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A B S T R A C T   

Background and objective: The world is currently facing a global emergency due to COVID-19, which requires 
immediate strategies to strengthen healthcare facilities and prevent further deaths. To achieve effective remedies 
and solutions, research on different aspects, including the genomic and proteomic level characterizations of 
SARS-CoV-2, are critical. In this work, the spatial representation/composition and distribution frequency of 20 
amino acids across the primary protein sequences of SARS-CoV-2 were examined according to different 
parameters. 
Method: To identify the spatial distribution of amino acids over the primary protein sequences of SARS-CoV-2, the 
Hurst exponent and Shannon entropy were applied as parameters to fetch the autocorrelation and amount of 
information over the spatial representations. The frequency distribution of each amino acid over the protein 
sequences was also evaluated. In the case of a one-dimensional sequence, the Hurst exponent (HE) was utilized 
due to its linear relationship with the fractal dimension (D), i.e. D+ HE = 2, to characterize fractality. Moreover, 
binary Shannon entropy was considered to measure the uncertainty in a binary sequence then further applied to 
calculate amino acid conservation in the primary protein sequences. 
Results and conclusion: Fourteen (14) SARS-CoV protein sequences were evaluated and compared with 105 SARS- 
CoV-2 proteins. The simulation results demonstrate the differences in the collected information about the amino 
acid spatial distribution in the SARS-CoV-2 and SARS-CoV proteins, enabling researchers to distinguish between 
the two types of CoV. The spatial arrangement of amino acids also reveals similarities and dissimilarities among 
the important structural proteins, E, M, N and S, which is pivotal to establish an evolutionary tree with other CoV 
strains.   

1. Introduction 

The novel coronavirus (COVID-19) has rapidly become a major 
global emergency that has and continues to affect all lives around the 
globe [1–3]. Presently, this disease, a pandemic as announced by the 
WHO, is a major health concern [4,5]. Currently, the largest genome (of 
size approximately 30 kb) for RNA viruses is known as severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) [6,7]. Coronavi-
ruses (CoVs) are classified into three different classes, including α-CoV, 

β-CoV, and γ-CoV, based on genetic and antigenic criteria [8,9]. The 
SARS-CoV-2 is classified as β-CoV [10] and has received widespread 
research attention across the world [11–13]. Every day, new genome 
sequences, as well as primary protein sequences of SARS-CoV-2, are 
being added to databases, such as the NCBI virus database [14,15] As of 
this writing, no antiviral drugs with proven efficacy nor vaccines for 
CoV2 prevention have been reported [16,17], while researchers have 
yet to attain a complete understanding of the molecular biology of 
SARS-CoV-2 infection [18,19]As a result, COVID-19 cases increase and 
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have reached a global pandemic level, thus urgently requiring in-depth 
knowledge, infection mechanism, and other aspects of the virus-like 
forecasting its progression [18,20]. Although various protein-protein 
interactions (PPIs) of the virus and host are known, its viral infection 
mechanism is not fully understood [21,22]Therefore, identifying in-
teractions between the SARS-CoV-2 virus proteins and host proteins will 
largely help to understand this mechanism and further develop treat-
ments and vaccines [23]. As a first step, it is critical to gain clarity of 
SARS-CoV-2 proteins and PPIs between the virus and host proteins [24]. 
It is known that the protein fold depends on the number, spatial 
arrangement, and topological connectivity of secondary structure ele-
ments (SSEs) [25], yet the spatial arrangement of secondary structure 
elements (SSEs) is not well-understood [26]. Because the geometric 
three-dimensional structure of a protein depends on the spatial 
arrangement of the SSEs [27,28], both the spatial distribution and pre-
sence/absence of different amino acids over a primary protein sequence 
of SARS-CoV-2 are significant. It is also pertinent to mention that the 
spatial arrangement uncovers the rules that govern the folding of 

polypeptide chains, and the primary sequence of a protein reveals the 
molecular events in evolution [29,30]. Specifically, the alternation and 
spatial arrangement of amino acids over the primary sequence appear to 
affect the function and conformability of the protein, respectively 
[31–33]. 

In the present study, the spatial composition of 20 amino acids across 
the primary proteins of SARS-CoV-2 was examined according to the 
Hurst exponent and Shannon entropy. A frequency analysis of the amino 
acids was also conducted and further compared to a similar analysis for 
89 genomes of SARS-CoV-2 [34]. The usability of Shanon entropy and 
Hurst exponent for analysis of protein sequences is reported in [29] 
which is to find out correlation among all these sequences. 

1.1. Database and specifications 

As of March 24, 2020, there are 944 known primary protein se-
quences of SARS-CoV-2 in the NCBI Virus Database 
(https : //www.ncbi.nlm.nih.gov/labs/virus/vssi/) [35]. Out of these 

Fig. 1. Schematic representation of the coronavirus structure and genomic comparison of coronaviruses. (A) Representation of coronavirus showing different 
Components of the particle, which is 100–160 nm in diameter. The single-stranded RNA (ssRNA) genome, covered with the envelope and membrane proteins, gains 
Access into the host cell and hijacks the replication machinery. (B) The ssRNA of SARS-cov-2 is about 30 kb and has similarities with the genomes of SARS-CoV and 
MERS-CoV. Translation of this ssRNA results in the formation of two polyproteins, namely pp1a and pp1ab that are further sliced to generate numerous non- 
structural Proteins (NSPA). The remaining ORFS encode for various structural and accessory proteins that help in the assembly of the viral particle and evading 
immune response. This figure is taken from [36]. 
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sequences, only 105 sequences are distinct, although these sequence 
data have been taken from wide ranges of geographic locations over the 
world. The complete list of 105 distinct sequences, which are denoted 
N1, N2, …, N105, with their corresponding accessions is provided at the 

end of the article in Appendix C. These 105 distinct protein sequences 
were considered in this study. The SARS-CoV and MERS-CoV, the 
SARS-CoV-2 genome comprises of 12 open reading frames (ORFs) in 
number. Genes encoding structural proteins such as spike (S), membrane 

Table 1 
Lengths of the 105 primary protein sequences.  

Seq Length Seq Length Seq Length Seq Length Seq Length Seq Length 

N99 13 N9 275 N6 638 N13 7091 N33 7096 N53 7096 
N80 38 N10 275 N100 932 N44 7095 N34 7096 N54 7096 
N81 43 N11 275 N70 1272 N14 7096 N35 7096 N55 7096 
N68 61 N101 290 N69 1273 N16 7096 N37 7096 N56 7096 
N96 75 N105 298 N71 1273 N17 7096 N38 7096 N57 7096 
N97 75 N102 306 N72 1273 N18 7096 N39 7096 N59 7096 
N103 83 N104 346 N73 1273 N19 7096 N40 7096 N60 7096 
N98 113 N88 419 N74 1273 N20 7096 N41 7096 N61 7096 
N82 121 N89 419 N75 1273 N21 7096 N42 7096 N62 7096 
N83 121 N90 419 N76 1273 N22 7096 N43 7096 N63 7096 
N84 121 N91 419 N77 1273 N23 7096 N45 7096 N64 7096 
N85 121 N92 419 N78 1273 N24 7096 N46 7096 N65 7096 
N86 121 N93 419 N79 1273 N25 7096 N47 7096 N66 7096 
N87 121 N94 419 N4 1945 N27 7096 N48 7096 N67 7096 
N2 139 N95 419 N32 4405 N28 7096 N49 7096 N26 7097 
N15 180 N7 500 N36 4405 N29 7096 N50 7096   
N3 198 N1 527 N58 4405 N30 7096 N51 7096   
N8 222 N5 601 N12 7088 N31 7096 N52 7096    

Table 2 
HE OF 105 B_ (1_J) FOR J = 1, 2…105 CORRESPONDING TO AMINO ACID A_1 (A).  

Seq HE C Seq HE C Seq HE C Seq HE C Seq HE C Seq HE C 

N80 0.509 3 N18 0.584 7 N42 0.584 7 N59 0.586 7 N1 0.603 2 N73 0.67 1 
N4 0.531 3 N19 0.584 7 N45 0.584 7 N65 0.586 7 N5 0.604 2 N75 0.67 1 
N103 0.562 6 N21 0.584 7 N46 0.584 7 N29 0.586 7 N6 0.605 2 N76 0.67 1 
N87 0.574 7 N23 0.584 7 N47 0.584 7 N88 0.594 2 N100 0.635 5 N77 0.67 1 
N105 0.578 7 N24 0.584 7 N49 0.584 7 N89 0.594 2 N104 0.635 5 N78 0.67 1 
N20 0.58 7 N25 0.584 7 N51 0.584 7 N90 0.594 2 N3 0.641 5 N79 0.67 1 
N7 0.581 7 N27 0.584 7 N52 0.584 7 N91 0.594 2 N102 0.642 5 N101 0.676 1 
N81 0.582 7 N28 0.584 7 N53 0.584 7 N92 0.594 2 N15 0.647 5 N98 0.697 8 
N48 0.582 7 N30 0.584 7 N54 0.584 7 N93 0.594 2 N82 0.649 5 N96 0.709 10 
N50 0.582 7 N31 0.584 7 N55 0.584 7 N94 0.594 2 N83 0.649 5 N97 0.709 10 
N61 0.582 7 N33 0.584 7 N56 0.584 7 N95 0.594 2 N84 0.649 5 N2 0.714 9 
N43 0.582 7 N34 0.584 7 N57 0.584 7 N64 0.584 7 N85 0.649 5 N99 0.718 9 
N12 0.583 7 N35 0.584 7 N60 0.584 7 N66 0.584 7 N86 0.649 5 N9 0.733 4 
N13 0.584 7 N37 0.584 7 N62 0.584 7 N67 0.584 7 N74 0.666 1 N10 0.733 4 
N44 0.584 7 N38 0.584 7 N63 0.584 7 N32 0.595 2 N70 0.67 1 N11 0.733 4 
N14 0.584 7 N39 0.584 7 N26 0.584 7 N36 0.595 2 N69 0.67 1    
N16 0.584 7 N40 0.584 7 N8 0.585 7 N58 0.597 2 N71 0.67 1    
N17 0.584 7 N41 0.584 7 N22 0.586 7 N68 0.599 2 N72 0.67 1     

Table 3 
HE of 105 B_(2_j) for j = 1,2, …105 corresponding to the amino acid A_2 (C).  

Seq HE C Seq HE C Seq HE C Seq HE C Seq HE C Seq HE C 

N68 * 2 N7 0.567 6 N79 0.6 1 N33 0.6 1 N57 0.6 1 N32 0.6 1 
N88 * 2 N15 0.576 6 N70 0.6 1 N34 0.6 1 N59 0.6 1 N36 0.6 1 
N89 * 2 N8 0.578 6 N13 0.6 1 N35 0.6 1 N60 0.6 1 N58 0.6 1 
N90 * 2 N87 0.583 7 N44 0.6 1 N37 0.6 1 N61 0.6 1 N102 0.6 1 
N91 * 2 N98 0.59 7 N3 0.6 1 N38 0.6 1 N62 0.6 1 N4 0.6 8 
N92 * 2 N104 0.59 7 N14 0.6 1 N43 0.6 1 N63 0.6 1 N2 0.6 8 
N93 * 2 N81 0.594 7 N16 0.6 1 N45 0.6 1 N64 0.6 1 N1 0.7 8 
N94 * 2 N80 0.613 1 N17 0.6 1 N46 0.6 1 N65 0.6 1 N6 0.7 8 
N95 * 2 N72 0.615 1 N18 0.6 1 N47 0.6 1 N66 0.6 1 N9 0.7 5 
N99 * 2 N12 0.617 1 N19 0.6 1 N48 0.6 1 N67 0.6 1 N10 0.7 5 
N100 0.5 3 N69 0.617 1 N20 0.6 1 N49 0.6 1 N22 0.6 1 N11 0.7 5 
N105 0.5 3 N71 0.617 1 N21 0.6 1 N50 0.6 1 N25 0.6 1 N5 0.7 10 
N103 0.5 3 N73 0.617 1 N23 0.6 1 N51 0.6 1 N31 0.6 1 N101 0.7 9 
N82 0.5 3 N74 0.617 1 N24 0.6 1 N52 0.6 1 N39 0.6 1 N96 0.7 4 
N83 0.5 3 N75 0.617 1 N27 0.6 1 N53 0.6 1 N40 0.6 1 N97 0.7 4 
N84 0.5 3 N76 0.617 1 N28 0.6 1 N54 0.6 1 N41 0.6 1    
N85 0.5 3 N77 0.617 1 N29 0.6 1 N55 0.6 1 N42 0.6 1    
N86 0.5 3 N78 0.617 1 N30 0.6 1 N56 0.6 1 N26 0.6 1     
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(M), envelope (E), and nucleocapsid (N), are present in the remaining 
one-third of its genome spanning from the 5′ to the 3′ terminal, along 
with several genes encoding non-structural proteins (NSPs) and acces-
sory proteins scattered in between is shown in Fig. 1 [36]. 

The 20 amino acids are distinguished below:  

• Essential amino acids: H, I, K, L, M, F, T, W, and V  
• Conditionally essential: R, C, Q, G, P, and Y  

• Non-essential: A, D, N, E, and S 

The replication of a virus depends on the availability of amino acids 
[37]. Because amino acids are required for protein synthesis, they play a 
crucial role in virus-related infections [38]. The absence of essential 
amino acids may result in empty virus particles that are free of viral 
nucleic acids [39]. Arginine (R) is a conditionally essential amino acid 
that is vital for virus replication and progression of virus infection. 

Fig. 2. Shows the Plot of HEs and Histogram all the binary sequences, (a) and (b) for the amino acid A1(A), (c) and (d) for the amino acid A2(C), (e) and (f) for the 
amino acid A3(F), (g) and (h) for the amino acid A4(G), (i) and (j) for the amino acid A5(H), (k) and (l) for the amino acid A6(I), (m) and (n) for the amino acid A7(L),
(o) and (p) for the amino acid A8(M), (q) and (r) for the amino acid A9(N), (s) and (t) for the amino acid A10(P). 
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Carbon is the basic backbone of amino acids, which is attached to a 
carboxyl group (-COOH), amino group, (-NH2), hydrogen, and another 
group of atoms (R) [40]. The R group gives the amino acid its unique 
characteristics and distinguishes its interaction with other amino acids. 
Based on the structural and general chemical characteristics, R groups 
are classified as:  

• Aliphatic: G, A, V, L, I  
• Hydroxyl: S, C, T, M  
• Cyclic: P  
• Aromatic: F, Y, W  
• Basic: H, K, R  
• Acidic: D, Q, Z, N 

Fig. 3. Shows the Plot of HEs and Histogram all the binary sequences, (a) and (b) for the amino acid A11(Q), (c) and (d) for the amino acid A12(S), (e) and (f) for the 
amino acid A13(T), (g) and (h) for the amino acid A14(V), (i) and (j) for the amino acid A15(W), (k) and (l) for the amino acid A16(Y), (m) and (n) for the amino acid 
A17(D), (o) and (p) for the amino acid A18(E), (q) and (r) for the amino acid A19(K), (s) and (t) for the amino acid A20(R). 
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Herein, we represent the studied amino acids as A1,A2,A3,…,A20 
corresponding to A, C, F, G, H, I, L, M, N, P, Q, S, T, V, W, Y, D, E, K, and 
R respectively. Each primary protein sequence was decomposed into 20 
different binary sequences of 0 and 1, according to the following rule: 
Given a primary protein sequence of SARS-CoV-2 for every amino acid 
Ai ∈ {A,C,F,G,H,I,L,M,N,P,Q,S,T,V,W,Y,D,E,K,R}, where i = 1 to 20, 

put one wherever Ai is present and elsewhere put zero. 
Consequently, for every given primary protein sequence Nj for all 

sequences j = 1, 2, …105, there are 20 binary sequences Bij corre-
sponding to the 20 different amino acids Ai, i = 1, 2,…20. The length of 
these complete 105 primary protein sequences widely varies from 13 to 
7097. One complete SARS-CoV-2 protein sequence, N99, has the 
smallest length of 13, and one protein sequence, N26, has the largest 
length of 7097. There are 6, 3, 8, 10, 3, and 48 sequences of lengths 121, 
275, 419, 1273, 4405, and 7096 respectively, and the other sequences 
have unique length ranges. Then, all 105 sequences were grouped into 
six groups, excluding the individual sequences of different unique 
lengths. The complete list of 105 proteins with their corresponding 
lengths is given in Table 1 and Accession ID with details of 944 number 
of sequences are provided in Appendix C. 

2. Proposed methods 

To characterize the amino acid spatial distribution over the primary 
protein sequences of SARS-CoV-2, the Hurst exponent and Shannon 
entropy were applied as parameters, and the amino acid density/fre-
quency analysis was performed. Unsupervised machine learning was 
mostly utilized for analysis of gene and genome sequences and also used 
for intra-protein analysis. Markov Clustering and Affinity Propagation 
procedures were compared directly to the method described in [41,42] 
and K-means clustering techniques in [43]. K-means algorithm is better 

Table 4 
Absence of amino acids on various SARS-CoV-2 proteins.  

Amino Acids: 
Absent 

Types Sequences 

C Hydroxyl, Conditionally 
Essential 

N68, N88, N89, N90, N95, 
N99 

G Aliphatic, Conditionally 
Essential 

N68, N81 

H Basic, Essential N3, N80, N97, N98, N99 
I Aliphatic, Essential N99 
M Hydroxyl, Essential N99 
P Cyclic, Conditionally Essential N81, N99, N103 
Q Acidic, Conditionally Essential N96, N97 
T Hydroxyl, Essential N99 
W Aromatic, Essential N80, N87, N96, N97, N99 
Y Aromatic, Conditionally 

Essential 
N99, N103 

E Aromatic, Non Essential N80, N99 
K Basic, Essential N80, N81, N99 
R Basic, Conditionally Essential N81, N99  

Table 5 
Correlation matrix of HEs.   

Q S T V W Y D E K R 

A 0.280 − 0.342 0.271 0.667 0.599 0.306 − 0.513 − 0.711 − 0.607 − 0.625 
C − 0.434 0.067 0.385 − 0.239 − 0.101 0.657 0.062 0.223 0.308 0.246 
F 0.538 0.061 − 0.273 0.051 0.265 − 0.104 0.107 0.032 0.230 0.122 
G − 0.376 0.407 − 0.126 − 0.453 − 0.439 0.130 0.598 0.780 0.660 0.702 
H 0.282 − 0.201 − 0.134 − 0.095 0.112 0.052 − 0.241 − 0.140 0.025 0.006 
I 0.027 − 0.374 − 0.142 − 0.278 − 0.292 0.218 − 0.066 0.155 0.279 0.339 
L 0.103 0.064 0.491 0.355 0.400 0.546 0.038 − 0.193 − 0.200 − 0.107 
M − 0.096 0.034 − 0.053 − 0.333 − 0.204 0.443 0.300 0.281 0.389 0.504 
N 0.548 0.102 0.082 0.806 0.636 0.116 − 0.165 − 0.509 − 0.613 − 0.452 
P 0.163 0.385 0.262 0.376 0.240 − 0.091 0.103 − 0.097 − 0.296 − 0.088  

Fig. 4. The correlation plot of HEs of the distribution of amino acids M and Y.  
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for analyzing inter and intra class analysis of protein sequences [44]. A 
recent application of minimum variance cluster analysis for hierarchical 
agglomerative clustering technique was performed well and discussed in 
[45] and also identified groups of molecular systems to enhance insight 
into peptide dynamics. K-mean clustering algorithm is used to develop 
homogeneous subclasses inside the data. These data points in each 
cluster are as analogous as possible according to a widely used distance 
measure viz. Euclidean distance. Based on the performance and appli-
cability one of the most commonly used simple clustering techniques is 
the K-means clustering [42,46]. In this paper, k-mean clustering algo-
rithm has been used to generate 10 clusters for respective amino acids 
with the 105 SARS-CoV-2 datasets. The implementation of the spatial 
feature extraction has been performed using MATLAB-2016a version, on 
Microsoft 2010 OS. The statistical analysis of these spatial features is 
also analyzed with the help of STATISTICA 10.0 software in the up-
coming sections. The following section briefly describes these methods 
with reference to similar works [47–49]. 

2.1. Hurst exponent of binary sequences 

The HE lies in the interval (0,1), where HE is strictly less than 0.5 for 
rough anti-correlated sequences and lies in the ranges 0.5-1 for posi-
tively correlated sequences. If HE = 0.5, then the sequence depicts its 
randomness with white noise [50–52]. The HE of a binary sequence sn is 
defined as given in Equ. 1 where n is the length of the sequence: 

(
n
2
)

HE
=

X(n)
Y(n)

(1)  

where 

Y(n) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(si − m)

√

and X(n) = maxT(i,n) − minT(i,n), where 

T(i) =
∑n

j=1
(si − t)

and 

t =

̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

√

si 

The autocorrelation of the binary representations of each amino acid 
over the SARS-CoV-2 protein sequences was obtained by measuring the 
Hurst exponent. 

2.2. Shannon entropy 

There are two kinds of Shannon entropy that were considered in this 
present study. 

• Binary Shannon entropy: The entropy of a Bernoulli process is 
measured with probability p of the two outcomes (0/1), which is defined 
in equation (2): 

SE = −
∑2

i=1
pilog2(pi) (2)  

where frequency probabilities of 1’s and 0’s are respectively p1 = k
2l and 

p2 = l− k
2l ; l is the length of the binary sequence; and k is the number of 1’s 

in the binary sequence of length l [53]. The binary Shannon entropy is a 
measure of the uncertainty in a binary sequence. When probability p =

0, the event is certain to never occur; so there is no uncertainty, and 
entropy is 0. When probability p = 1, the result is certain; thus entropy 
must be 0. When p = 0.5, the uncertainty is at a maximum and conse-
quently, the SE is 1. 

• Amino acid conservation Shannon entropy: Protein Post 
Translational Modification (PTM) is an important biological mechanism 
for expanding the genetic code [54,55]. To find the conservation of 
amino acids in primary protein sequences, Shannon entropy is deployed. 
For a given protein sequence, the SE is calculated as follows: 

SE = −
∑20

i=1
pAi log2

(
pAi

)
(3)  

where pAi represents the occurrence frequency of amino acid Ai in the 
sequence. 

Fig. 5. The correlation plot of HEs of amino acids M and L+.  
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2.3. Amino acid density 

Over the primary protein sequences of SARS-CoV-2, we aimed to 
explore the amino acid frequency distributions and corresponding sta-
tistical descriptions [11,56]. The density of the amino acids over a 

primary protein sequence can also be found using the following formula: 

D(Ai)=
F(Ai)

L(P)
× 100% (4)  

where Ai is an amino acid present in the primary protein sequence P; 

Fig. 6. Shows the Plot of SEs and Histogram all the binary sequences, (a) and (b) for the amino acid A1(A), (c) and (d) for the amino acid A2(C), (e) and (f) for the 
amino acid A3(F), (g) and (h) for the amino acid A4(G), (i) and (j) for the amino acid A5(H), (k) and (l) for the amino acid A6(I), (m) and (n) for the amino acid A7(L),
(o) and (p) for the amino acid A8(M), (q) and (r) for the amino acid A9(N), (s) and (t) for the amino acid A10(P). 

R.K. Rout et al.                                                                                                                                                                                                                                  



Computers in Biology and Medicine 141 (2022) 105024

9

L(P) is the length of sequence P; and F(Ai) is the frequency of amino acid 
Ai in sequence P. This amino acid density would clarify the richness of 
essential amino acids in contrast to others. 

3. Results and discussion 

Herein, the positive/negative trend of the spatial distribution of the 

20 amino acids over the SARS-CoV-2 protein sequences based on the 
Hurst exponent and Shannon entropy is reported. As mentioned earlier, 
the Hurst exponent implies the fractality (organized non-linearity) of the 
spatial representations. Also, the amount of uncertainty in the presence/ 
absence of amino acids over the protein sequences was determined 
through Shannon entropy measurements, which provide conservation 
information about the amino acids. Based on the frequency distributions 

Fig. 7. Shows the Plot of SEs and Histogram all the binary sequences, (a) and (b) for the amino acid A11(Q), (c) and (d) for the amino acid A12(S), (e) and (f) for the 
amino acid A13(T), (g) and (h) for the amino acid A14(V), (i) and (j) for the amino acid A15(W), (k) and (l) for the amino acid A16(Y), (m) and (n) for the amino acid 
A17(D), (o) and (p) for the amino acid A18(E), (q) and (r) for the amino acid A19(K), (s) and (t) for the amino acid A20(R). 
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of all amino acids over the SARS-CoV-2 protein sequences, 14 SARS-CoV 
protein sequences were subsequently compared with 105 SARS-CoV-2 
proteins. 

3.1. Hurst exponent results 

For the amino acid An(n = 1, 2,…,20), the Hurst exponent (HE) was 
determined for the 105 binary sequences Bij , where i = 1,2 …,20 and j =

1,2,…,105. Based on the HEs of the binary sequences of all 105 primary 
protein sequences of SARS-CoV-2, ten clusters (C) are formed for amino 
acids A1, A2, A3, A4, A5, A6, and A7; eight clusters for A12, A18, A19, and 
A20; six clusters for A16 and A17; and five clusters for A8, A9, A10, A11, 
A13, A14, and A15. Tables 2 and 3 present the results for Amino Acids A1 
and A2, respectively, while the corresponding tables for all other amino 
acids are given in Appendix A. The HE plot for the binary sequences and 
the corresponding histogram for all amino acids is shown in Figs. 2 and 3 
respectively. It was anticipated that the HE of the binary representations 
for the ordering of amino acids An over all the primary protein sequences 
reveals the autocorrelation among the amino acids. 

The HE of the binary representation of the amino acids forming ten 
clusters ranges from 0.493 to 0.754 with a standard deviation between 
0.0296 and 0.136. For amino acid A1, cluster 3 consists of two se-
quences, N4 and N80. For amino acid A2, clusters 3 and 6 contain 8 and 
3 sequences respectively. Both the amino acids A1 and A2 have an HE of 
approximately 0.5, which depicts the random walk/Brownian motion- 
like character of the ordering of the amino acids over the correspond-
ing protein sequences. For amino acid A1, 103 primary protein se-
quences excluding (N4 and N80) and almost all 105 SARS-CoV-2 protein 
sequences for amino acid A2 are trending (persistent) sequences. For 
amino acid A1, clusters 4, 9 and 10 consist of seven binary representa-
tions with an HE of approximately 0.7 and for amino acid A2, cluster 4 
contains two binary representations with an HE of approximately 0.734, 
which indicates positive autocorrelation (more persistent). The largest 
cluster i.e cluster 8 contains 65 sequences for the amino acid A3, cluster 
5 contains 71 protein sequences for amino acid A6, and cluster 8 has 54 
protein sequences for amino acid A5, which all have an HE approxi-
mately equal to 0.61 and are positively autocorrelated/persistent. All 
binary spatial distributions of the 105 proteins for amino acid A4 have 

Table 6 
Correlation matrix of SEs of present amino acids over the protein sequences.  

r (SE) Q S T V W Y D E K R 

A 0.321 0.290 − 0.019 − 0.367 − 0.143 − 0.491 0.192 − 0.481 0.073 0.126 
C − 0.566 − 0.402 0.020 0.621 − 0.152 0.530 − 0.238 0.237 − 0.211 − 0.467 
F − 0.300 0.037 − 0.552 0.267 − 0.252 0.181 − 0.253 − 0.261 − 0.840 − 0.539 
G 0.494 0.007 0.351 − 0.454 0.059 − 0.230 0.265 − 0.212 0.396 0.523 
H − 0.279 − 0.427 − 0.112 0.223 0.363 0.359 0.172 0.565 − 0.019 − 0.284 
I − 0.225 − 0.223 − 0.108 0.093 0.341 0.436 − 0.191 0.309 − 0.245 − 0.292 
L − 0.606 − 0.086 − 0.234 0.355 0.132 0.016 − 0.516 0.184 − 0.424 − 0.356 
M − 0.244 − 0.455 0.103 − 0.001 0.345 0.022 0.055 0.074 0.098 − 0.117 
N − 0.039 0.010 0.220 − 0.021 − 0.227 − 0.089 − 0.024 − 0.424 − 0.032 0.116 
P 0.411 − 0.053 0.472 − 0.352 − 0.051 0.245 0.097 − 0.069 0.451 0.646  

Fig. 8. Correlation plot of SEs of amino acids R and P.  
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positive autocorrelation and are consequently persistent/trending. One 
of the essential amino acid A5(H) is not present in the protein sequences 
N3, N80, N97, N98 and N99 of the SARS-COV-2. The spatial organiza-
tion of amino acid H is random (neither trending nor negatively auto-
correlated) in the protein sequences N5, N15, N88, N89, N90, N91, N92, 
N93, N94, and N95, which belong to cluster 2 as shown in Table 6 
(Appendix A). Cluster 2 contains ten sequences (N68, N88, N89, N90, 
N91, N92, N93, N94, N95, and N99) with no HE (*), which indicates that 
the corresponding binary sequences B268 , B288 , B289 , B290 , B291 , B292 , B293 , 
B294 and B295 are completely free from amino acid A2(C). Protein se-
quences N68 and N81 lack amino acid A4(G) (conditionally essential), as 
can be seen in Table 5 (Appendix A), while N99 is the only sequence that 
does not have essential amino acid A6(I). The spatial distribution of 
amino acid A6(I) over the protein sequence N102 is truly random since 

the HE is 0.509, whereas the other 104 sequences are trending with HEs 
greater than 0.5. The spatial arrangements of amino acid A7(L) over 
these proteins are neither random nor trending as the HE is greater than 
0.5 but less than 0.6. 

The HE of the binary representation of the amino acids forming eight 
clusters ranges from 0.483 to 0.724 with a standard deviation between 
0.04 and 0.111. The binary representation B127 of the spatial organiza-
tion of nonessential amino acid A12(S) over the protein sequence N7 is 
negatively autocorrelated, whereas the other 104 binary representations 
corresponding to the protein sequences are positively trending (HE >
0.5). The largest cluster 2, contains 62 sequences for amino acid A12, 
cluster 1 has 48 sequences for amino acid A18, cluster 3 contains 58 
protein sequences for amino acid A19, and cluster 1 consists of 70 protein 
sequences and sequences N98 and N102 for amino acid A20, which are 

Fig. 9. Correlation plot of SE of the distribution of the amino acids distinct pairwise.  

Table 7 
Amino acid conservation shannon entropy.  

SEQ SE C SEQ SE C SEQ SE C SEQ SE C SEQ SE C SEQ SE C 

N99 0.7 4 N87 0.936 1 N78 0.962 8 N13 0.97 2 N50 0.97 2 N21 0.97 2 
N81 0.815 6 N8 0.939 3 N75 0.962 8 N23 0.97 2 N51 0.97 2 N44 0.97 2 
N97 0.846 6 N101 0.942 3 N74 0.962 8 N37 0.97 2 N25 0.97 2 N24 0.97 2 
N96 0.862 5 N2 0.953 7 N77 0.962 8 N49 0.97 2 N26 0.97 2 N33 0.97 2 
N103 0.874 5 N104 0.953 7 N73 0.962 8 N64 0.97 2 N45 0.97 2 N28 0.97 2 
N80 0.879 5 N9 0.955 7 N72 0.962 8 N66 0.97 2 N46 0.97 2 N27 0.97 2 
N68 0.892 5 N7 0.955 7 N71 0.963 8 N60 0.97 2 N14 0.97 2 N52 0.97 2 
N15 0.921 9 N82 0.956 7 N5 0.963 8 N12 0.97 2 N31 0.97 2 N47 0.97 2 
N3 0.925 9 N6 0.956 7 N76 0.963 8 N65 0.97 2 N39 0.97 2 N62 0.97 2 
N91 0.928 9 N11 0.957 7 N58 0.965 8 N56 0.97 2 N57 0.97 2 N34 0.97 2 
N94 0.928 9 N10 0.958 7 N36 0.965 8 N41 0.97 2 N16 0.97 2 N22 0.97 2 
N90 0.928 9 N84 0.958 7 N32 0.965 8 N55 0.97 2 N29 0.97 2 N67 0.97 2 
N88 0.928 9 N85 0.958 7 N105 0.965 8 N30 0.97 2 N17 0.97 2 N20 0.971 2 
N98 0.928 9 N83 0.959 7 N102 0.966 8 N53 0.97 2 N18 0.97 2 N86 0.973 2 
N89 0.928 9 N4 0.961 8 N100 0.97 2 N59 0.97 2 N19 0.97 2 N1 0.982 10 
N92 0.929 9 N79 0.962 8 N42 0.97 2 N40 0.97 2 N35 0.97 2    
N95 0.931 1 N70 0.962 8 N61 0.97 2 N43 0.97 2 N38 0.97 2    
N93 0.931 1 N69 0.962 8 N63 0.97 2 N48 0.97 2 N54 0.97 2     
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positively trending, spatially. It is noteworthy that the spatial repre-
sentations of amino acid S over the protein sequences N56, N13, N44, 
and N67 (belonging to cluster 2) all have an HE equal to 0.6, implying 
positive autocorrelation, while non-essential amino acid A18(E) does not 
appear in the protein sequences N80 and N99. The protein sequences 
N80, N81 and N99 are free from amino acid A19(K). The spatial orga-
nization of amino acid K over the protein sequence N103 is negatively 
trending due to an HE of 0.483,  which  is  less  than 0.5. The condi-
tionally essential amino acid A20(R) is not at all present in protein 

sequences N81 and N99, and consequently, the HE is not enumerable. 
The HE of the binary representation of the amino acids forming six 

clusters ranges from 0.479 to 0.692 with a standard deviation between 
0.0434 and 0.884. The largest cluster, 1, contains 68 and 60 protein 
sequences for amino acids A16(Y) and A17(D), respectively, and is 
spatially spread with a positive trend. The conditional amino acid Y is 
absent from protein sequences N99 and N103. The spatial distribution of 
amino acid Y over the only protein N80 belonging to cluster 6 is not 
trending as its HE is 0.479,  which  is  less  than 0.5. The spatial 

Fig. 10. Comparative statistical details frequencies of the amino acids A, R, N, D, C, Q, E, G, H, I, L, and K over proteins.  
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Fig. 11. Statistical comparison between the frequencies of amino acids of M, P, S, T, W, Y and V over the protein sequences.  
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distribution B172 of amino acid D over the protein, sequence N2 is 
random since its HE is 0.501. 

The HE of the binary representation of the amino acids forming five 
clusters ranges from 0.495 to 0.703 with a standard deviation between 
0.0450 and 0.0903. Cluster 3 contains 80 sequences for amino acid 
A8(M) over the protein sequences, which has an HE of 0.61 (approx) 
indicating the trending behavior. The spatial distribution of the amino 
acid A9(N) (a non-essential amino acid) over the protein sequence N2 is 
reverse trending (negatively autocorrelated, HE = 0.488) as observed. In 
cluster 1 there are 54 sequences having a slow positive trend (HE =
0.55), whereas clusters 3, 4, and 5 contain positively trending spatial 
representations of amino acid A9(N) over the protein sequences. Cluster 
1 contains 84 B10j for 74 different protein sequences, where amino acid 
A10(P) is distributed spatially in a positively trending manner since the 
HE is approximately 0.56. There is only one binary representation B11100 

of amino acid A11(Q) over protein sequence N100 that is negatively 
trending. In cluster 1, protein sequences N96 and N97 are absolutely free 

from amino acid Q. The spatial distributions of amino acid T over the 76 
protein sequences (belonging to cluster 1) are positively trending. The 
largest cluster 2 contains 61 binary representations B14j of the spatial 
distribution of the amino acid A14(V) over the corresponding protein 
sequences, which are random as the HE turned out to be 0.51(approx). 
The binary representation B148 is random as the HE is 0.5 which depicts 
positive trending behaviour of the binary representation B148 of the 
amino acid V over the protein sequence N8. The essential amino acid 
A15(W) is absent from protein sequences N80, N87, N96 and N99 and 
consequently, the binary representations B1580 , B1587 , B1596 and B1599 

contain only zeros, and HE is in-computable as depicted in table 16 
(Appendix A). 

3.2. Collective view of HEs 

The protein sequences of different lengths, ranging from 13 to 419, 
are provided below. Table 4 lists the amino acid(s) that are not present 

Table 8 
Correlation matrix of the frequencies of amino acids.   

L K M F P S T W Y V 

A 0.999 1.000 0.996 0.997 0.998 0.998 0.999 0.997 0.998 0.998 
R 0.995 0.997 0.993 0.994 0.997 0.996 0.996 0.995 0.995 0.993 
N 0.996 0.996 0.990 0.999 0.998 0.999 0.998 0.993 0.997 0.996 
D 0.997 0.998 0.996 0.997 0.998 0.997 0.998 0.996 0.999 0.998 
C 0.998 0.996 0.994 0.999 0.995 0.996 0.998 0.993 0.999 0.999 
Q 0.989 0.992 0.982 0.993 0.998 0.997 0.994 0.987 0.989 0.988 
E 0.999 0.999 0.997 0.995 0.994 0.996 0.998 0.994 0.998 0.998 
G 0.997 0.998 0.992 0.997 0.999 0.999 0.999 0.995 0.996 0.995 
H 0.996 0.996 0.997 0.994 0.992 0.992 0.995 0.996 0.998 0.997 
I 0.998 0.996 0.991 0.999 0.997 0.998 0.998 0.996 0.998 0.998  

Fig. 12. Correlation graphs for the amino acid frequencies.  
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in the sequences. 
The protein sequence N99 of length 13 does not contain some 

essential, conditionally essential, and non-essential amino acids, 
including C, H, M, P, T, W, Y, E, K and R. The largest sequences N88, 
N89, N90, N91, N92, N93, N94, N95 of length 419 do not contain amino 
acid C. It is noted that amino acid M is present over all the protein se-
quences, except N99, which has the smallest length of 13. Also, it is has 
been observed that the essential amino acids L, M, F and V as well as 
non-essential amino acids A, D, N and S are present in all the protein 
sequences of SARS-CoV-2. In addition, the six conditionally essential 
amino acids were not found to be essential for all the proteins of SARS- 
CoV-2. Proteins that have a length greater than 419 contain all 20 amino 
acids. It is reported that the presence of amino acid I, G and V is of 
primordial importance, in this study it has also been found that N99 does 
not contain I and amino acid G is not present in N68, N81 sequences. 

It is also noted that amino acid H is randomly spatially distributed 
over protein sequences N5, N15, N88, N89, N90, N91, N92, N93, N94 
and N95, as observed in the previous subsections. The essential hydroxyl 
amino acid M is randomly arranged over proteins N80 and N102. Also, 
amino acid L is distributed over the protein sequence N102 randomly, 
while only amino acid K is randomly spread over N104. In sequences 
N98 and N102, amino acid R is distributed with a negative trend (HE <

0.5). Also, the amino acids K, Y, S, Q, N, and F are negatively trending 
over the protein sequences N103, N80, N7, N100, N2, and N5, respec-
tively. Therefore, amino acids C, G, P, T, W, and E are distributed over all 
105 proteins with positive autocorrelation (positively trending). 

Here, we explore the correlation (of trending behaviors) of the amino 

acid distribution over 105 proteins of SARS-CoV-2. The correlation 
matrix of ten amino acids, A, C, F, G, H, I, L, M, N and P, versus another 
ten amino acids Q, S, T, V, W, Y, D, E, K and R, is presented below. 

The spatial distribution of amino acid A with the same distribution of 
amino acids Q, T, V, W, and Y is positively correlated based on the HEs 
shown in Table 5. Likewise, the HE of the spatial distribution of amino 
acid C is positively correlated with S, T, Y, D, E, K and R. Similarly, the 
positive correlations of the spatial distributions of amino acids F, G, H, I, 
L, M, N and P with the spatial distribution of other amino acids are 
established in the correlation matrix in Table 5. The correlation-based 
on HEs of the spatial distribution is also demonstrated in the graphs in 
Fig. 4. It is worth mentioning that the correlation matrix (presented in 
Table 5) also displays the negative correlations of the spatial distribution 
of the proteins. 

An example of the correlation (correlation coefficient r: 0.443) be-
tween the spatial distribution (autocorrelation) of amino acid M and the 
spatial distribution of amino acid L is given below in Fig. 5. 

The following subsection discuss the amount of uncertainty/cer-
tainty of the presence of amino acids over the protein sequences. 

3.3. Shannon entropy results 

For amino acids An(n = 1 to 20), the Shannon entropy (SE) was 
determined for the 105 binary sequences Bij for i = 1 to 20 and j = 1, 2,
…105. Results reveal that five clusters (C) formed for amino acids A1, 
A12, A13, A14, A15, A16, A17, A18, A19, and A20; six clusters for A4, A7,A8, 
A9, A10, and A11; seven clusters for A2 and A3; and eight clusters for A5 
and A6, as presented in Appendix B. The SE plot for the binary se-
quences and the corresponding histogram for amino acid A1 is given in 
Figs. 6 and 7(a) and (b) and for the rest of the amino acids it is shown in 
Appendix B. It was anticipated that the SE of the binary representations 
of the ordering of the amino acids An over all the primary protein se-
quences would reveal the amount of uncertainty of the amino acids. 

The SE of the binary representation of the amino acids forming five 
clusters ranges from 0 to 0.779 with a standard deviation between 
0.0448 and 0.0919. The SE of the spatial distribution of amino acid A1 in 
protein sequence N68 was determined to be 0.121, which is the lowest 
amount of uncertainly compared to the SE of other amino acids. In 
clusters 4 and 1, almost all the protein sequences had an SE less than 0.5, 
indicating the definite presence and absence of a particular amino acid 
over the protein sequences. The amount of uncertainly is high for pro-
tein sequences N3 and N99 with lengths of 198 and 13, respectively. 
Amino acids A12(S) and A13(T) are absent from protein sequence N99, 
with an SE less than 0.5, as shown in Tables 35 and 36, respectively. The 

Fig. 13. Frequency plots of amino acids A and K over 105 proteins.  

Table 9 
List of SARS-CoV proteins with their Accession and length.  

Accession ID Seq Length 

ACU31036 S1 221 
ACU31045 S2 63 
ACU31034 S3 274 
ACU31035 S4 76 
ACU31038 S5 44 
ACU31041 S6 70 
ACU31042 S7 4189 
ACU31039 S8 422 
ACU31037 S9 122 
ACU31033 S10 114 
ACU31040 S11 98 
ACU31043 S12 121 
ACU31044 S13 6880 
ACU31032 S14 1241  
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Table 10 
HEs and SEs of 14 proteins of the SARS-CoV.  

Hurst Exponent (HEs) 

Seq A C F G H I L M N P Q S T V W Y D E K R 

S1 0.585 0.571 0.693 0.594 0.621 0.522 0.647 0.593 0.650 0.626 0.638 0.614 0.578 0.599 0.671 0.634 0.685 0.621 0.621 0.619 
S2 0.633  0.557  0.598 0.805 0.520 0.620 0.598 0.649 0.500 0.676 0.552 0.596 0.598 0.633 0.662 0.724 0.777 0.663 
S3 0.712 0.705 0.540 0.627 0.567 0.506 0.735 0.648 0.602 0.690 0.550 0.588 0.689 0.531 0.595 0.687 0.698 0.627 0.566 0.606 
S4 0.709 0.733 0.694 0.625  0.589 0.700 0.593 0.641 0.615  0.647 0.603 0.574  0.610 0.593 0.687 0.651 0.590 
S5 0.608 0.586 0.701   0.659 0.676 0.508 0.693 0.608 0.608 0.608 0.608 0.508 0.608 0.608 0.574 0.717 0.608  
S6 0.690 0.728 0.595 0.549 0.646 0.700 0.666 0.595 0.595 0.584 0.655 0.646 0.595 0.683 0.595 0.660  0.601 0.555 0.634 
S7 0.605 0.610 0.663 0.623 0.573 0.581 0.589 0.615 0.558 0.590 0.599 0.618 0.576 0.515 0.555 0.635 0.578 0.727 0.631 0.588 
S8 0.554  0.604 0.648 0.573 0.600 0.609 0.604 0.614 0.596 0.641 0.695 0.516 0.536 0.549 0.644 0.689 0.548 0.700 0.623 
S9 0.622 0.585 0.583 0.645 0.566 0.736 0.631 0.583 0.650 0.660 0.627 0.566 0.622 0.607  0.569 0.629 0.624 0.610 0.649 
S10 0.540 0.585 0.521 0.549 0.549 0.680 0.673 0.604 0.585 0.531 0.655 0.654 0.581 0.666  0.511  0.585 0.664 0.527 
S11 0.514  0.612 0.632 0.622 0.637 0.644 0.566 0.506 0.589 0.558 0.665 0.627 0.641  0.588 0.553 0.644 0.612 0.665 
S12 0.654 0.616 0.511 0.612 0.530 0.475 0.682 0.594 0.643 0.658 0.625 0.488 0.531 0.691 0.583 0.555 0.660 0.583 0.621 0.602 
S13 0.601 0.620 0.622 0.589 0.608 0.610 0.614 0.608 0.586 0.582 0.562 0.611 0.584 0.506 0.554 0.615 0.609 0.711 0.607 0.585 
S14 0.688 0.619 0.610 0.579 0.635 0.555 0.627 0.615 0.592 0.551 0.649 0.585 0.576 0.535 0.564 0.627 0.598 0.558 0.577 0.584 
Shannon Entropy (SEs) 
Seq A C F G H I L M N P Q S T V W Y D E K R 
S1 0.423 0.104 0.285 0.358 0.104 0.407 0.585 0.203 0.323 0.156 0.131 0.323 0.304 0.375 0.203 0.246 0.156 0.225 0.180 0.375 
S2 0.203 0.000 0.341 0.000 0.118 0.631 0.503 0.276 0.118 0.276 0.203 0.276 0.276 0.341 0.118 0.203 0.400 0.400 0.341 0.276 
S3 0.350 0.172 0.275 0.291 0.208 0.390 0.498 0.152 0.226 0.275 0.243 0.350 0.390 0.428 0.152 0.321 0.275 0.190 0.259 0.110 
S4 0.297 0.240 0.297 0.176 0.000 0.240 0.689 0.101 0.350 0.176 0.000 0.443 0.350 0.689 0.000 0.297 0.101 0.240 0.176 0.176 
S5 0.156 0.267 0.575 0.000 0.000 0.511 0.811 0.267 0.267 0.156 0.156 0.156 0.156 0.267 0.156 0.156 0.267 0.439 0.156 0.000 
S6 0.554 0.316 0.108 0.187 0.255 0.255 0.661 0.108 0.108 0.255 0.371 0.255 0.108 0.469 0.108 0.187 0.000 0.422 0.255 0.255 
S7 0.385 0.208 0.260 0.338 0.139 0.276 0.479 0.173 0.276 0.226 0.209 0.364 0.372 0.407 0.081 0.259 0.282 0.305 0.322 0.215 
S8 0.404 0.000 0.198 0.490 0.093 0.186 0.334 0.122 0.305 0.379 0.412 0.412 0.387 0.174 0.093 0.174 0.305 0.198 0.370 0.379 
S9 0.409 0.283 0.380 0.208 0.247 0.349 0.561 0.069 0.121 0.283 0.208 0.317 0.437 0.283 0.000 0.247 0.121 0.349 0.283 0.283 
S10 0.219 0.073 0.176 0.127 0.297 0.367 0.670 0.333 0.073 0.127 0.398 0.485 0.608 0.333 0.000 0.176 0.000 0.073 0.398 0.127 
S11 0.408 0.000 0.144 0.144 0.144 0.291 0.507 0.197 0.197 0.408 0.332 0.371 0.443 0.507 0.000 0.082 0.332 0.291 0.246 0.291 
S12 0.121 0.382 0.285 0.285 0.248 0.382 0.439 0.210 0.210 0.351 0.248 0.319 0.121 0.411 0.069 0.351 0.285 0.382 0.210 0.248 
S13 0.377 0.209 0.271 0.328 0.155 0.275 0.457 0.169 0.291 0.233 0.208 0.349 0.362 0.412 0.086 0.273 0.307 0.281 0.321 0.229 
S14 0.360 0.197 0.316 0.320 0.084 0.336 0.399 0.124 0.336 0.255 0.290 0.404 0.396 0.387 0.068 0.262 0.306 0.229 0.283 0.213  
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amino acid A14(V) is present over all 105 proteins, and hence, none of 
the binary representations has SE = 0. For the amino acid V, the SE of 
N74 and N77 is 0.391, which implies the presence of this amino acid 
over the proteins has good certainty, and N96 and N97 have the 
maximum uncertainty of SE = 0.665. Cluster 1 contains five protein 
sequences, in which amino acid A15 is absent, and hence, SE = 0. Also, 
SE = 0 for the binary spatial representations of N99 and N103 for amino 
acid A16, N80 and N99 (belonging to cluster 2) for amino acid A18, N80, 
N81 and N99 for amino acid A19, and N81 and N99 amino acid A20 due 
to the absence of these amino acids. It is pertinent to note that amino 
acids A17and A18 are present over all 105 proteins with certainty 
(HEs< 0.5). Most of the proteins in the largest cluster 2 including other 
clusters contain amino acid A15 that is spatially distributed with 
certainty. 

The SE of the binary representation of the amino acids forming six 
clusters ranges from 0 to 0.644 with a standard deviation between 
0.0749 and 0.852. Amino acid A4(G) is absent from the primary protein 
sequences N68 and N81, and consequently, SE = 0 implies no uncer-
tainty. Similarly, SE = 0 for the binary spatial representations of protein 
sequence N99 for amino acid A8(M), sequences N81, N99 and N103 for 
amino acid A10(P), and sequences N96 and N97 for amino acid A11(Q). 
Amino acid A7(L) is spread spatially with certainty over the proteins N2 
(length of 138) and N89, N90, N91, N92, N93, N94 and N95 (lengths of 
419) in cluster 3. Clusters 1 and 5 for amino acid A7 and cluster 1 for 
amino acids A8 and A10 contain the majority of the protein sequences, 
where the presence of these amino acids is spread over the proteins with 
almost certainty. Comparatively, clusters 2 and 6 contain five protein 
sequences, where the absence of the amino acid A7 is spread with almost 
certainty. Cluster 3 contains one protein sequence N80 where the spatial 
distribution B980 has SE = 0.562, which indicates that the absence of 
amino acid A9 over the protein is without uncertainty. 

The SE of the binary representation of the amino acids forming seven 
clusters each ranges from 0 to 0.619 with a standard deviation between 
0.0667 and 0.0765. It was found that SE = 0 for the spatial distribution 
of amino acid A2 in the protein sequences N68, N88, N89, N90, N91, 
N92, N93, N94, N95 and N99, which indicates the amount of uncer-
tainty is zero. In other words, the absolute absence of amino acid A2(C)
over these proteins and the spatial presence of amino acid C over the 

protein sequences of other clusters have low uncertainty (high cer-
tainty). The SE is greater than 0.5 for the binary representations of 
amino acid A3 over the proteins N81 and N99, and consequently, the 
amount of uncertainty is lowering. In other clusters containing the other 
protein sequences, the spatial presence of amino acid A3 over the protein 
sequences has low uncertainty (high certainty). 

The SE of the binary representation of the amino acids forming eight 
clusters ranges from 0 to 0.644 with a standard deviation between 
0.0459 and 0.0749. Because amino acid A5(H) is absent from proteins 
N3, N80, N97, N98 N99 and amino acid A6(I) is absent from N99 
(smallest length of 13), SE = 0 for the amino acids, implying there is no 
uncertainty. In addition, SE = 0.078 for the spatial representation of the 
presence and absence of amino acid A5 over the proteins N88, N89, N90, 
N91, N92, N94 and N95 (lengths of 419) belonging to cluster 4); hence, 
the spatial distribution is more certain/orderly. All the clusters except 
cluster 6 contain only protein sequences over which amino acid A6(I) is 
spatially distributed with certainty, whereas cluster 6 contains two se-
quences N81 (length of 43) and N68 (length of 61), where the absence of 
the amino acid dominates the presence with certainty. 

3.4. Collective view of SE 

It is pertinent to mention that SE = 0 for the binary representations 
Bij of amino acid Ai that is absent from protein sequence Nj, which has 
been demonstrated in this study. It was also observed that maximum SE 
was obtained for the spatial distribution of amino acids over lengthy 
sequences, such as N99, N80, etc. Interestingly, for some given amino 
acid Ai, the same SE was obtained for some spatial distributions Bij of 
some protein sequences Nj, irrespective of their lengths, for many values 
of j. This essentially suggest that the probability of the presence of amino 
acid Ai over these protein sequences is the same. 

Further, we explored the correlation in the amount of uncertainty 
between the spatial distributions of the 20 amino acids over the proteins 
of SARS-CoV-2. Table 6 presents the correlation matrix of ten amino 
acids (A, C, F, G, H, I, L, M, N and P) versus another ten amino acids (Q, 
S, T, V, W, Y, D, E, K and R). 

Based on the SEs, the spatial distribution of amino acid A was found 
to be positively correlated with the distributions of amino acids Q, S, D, 

Table 11 
Correlation matrix of the HEs (Pairwise).  

r Q S T V W Y D E K R 

A − 0.141 − 0.385 0.514 0.004 − 0.244 0.283 0.260 − 0.592 − 0.845 − 0.092 
C − 0.706 − 0.101 0.814 − 0.288 − 0.316 0.535 0.307 − 0.046 − 0.752 − 0.077 
F 0.263 0.807 − 0.159 − 0.431 0.305 0.253 − 0.346 0.437 0.417 0.018 
G − 0.503 − 0.159 0.409 0.083 − 0.052 0.257 0.285 0.313 0.091 0.264 
H 0.298 0.680 0.037 − 0.525 0.181 0.335 − 0.261 − 0.058 − 0.239 − 0.171 
I − 0.256 0.723 − 0.039 − 0.806 − 0.497 0.190 − 0.758 0.696 0.120 − 0.694 
L − 0.302 − 0.457 0.575 0.371 0.342 0.243 0.865 − 0.497 − 0.558 0.581 
M − 0.654 0.264 0.908 − 0.583 − 0.286 0.796 0.138 0.096 − 0.758 − 0.144 
N 0.408 − 0.513 − 0.229 0.824 0.774 − 0.367 0.761 − 0.614 0.118 0.798 
P − 0.392 − 0.418 0.456 0.457 0.412 0.153 0.854 − 0.164 − 0.143 0.712  

Table 12 
Correlation matrix of the SEs of the spatial distributions of amino acids.  

r Q S T V W Y D E K R 

A 0.245 0.109 0.119 0.123 0.032 − 0.190 − 0.273 − 0.094 0.108 0.500 
C − 0.311 − 0.355 − 0.553 0.237 − 0.009 0.572 − 0.318 0.464 − 0.492 − 0.350 
F − 0.589 − 0.554 − 0.270 − 0.287 0.297 0.164 0.281 0.399 − 0.428 − 0.490 
G 0.203 0.425 0.152 − 0.150 0.140 0.379 0.100 − 0.426 0.198 0.526 
H 0.566 0.151 0.173 − 0.128 − 0.247 0.108 − 0.391 − 0.124 0.430 0.117 
I − 0.253 − 0.536 − 0.233 − 0.262 0.407 − 0.029 0.298 0.351 − 0.133 − 0.294 
L − 0.363 − 0.363 − 0.190 0.229 0.030 − 0.245 − 0.594 0.214 − 0.474 − 0.591 
M 0.123 − 0.101 0.079 − 0.237 0.162 − 0.308 0.112 − 0.089 0.168 − 0.345 
N − 0.468 0.145 − 0.080 0.188 0.268 0.309 0.342 − 0.176 − 0.391 0.060 
P 0.438 0.025 − 0.079 − 0.103 − 0.210 − 0.134 0.518 0.199 0.162 0.500  
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K and R, as shown in Table 6. Likewise, the spatial distribution of amino 
acid C is positively correlated with amino acids T, V, Y and E. Similarly, 
the positive correlations between the spatial distributions of amino acids 
F, G, H, I, L, M, N and P and the other amino acids are established in the 
correlation matrix in Table 6, which also shows negative correlations. 

The correlation-based on SEs of the spatial distribution is also 
demonstrated in the graphs in Fig. 9. An example of the correlation- 
based on SEs (the correlation coefficient r: 0.646) of the spatial distri-
bution (autocorrelation) of amino acid R with the spatial distribution of 
amino acid P is given in Fig. 8. 

3.5. Amino acid conservation shannon entropy 

For each of the 105 protein sequences, the amino acid conservation 
information was determined through HE measurement, as described 
earlier. Based on the Shannon entropy (SE T2) for each sequence, the 
clusters (C) were formed, and the respective SE plots and histograms for 
the 105 protein sequences are provided in Table 7. 

It can be observed that the Shannon entropy of amino acid conser-
vation along the protein sequences of SARS-CoV-2 ranges from 0.7 to 
0.982. Since the SE is close to 1, meaning uncertainty is at a maximum, 
all amino acids must be uniformly distributed over the protein se-
quences. More than 50% of the proteins sequences (54) belonging to 
cluster 2 of SARS-CoV-2 have SE = 0.970, which further implies that the 
amino acids are almost uniformly spread over the sequences. Subse-
quently, the frequency analysis of the amino acids over the proteins is 
given in the following subsection. 

3.6. Frequency distribution of amino acids over the SARS-CoV-2 proteins 

In this section, the frequencies of the amino acids in the 105 SARS- 
CoV-2 protein sequences are statistically compared, as shown in 
Figs. 10 and 11. 

A correlation matrix between the frequency distribution of amino 
acids over the 105 SARS-CoV-2 protein sequences is provided in Table 8, 
and the respective correlation graphs are illustrated in Fig. 12. 

It can be observed that the correlation coefficient is very close to 1, 
which indicates significant correlations between the frequencies of each 
amino acid over the proteins. For instance, the correlation coefficient 
between the frequency distributions of amino acids A (Aliphatic) and K 
(Basic) is 1, as illustrated in Fig. 13, means strong correlation. 

Overall, it is observed that protein sequences of the same length have 
very similar frequency distributions of the twenty amino acids. 

4. Spatial organization of proteins of SARS-COV 

In 2003, the SARS coronavirus (SARS-CoV) had caused an epidemic 
in China including the other 22 countries [56,57]. There are 14 protein 
sequences available in the NCBI database (taxid: 722424). The list of 
proteins (S1, S2, … S11) with their accessions are given here in Table 9. 

It is noted that the protein with the accession ACU31032 (S14) is a 
spike protein of length 1241 as mentioned in the NCBI database. The 
spike protein (S-protein) is a large type I transmembrane protein of 
length not exceeding 1400 amino acids. The spike protein has an 
important function in the case of SARS-CoV [58,59]. Among all other 
proteins of SARS-CoV, spike protein is the main antigenic component 
that is responsible for inducing host immune responses, neutralizing 
antibodies, and/or protective immunity against virus infection [60]. We, 
therefore illuminate here the spatial representations of the amino acids 
over the spike protein including the other 13 proteins as mentioned in 
Table 10. The HE, SE, and frequency distributions are given in the 
following and compared with the SARS-CoV2 proteins. 

It is observed that the spatial representations of the presence of all 
the amino acids over the spike protein S14 follow the positive auto-
correlation (positively trending) as well as with the least amount of 
uncertainty of presence of the amino acids. It seems that the presence of 

all the amino acids is necessary to make a spike protein. It is worth 
mentioning that yet there are no identified spike proteins in the domain 
of 105 distinct proteins of SARS-CoV2. The amino acids A, F, I, L, M, N, 
P, S, T, V, Y, E, and K are all present over all these 14 proteins unlike in 
the case of SARS-CoV2 proteins as mentioned in subsection 3.21. It is 
worth mentioning that all the spatial distributions corresponding to 
different amino acids over the 14 proteins are positively autocorrelated 
with HE ≥ 0.5, except for the spatial distribution of the amino acid I and 
S over the protein S12 which is a hypothetical protein. It is noted that the 
HE is kept blank for the cases where the spatial distribution of an amino 
acid is completely a sequence of zeros i,e. absence of the amino acid over 
the protein. Below in Table 11, we derive the correlation coefficients of 
the HEs of the spatial representations of the amino acids over the 14 
SARS-CoV proteins. 

It is observed from Table 11 that the correlation coefficient (r) is 
0.908 for the HEs of spatial representations of the amino acid M and T 
over all the 14 SARS-CoV proteins. Noted that overall the proteins, the 
presence of amino acid M and T are ensured. There is also another 
positive correlation that exists as can be seen in Table 11. It is noted that 
the SE is turned out to be zero for the cases where the spatial distribution 
corresponding to an amino acid that is absent over a protein. The spatial 
distribution of amino acids over the proteins of SARS-CoV is all without 
much uncertainty except for three cases where the SEs are greater than 
0.5 where the absence of amino acids dominates in terms of certainty. 
The correlation coefficients of the SEs of the spatial distributions of the 
amino acids over the 14 SARS-CoV proteins are given in Table 12. It is 
observed that the correlations among the SEs of the spatial distributions 
of the amino acids over the proteins are not significantly up as tabulated 
in Table 12. The highest positive correlation based on SEs of the spatial 
distributions of the amino acid C with that of Y is turned up as 0.572. 

5. Discussion 

Previous reports state that the genomes of SARS-CoV and SARS-CoV- 
2 exhibit similar protein sequences. However, we found that the spatial 
arrangement of amino acids over the studied protein sequences is 
certainly different, contributing to differences between proteins. This 
study reveals the hidden spatial arrangement of the amino acids of 
SARS-CoV-2 and SARS-CoV1. Specifically, the spatial arrangements of 
amino acids over the primary protein sequences of SARS-CoV-2 were 
examined according to the autocorrelation via Hurst exponent mea-
surements and the presence/absence of the amino acids via Shannon 
entropy. Also, the frequency distribution of amino acids was analyzed to 
categorize the protein sequences. Based on a comparative analysis, the 
spatial distribution of 14 protein sequences of SARS-CoV demonstrated a 
significant difference from those of SARS-CoV-2. Conclusions are based 
on the calculated HE and SE, which provide information about the 
spatial arrangement of the amino acids over the primary protein se-
quences of SARS-CoV-2 as well as SARS-CoV. The obtained results, 
present in section 4, reveal the differences between the proteins of the 
two types of CoV. We firmly believe that our findings on the spatial 
distribution of the present/absent amino acids over the proteins enable a 
better understanding of the PPIs of SARS-CoV-2. For instance, the spatial 
arrangements reveal the similarities and dissimilarities among the 
important structural proteins E, M, N and S, which further helps to 
establish a more complete evolutionary tree among the other CoV 
strains. Despite our promising results, the present study is limited, as it 
did not consider the three-dimensional spatial structure of associate 
proteins, such as RdRp, E, M, N and S. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compbiomed.2021.105024. 

References 

[1] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, 
Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, 
L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, B. Cao, Clinical features 
of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 
(2020) 497–506, https://doi.org/10.1016/S0140-6736(20)30183-5. 

[2] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, 
R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G.F. Gao, W. Tan, A novel 
coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med. 382 
(2020) 727–733, https://doi.org/10.1056/nejmoa2001017. 

[3] W. Hua, L. Xiaofeng, B. Zhenqiang, R. Jun, W. Ban, L. Liming, Consideration on the 
strategies during epidemic stage changing from emergency response to continuous 
prevention and control, Chin. J. Endemiol. 41 (2020) 297–300, https://doi.org/ 
10.3760/cma.j.issn.0254-6450.2020.02.003. 

[4] S.S. Hassan, A. Moitra, R.K. Rout, P.P. Choudhury, P. Pramanik, S.S. Jana, On 
spatial molecular arrangements of SARS-CoV2 genomes of Indian patients, BioRxiv 
(2020), https://doi.org/10.1101/2020.05.01.071985. 

[5] R.K. Rout, S.S. Hassan, Spatial Distribution of Amino Acids of the SARS-CoV2 
Proteins, 2020, https://doi.org/10.20944/PREPRINTS202004.0034.V2. 

[6] S. Perlman, Another decade, another coronavirus, N. Engl. J. Med. 382 (2020) 
760–762, https://doi.org/10.1056/nejme2001126. 

[7] C. Wang, P.W. Horby, F.G. Hayden, G.F. Gao, A novel coronavirus outbreak of 
global health concern, Lancet 395 (2020) 470–473, https://doi.org/10.1016/ 
S0140-6736(20)30185-9. 

[8] C. Ceraolo, F.M. Giorgi, Genomic variance of the 2019-nCoV coronavirus, J. Med. 
Virol. 92 (2020) 522–528, https://doi.org/10.1002/jmv.25700. 

[9] Z.W. Ye, S. Yuan, K.S. Yuen, S.Y. Fung, C.P. Chan, D.Y. Jin, Zoonotic origins of 
human coronaviruses, Int. J. Biol. Sci. 16 (2020) 1686–1697, https://doi.org/ 
10.7150/ijbs.45472. 

[10] A.E. Gorbalenya, S.C. Baker, R.S. Baric, R.J. de Groot, C. Drosten, A.A. Gulyaeva, B. 
L. Haagmans, C. Lauber, A.M. Leontovich, B.W. Neuman, D. Penzar, S. Perlman, L. 
L.M. Poon, D.V. Samborskiy, I.A. Sidorov, I. Sola, J. Ziebuhr, The species Severe 
acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and 
naming it SARS-CoV-2, Nat. Microbiol. 5 (2020) 536–544, https://doi.org/ 
10.1038/s41564-020-0695-z. 

[11] Y.Z. Zhang, E.C. Holmes, A genomic perspective on the origin and emergence of 
SARS-CoV-2, Cell 181 (2020) 223–227, https://doi.org/10.1016/j. 
cell.2020.03.035. 

[12] K.G. Andersen, A. Rambaut, W.I. Lipkin, E.C. Holmes, R.F. Garry, The proximal 
origin of SARS-CoV-2, Nat. Med. 26 (2020) 450–452, https://doi.org/10.1038/ 
s41591-020-0820-9. 

[13] X. Tang, C. Wu, X. Li, Y. Song, X. Yao, X. Wu, Y. Duan, H. Zhang, Y. Wang, Z. Qian, 
J. Cui, J. Lu, On the origin and continuing evolution of SARS-CoV-2, Natl. Sci. Rev. 
7 (2020) 1012–1023, https://doi.org/10.1093/nsr/nwaa036. 

[14] E.W. Sayers, J. Beck, J.R. Brister, E.E. Bolton, K. Canese, D.C. Comeau, K. Funk, 
A. Ketter, S. Kim, A. Kimchi, P.A. Kitts, A. Kuznetsov, S. Lathrop, Z. Lu, 
K. McGarvey, T.L. Madden, T.D. Murphy, N. O’Leary, L. Phan, V.A. Schneider, 
F. Thibaud-Nissen, B.W. Trawick, K.D. Pruitt, J. Ostell, Database resources of the 
national center for biotechnology information, Nucleic Acids Res. 48 (2020) 
D9–D16, https://doi.org/10.1093/nar/gkz899. 

[15] E.L. Hatcher, S.A. Zhdanov, Y. Bao, O. Blinkova, E.P. Nawrocki, Y. Ostapchuck, A. 
A. Schaffer, J. Rodney Brister, Virus Variation Resource-improved response to 
emergent viral outbreaks, Nucleic Acids Res. 45 (2017) D482–D490, https://doi. 
org/10.1093/nar/gkw1065. 

[16] C. Liu, Q. Zhou, Y. Li, L.V. Garner, S.P. Watkins, L.J. Carter, J. Smoot, A.C. Gregg, 
A.D. Daniels, S. Jervey, D. Albaiu, Research and development on therapeutic 
agents and vaccines for COVID-19 and related human coronavirus diseases, ACS 
Cent. Sci. 6 (2020) 315–331, https://doi.org/10.1021/acscentsci.0c00272. 

[17] K. Dhama, K. Sharun, R. Tiwari, M. Dadar, Y.S. Malik, K.P. Singh, W. Chaicumpa, 
COVID-19, an emerging coronavirus infection: advances and prospects in designing 
and developing vaccines, immunotherapeutics, and therapeutics, Hum. Vaccines 
Immunother. 16 (2020) 1232–1238, https://doi.org/10.1080/ 
21645515.2020.1735227. 

[18] M.A. Alves, G.Z. Castro, B.A.S. Oliveira, L.A. Ferreira, J.A. Ramírez, R. Silva, F. 
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