognition at the trans-Golgi network and early endosomes for vacuolar targeting,
while loss of BRI1 ubiquitination at residue K866 is associated with subtle brassinosteroid
hypersensitivity [209]. Although BRI1 ubiquitination is largely independent of ligand
binding, it requires BRI1 kinase activity and the presence of BAK1/SERK3, which are
dependent on brassinosteroids [209]. Ligand bound BRI1 is internalized through an
endocytic pathway mediated via plant U-box (PUB) E3 ubiquitin ligases PUB12 and PUB13
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leading to its degradation [210] and terminating the signaling process. Phosphorylation
of PUB13 mediated by this moonlighting kinase regulates association of BRI1-PUB13
complex [210], suggesting an intertwined regulation of these two proteins. Hence, it would
be interesting to investigate whether the guanylate cyclase activity of BRI1 may affect its
ability to be ubiquitinated, as cGMP has been reported to decrease BRI1 kinase activity [80].
If so, then the next question is whether the plasma membrane pool of BRI1, its degradation
and its interaction with its ubiquitin ligases, is modulated by cGMP.

Apart from enhancing proteasomal degradation (but not autophagy) by activating
cGMP-dependent protein kinase G (PKG), cGMP has been shown to rapidly stimulate
ubiquitin conjugation, thus increasing cellular levels of polyubiquitinated proteins, and
degradation of both short-lived and long-lived cell proteins in animals [212]. These rapid
(within 5 min) increases are unlikely to result from gene expression and point at site-specific
action of cGMP [212]. Thus, speculations on the potential function of guanylate cyclase
activity of plant moonlighting kinases in stimulating ubiquitination, quality control and
degradation of distinct populations of proteins in the vicinity of moonlighting kinases can
be contemplated. In analogy to mammalian cells, 8-bromo-cGMP enhances auxin-induced
degradation of Aux/indole-3-acetic acid (IAA) protein modulated by the transport inhibitor
response 1 (TIR1) ubiquitin-proteasome pathway [213]. Although 8-bromo-cGMP is unable
to directly influence the auxin-dependent TIR1-Aux/IAA interactions [213], the cGMP-
mediated modulation of auxin signaling through cGMP-dependent protein kinase was
proposed. Therefore, the product of the guanylate cyclase activity of plant moonlighting
kinases potentially can accelerate protein degradation rates in a proteasome-independent
manner. cGMP also enhances ATP-dependent proteasome activity, while the inhibition of
cGMP synthesis inhibits degradation of Aux/IAA protein [213]. Thus, cGMP may operate
in multiple ways, including the proteasome-dependent and independent mechanisms of
modulating protein degradation.

6. Conclusions

Plant moonlighting kinases, described here, have significant roles in their kinase form
that contribute to whole plant regulation. These proteins are involved in multiple signal
pathways and the network of signaling interactions can potentially be subtly modulated
via the guanylate cyclase activity that they exhibit. The end-product cGMP not only directly
modulates kinase activity but also is involved in modulating interacting proteins such as
CNGCs and potentially stimulating protein ubiquitination. We argue that moonlighting
kinases create a cGMP-enriched niche that will modulate the immediate interactome
providing an overlay to the signaling events important in developing localized intracellular
regions of fuzziness, ensuring that asymmetrical response can occur that are essential in
plant growth and development. Investigating this hypothesis involves visualizing and
monitoring development of signal niches or nanodomains and correlating these with subtle
alterations in plant growth and development.
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