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Abstract

The cognitive map in the hippocampal formation of rodents and other mammals integrates 

multiple classes of sensory and motor information into a coherent representation of space. Here, 

we describe the Dome, a virtual reality apparatus for freely locomoting rats, designed to examine 

the relative contributions of various spatial inputs to an animal’s spatial representation. The Dome 

was designed to preserve the range of spatial inputs typically available to an animal in free, 

untethered locomotion while providing the ability to perturb specific sensory cues. We present the 

design rationale and corresponding specifications of the Dome, along with a variety of engineering 

and biological analyses to validate the efficacy of the Dome as an experimental tool to examine the 

interaction between visual information and path integration in place cells in rodents.
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1. Introduction

While the Holodeck technology of Star Trek lore remains elusive, current virtual reality 

(VR) technology can nevertheless immerse our senses in simulated worlds that can be 

surprisingly convincing. To an experimental biologist, VR provides the facility to simulate 

crucial aspects of an animal’s natural environment, affording control of the information 

available to an organism regarding its state relative to the simulated world. The ability to 

seamlessly create conflicts between sensory streams while measuring behavioral output and 

internal neural representations allows researchers to understand the behavioral and neural 

mechanisms for integrating and re-weighting this sensory information [1, 2, 3]. The ability 

to manipulate and perturb these sensory inputs, in a manner that ensures the organism does 

not experience jarring discord between the senses, presents an opportunity to understand 

how environmental feedback is incorporated into neural computation.

VR has been applied to great effect in recent years as a powerful experimental tool [4, 5, 

6, 7, 8, 9, 10, 11] to investigate neural and behavioral correlates of the ‘cognitive map’ 

in rodents [12]. According to O’Keefe and Nadel, elements of the cognitive map form the 

foundation of memory formation and retrieval [13, 14, 15], and spatial navigation [16]. 

During such navigation, neural correlates of the cognitive map can be found in the firing 

activity and local field potentials in the hippocampal formation. These correlates indicate 

the presence of an abstract, map-like representation of the external world. Place cells of 

the hippocampus in particular exemplify this abstract representation. The firing of these 

cells can be modulated by a variety of external inputs—e.g. landmarks, borders, direction, 

illumination, color, smell, taste, speed, distance, route—but does not require any one of 

these inputs for the stability of spatial tuning.

Rodent VR typically involves rats or mice locomoting on treadmills or air-cushioned balls; 

in such systems, the animal remains stationary in physical space while a visual display 

surrounding the animal is controlled by the motion of the treadmill or ball (for a review and 

some important exceptions, see [4, 17, 11]). This form of VR offers many advantages, such 

as the ability to present an infinite, scalable world in a manner that allows the use of bulky 

imaging equipment (e.g. two-photon imaging) that require a head-fixed preparation [18, 19, 

20]. However, these head-fixed and body-fixed systems limit 35 locomotor performance and 

deprive the animal of the full range of sensory cues typically available during locomotion. 

For example, vestibular and other inertial inputs may be constrained and movements can be 

unnaturalistic. Why is this important? The cognitive map is a highly nonlinear dynamical 

system involving an intricate network of closed loops between myriad brain regions and 

sensory feedback. An experiment that enforces unnatural constraints can alter the operating 

point of this network in unintended ways. Such constrained experiments can generate 

important new understanding about a system, but given the existence of complex, nested 

feedback hierarchies and emergent non-linearities, the actual response of a system may 
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differ in unexpected ways from predictions generated from highly constrained preparations 

[21]. Thus, complementary experiments that maintain the naturalistic feedback topology 

are essential to understanding multimodal interactions [22]. The design of the Dome 

apparatus was thus guided by the belief that—while recognizing the power and utility of 

head-fixed experiments—experiments that maintain naturalistic locomotion including intact 

path integration inputs are essential to understand the dynamics of cognitive representations 

in an ethological context [23]. To this end, the Dome is a VR apparatus that preserves 

naturalistic locomotion while presenting sensory conflict to a running rat. Within this 

apparatus, multiple path integration modalities can be manipulated and, if desired, placed 

in conflict with one another. In this manuscript, we report the hardware and software 

specifications as well as the design philosophy behind the Dome.

2. Design overview and subsystems

As with all experimental systems, the Dome has undergone many iterations, upgrades, and 

improvements. We focus in this paper on our most recent system, referred to as the Current 
version. However, as needed, we also describe a previous design iteration, referred to as the 

Legacy version. The Legacy design was used in our previous manuscript [10] and is the 

source of the neural validation data. The CAD plans, bill of materials, experimental control 

software and analysis software for the Dome are available under a Creative Commons 

Attribution-ShareAlike (CC BY-SA 4.0) license.

The Dome is a planetarium-like apparatus (Fig. 1) named for its most visible primary 

component, a large fiberglass hemispherical shell. This shell is mounted on two support legs. 

A projector mounted above the shell projects an image through a circular hole at the top of 

the shell; this image strikes a hemispherical mirror located at the center of curvature of the 

shell. The spherical mirror reflects the projected image onto the inside surface of the Dome, 

providing controllable visual cues 360° in azimuth and almost 90° in elevation. To allow 

for electrical commutation, the spherical mirror is mounted atop a rotating central pillar that 

passes through a hole in the middle of a circular table. A set of radial boom arms project 

outwards from the central pillar to the edge of the table. The surface of the table defines 

the laboratory x–y plane and the axis connecting the center of the shell and the hole on top 

of the shell defines the laboratory z axis. The rat runs on the table in a circular trajectory 

near the edge of the table. The control software, based on the Robot Operating System 

(ROS) framework, is modular, extensible, and open-source. The modular nature ensures that 

components of the software (called nodes) can be readily deployed on another apparatus that 

shares our design fully or partly. Nodes can also be added into the framework to enable new 

manipulation modalities and sensors. The software is also traceable and debuggable, with all 

communication between modules timestamped and logged during experiments.

2.1. Projection Shell

The custom hemispherical shell (Immersive Display Group, Essex, UK) is made of 

fiberglass and is 2.3 m in diameter. The shell has elevation slightly more than 90°. The 

shell is manufactured in two halves for shipping and must be assembled on site. The seams 

are patched (using Bondo Fiberglass Resin Repair, 3M Inc., MN, USA) and sanded to match 
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the curvature of the inner surface. The interior hemispherical surface is painted with a 50% 

reflective projector screen paint (RAL7040), as recommended by the manufacturer. Two 

short circular shafts embedded in the fiberglass at diametrically opposite points (Fig. 2A) 

mount the shell to circular bearings on the Dome support legs. This allows the Dome to 

be pivoted up for ease of access and pivoted down to its normal horizontal configuration 

used in experiments. The support legs, constructed from extruded aluminum components 

(80/20 Inc, IN, USA), are bolted to the floor of the laboratory. A fiberglass flange extends 

about 10 cm outward from the bottom of the shell. A latch (#2206A23, McMaster Carr, IL, 

USA) between a rigid support point (e.g. a wall or a floor mounted support post) and the 

flange locks the shell in a consistently repeatable horizontal configuration. A lever handle 

(#3790K11, McMaster Carr, IL USA) attached to the front of the flange operates the latch, 

allowing a single operator to raise and lower the Dome. Gas springs (#4155T901, McMaster 

Carr, IL, USA) connect the flange to the support legs, providing smooth and slow raising 

and lowering. Rubber trim (#8507K21, McMaster Carr, IL, USA) attached to the flange 

of the Dome mitigates the consequences of accidental bumps. The projector beam enters 

the Dome through a circular hole (30 cm dia.) on top of the Dome as mentioned above. 

Overhead cameras mounted to the periphery of the hole view and track the behavior of the 

animal.

2.2. Projection system

A projector (G7500UNL, Epson Inc., Nagano Japan), fitted with a long-throw lens 

(ELPLM11, Epson Inc., Nagano Japan), is mounted above the Dome. The projector sits 

horizontally on a shelf (wall- or ceiling-mounted), and a first-surface plane mirror (152 

mm × 152 mm × 12.7 mm, First Surface Mirror LLC, OH, USA), mounted at an angle 

of approximately 45° directly above the dome, reflects the image down into the top 

hole of the shell. The angle of the plane mirror can be fine-tuned in two axes using an 

adjustable mirror mount (625-RC4, Newport Corp., CA, USA) and two remote control 

cables (RC-10, Newport Corp., CA, USA). If space and focal distance allows, the projector 

can be mounted vertically along the z axis, avoiding the need for the plane mirror. A 

hemispherical first-surface mirror (254 mm dia., 150 mm radius of curvature, 40/20 surface 

quality, 1/4-wave accuracy, protected aluminum coating, Cumberland Optical, MD, USA) 

is mounted at the center of the Dome, approximately at the height of the running surface; 

this mirror reflects the image onto the interior surface of the dome. The projector lens was 

chosen such that the size of the image formed on the hemispherical mirror is less than its 

diameter (approximately 203 mm image height), and the resulting image can be focused on 

the inside surface of the shell. Two other custom components aid with the optics. A ‘top 

hat’ mounted to the shell hole has opaque cylindrical sides tall enough to block the line of 

sight of the rat to any stationary laboratory cues that may be visible through the top hole. 

An opaque ‘collar’ placed around the hemispherical mirror blocks everything but the central 

circular part of the projector’s rectangular image and also prevents bright reflections from 

the hemispherical mirror from directly impinging on the rat’s eye (Fig. 2B).

2.3. Table

Two circular wooden tabletops (150 cm dia., 38 mm thick) with a central hole (45 cm dia.) 

are connected axially through a ring bearing or ‘lazy susan’ (80 cm dia., 12.7 mm thick, 
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VXB Ball Bearings, CA, USA) (Fig. 2C,D). The bearing allows the upper tabletop to rotate 

on top of the fixed lower tabletop. The tabletops can be locked together by the experimenter 

at 8 equally spaced angular displacements. This feature allows the table orientation to be 

fixed in any experimental session but randomized between experimental sessions to control 

for any local olfactory or textural cues. The tabletop can also be motorized to enable 

manipulation of physical cues (e.g. vestibular) during the experiment, although this feature 

has yet to be added. A black laminate covering on the tabletops makes the floor texture 

uniform throughout, minimizes local optic flow, and enables easy cleanup and sanitization. 

The lower tabletop is rigidly attached to a central support structure (80/20 Inc.) which is in 

turn anchored to the floor of the laboratory (Fig. 2C). A centrally mounted speaker below 

the table provides white noise during the experiments, but can also be used to provide 

non-directional auditory cues (Fig. 2C). A ring of speakers can be readily mounted below 

the bottom table if directional audio cues are required (e.g. to provide auditory landmarks). 

Curtains hang below the rim of the table inner hole and from the Dome flange to the ground; 

these help prevent the rat from seeing cues in the center of the table and the support legs. A 

thick curtain hangs around the Dome outer shell and provides both light and sound isolation.

2.4. Central pillar

The central pillar is a rotating hollow metal cylinder that also serves as the mounting 

location for the hemispherical mirror(Fig. 2C,D). Below the mirror, a set of radial boom 

arms extend from the central pillar towards the edge of the table. A pump, controller, 

vial of liquid feed and battery are mounted on the central pillar, along with any other 

accessories that need to rotate along with the rat. The central pillar rotates on a ring 

bearing on the central support structure. When wired recording is used, neural recording 

tethers can be passed through the hollow portion of the central pillar and attached to 

an electrical commutator (PSR-36, Neuralynx, MT, USA). In a wireless configuration, 

a smaller commutator can be substituted to pass on any control signals to the rotating 

stage(e.g. for feeding). A high-torque motor (DCX22S, Maxon, Friedrichsdorf, Germany) 

and gearhead(GPX22, Maxon, Friedrichsdorf, Germany) with a built-in optical encoder 

(ENC 30 HEDL 5540, Maxon, Friedrichsdorf, Germany) are used to rotate and determine 

the angle of the central pillar. A magnet on the central pillar passes by a hall-effect sensor 

(55100-3H-02-D, Littelfuse, IL, USA) every rotation, which can be used by the motor 

controller as an angular zero calibration for the laboratory reference frame. The metal 

support legs as well as the central support structure are grounded in order to prevent 

interference in neural recordings.

In the Legacy version, the rotating neural commutator itself was used as the central pillar. 

We adopted the current design since it allows us to swap in a different commutator or neural 

recording system, and avoids heavy axial loads on the commutator bearings which they are 

typically not designed to withstand.

2.5. Boom arms and feeding

The current experimental configuration uses three radial boom arms: the front arm, the 

back arm, and the cleaning arm that are mounted in front of, behind, and across from the 

rat, respectively (Fig. 2D). The boom arms extend from the central pillar to the edge of 
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the tabletop (Fig. 2C). Carbon fiber rods (6 mm dia., Goodwinds Composites, WA, USA), 

serve as radial boom arms. The arms are supported towards the middle of the table by 

rubber wheels to prevent sagging and are equipped with mating connectors and extensions to 

facilitate attachment of other components.

Two transparent polycarbonate walls that are mounted between the front and back arms 

restrict the radial movement of the rat. However, the rat is free to run in the circular track. As 

the rat runs, the central pillar rotates and the boom arms move along with the animal.

The front arm is used to route a feeding tube and the back arm is used for routing cables 

for wired neural recordings. An additional component attached to and cantilevered above 

the back arm guides a neural recording tether and suspends the recording headstage above 

the rat (see below for details about neural recording hardware). A micro peristaltic pump 

(RP-Q1, Taskago Fluidics, Aichi Japan), pump driver, battery, and feed vial are mounted on 

the central pillar. Liquid feed (50% diluted Ensure®) is pumped from the vial into a feed 

tube that is routed along the front boom arm to a feeding needle (FTSS-16S-76, Instech 

Labs, PA, USA) that drops the feed onto the table in front of the running rat (Fig. 2D). A 

sweeper, composed of a plastic spreader and paper towels, is attached to the cleaning arm. It 

wipes up or spreads out the scent of urine and uneaten food, as well as pushes feces off the 

table. The sweeper reduces the salience and stability of local olfactory cues that may provide 

uncontrolled spatial information to the animal.

2.6. Camera and tracking

A high-resolution (2048 px × 2048 px), high-frame rate (45–90 fps) NIR camera (GS3-

U3-41C6NIR-C, FLIR, OR, USA) with a wide-field lens (NMV-6M1, Navitar, NY, USA) 

records the animal behavior. The camera is mounted to the outer periphery of the top hole 

in the Dome shell. Since the camera is not mounted in the center of the hole, it can be a 

polarizing visual cue. In order to prevent this, we hide the camera from the rat by placing it 

behind the ‘brim’ of the top hat. In the Current version, we track the head position of the rat 

in real-time using the camera [24]. To enable this, the neural recording headstage attached 

to the head of the rat supports a lightweight three-dimensional pattern of retro-reflective 

markers (the ‘crown’). A ring of NIR LEDs (QBLP670-IR3, QT Brightek, CA, USA) placed 

around the camera lens serves as the IR light source. The top hat brim is made of an IR 

transmitting acrylic sheet which is opaque to visible light (#3143, ePlastics, CA, USA); thus 

the rat cannot see the camera. The infrared LED light readily passes through the acrylic 

sheet into the interior of the Dome, illuminates the retro-reflective markers, and passes back 

through the acrylic to the camera (Fig. 2C). A methodological description of the crown 

tracking system will be published as a separate article.

2.7. Neural recording setup

A wired system (Digital Lynx SX, Neuralynx, MT, USA) is used for neural recordings. 

The commutator placed below the central pillar rotates to avoid twisting the recording 

tether. The Dome can also be operated in a semi-wireless recording mode using a wireless 

transmitter (FreeLynx, Neuralynx, MT, USA). In this mode, the wireless transmitter and 

battery are placed on the central pillar, eliminating the need for a high-channel-count neural 
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commutator. Wireless data loggers and head-mounted wireless transmitters can also be used

—this completely avoids the rat being tethered to the back boom arm. The hollow but 

rotating design of the central pillar allows flexibility in the choice of tethered or wireless 

recording solutions. The recording system is controlled by the Neuralynx Cheetah software 

running on a computer with the Windows 10 operating system (Computer 2, Fig. 3).

2.8. Software and Control

Two computers running Ubuntu Linux (16.04 Xenial Xerus) are used for primary 

experiment control (Computer 1, Fig. 3) and video tracking of rat position and head 

direction (Computer 3, Fig. 3). The primary framework of experiment control is Robot 

Operating System (ROS) [25, 26]. Originally developed and largely used to operate robotic 

platforms, ROS offers a powerful cross-platform interface for several independently running 

programs (nodes) on a set of networked computers to communicate with each other by 

passing information (messages) on communication channels (topics). The nodes can be 

written in a variety of languages (C++, Python, MATLAB). The fact that each node 

operates independently of others makes it extremely flexible in terms of modifying the 

experiment control, adding and modifying software features, and incorporating new sensors 

and actuators. ROS is thus well suited for experimental control, especially in a networked 

multi-computer multi-operating system scenario such as ours. ROS can also operate with 

various real time linux kernels that enables us to perform fixed-latency data acquisition.

Computer 1 uses a data acquisition system (DAQ PCIe-6259, National Instruments, TX, 

USA) to communicate with the Dome apparatus, interfaced through a real-time linux kernel 

(Xenomai v3.1 patched on Kernel v4.19.66) and ROS. The optical encoder and hall-effect 

sensor signals are inputs to the DAQ, and the feeding pump and central pillar motor signals 

are outputs from the DAQ. The projector is configured as one of the displays of Computer 

1, and the visual scene was generated using OpenGL running within a ROS node. Arbitrary 

shapes can be displayed through OpenGL at high frame rates by the use of pre-compiled 

display lists. Computer 3 (Ubuntu 18.04) receives the camera signal through a USB3.0 

interface and runs a custom-developed ROS node that tracks the position and orientation of 

the animal’s head [24]. In addition, it also records high-resolution video at full frame rate 

(45–90 fps) for post-experiment processing.

2.9. Synchronization and Data acquisition

Experimental function and data integrity demands that the device clocks on all three 

computers be kept precisely synchronized. This is accomplished in multiple stages. The 

Network Time Protocol (NTP) is used by the operating systems to synchronize their 

respective system clocks to Computer 1, which acts as the local NTP server. In addition, 

a randomized TTL pulse train (mean 10 s. between pulses, 1 s. pulse duration) generated 

from Computer 1 is fed into the digital inputs of the neural acquisition system in Computer 

2. The paired timestamps of these pulses are then used post-hoc to synchronize the neural 

and experimental data streams using the Needleman-Wunsch algorithm [27]. In addition, the 

hall-effect sensor is fed into a separate digital input on the neural recording system as an 

independent synchronization backup that generates one TTL pulse every lap.
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Data is acquired on all three computers independently. Computer 1 and Computer 3 record 

and timestamp all the data flowing between their ROS nodes in the ROSbag format. 

This includes all communication between nodes, inputs to and outputs from the DAQ on 

Computer 1, and the camera frames on Computer 3. Computer 2 records neural data in 

Neuralynx custom formats, including the timing of the digital synchronization signals. Since 

the experimental and neural recording systems are largely independent, the neural recording 

system can be swapped out for any other system that can accurately timestamp TTL pulses.

2.10. Gain manipulation of visual feedback

Here, we describe the primary experiments that have been reported to date using the Dome 

system [10]; these experiments and their associated data form the basis for the additional 

validation analyses we perform in this paper.

The Dome was originally developed to test whether the path integration gain is a plastic 

variable that can be recalibrated by feedback from landmarks [10]. To achieve this, the 

relationship between the movement of the animal with respect to the laboratory and the 

corresponding movement of the landmarks was modulated experimentally. This relationship, 

termed the experiment gain, was defined as:

Gexp = Displacement of rat in landmark frame
Displacement of rat in laboratory frame (1)

In [10], each experiment session was divided into 4 epochs (Fig. 4). Landmarks were 

specified to be visible in Epochs 1-3 and turned off in Epoch 4. In Epoch 1, Gexp was held 

at 1, meaning that the landmarks remained stationary. During Epoch 2, the experimental gain 

was ramped up to a constant value over the course of a predefined number of laps. During 

Epoch 3, the experimental gain remained steady at the final value that it ramped to at the end 

of Epoch 2. The experiment protocol was defined at the start of the session and execution 

was fully automated. See supplementary material (Fig. 9) for place cell activity during an 

example gain manipulation session.

One also can also use the Dome to present optic flow cues. In unreported experiments, 

we present a set of 80 equally spaced stripes in lieu of polarizing visual landmarks. Since 

each stripe is indistinguishable from its neighbors, they provide velocity information through 

optic flow but do not provide position information. The gain of the stripe cue can be 

manipulated in the same way as landmarks, as a ratio between its displacement and the rat’s 

displacement. This affords independent experimenter control over two variables: landmark 

gain (Glm) and stripe gain (Gstr). Fig 5 shows the abstraction of the flow of information 

within the dome in this condition—the rat is still presumed to have little-to-no direct access 

to the true position in the lab frame; however, it has direct access to (virtual) position as 

informed by projected visual land-marks, velocity as informed by stripes, and (true) lab 

velocity as informed by non-visual path integration cues such as vestibular, proprioceptive, 

and motor efference copy. We will report the full nature of scientific results from these 

manipulations in a future manuscript; however the behavior of the animal under stripe 

manipulation and in the Current configuration of the Dome is discussed in Animal Behavior.
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2.11. Harnessed configuration in Legacy version

In the Current version of the Dome, the animal is unharnessed. In the Legacy version, the 

rat was attached physically to the back boom arm. Two ‘chariot arms’ were attached to the 

boom arm. The rat was trained to wear a body harness, and the harness was fixed to these 

arms using velcro straps. This partially body-restricted setup allowed the rat the freedom to 

move forwards, stand up, groom, and turn its head. In addition, the rat could move radially 

and turn its body by a small amount due to the flexibility of the chariot arms and harness. 

The inertial load on the rat included the weight of the carbon fiber boom arm and the plastic 

chariot arms. The boom arm was rotated on a low-friction central bearing, and its angle 

relative to the central pillar was monitored by an optical encoder. The central pillar was 

mounted on a smooth bearing as well, and a motor was controlled to keep the relative angle 

between the boom and pillar near zero. The angle by which the central pillar was rotated was 

monitored by a second optical encoder. The angle of the rat relative to the laboratory frame 

was thus the sum of the angle of the central pillar relative to the lab (absolute angle) and the 

angle of the boom arm relative to the central pillar (relative angle). This system, relying on 

a pair of optical encoders, allowed the rat’s position to be read accurately and reliably at a 

high temporal rate without needing real-time optical tracking solutions.

Eliminating the harness in the Current configuration of the Dome substantially improves 

animal behavior and simplifies experiments and training. In the Current dome, the animals 

no longer need to be acclimated to a harness and attached to the chariot arms while running. 

The behavior is therefore easier to train and easier to maintain over a longer period. 

Although we found it easy to train rats to accept a harness, it was also typical for the 

rats to develop stereotyped movements during training and experimental sessions that caused 

constrictions and abrasions. This sometimes resulted in abrupt and irrecoverable behavioral 

decline. Freeing the animals of the harness and chariot system eliminated these behavioral 

inconsistencies. Moreover, the animals are afforded an unrestricted range of natural head and 

body movements, which is in line with the overall design philosophy of the Dome.

3. Experimental Validation

While the specific characteristics that make a VR system “valid” for scientific research is 

not a well posed question, our goal here was simply to demonstrate the general qualitative 

normality of neural activity and behavior within the dome, and characterize how neural and 

behavioral variables change as a function of the experimental gain in Eq. (1). We also sought 

to ensure that the engineering artifacts were minimized to the extent feasible. Toward these 

ends, there were three general lines of validation that we considered in this paper. The first 

two relate to the biology; specifically, we examined how behavioral and neural activity were 

affected by the VR Dome. The third aspect relates to the engineering: we characterized the 

latency in visual feedback introduced by the Dome.

3.1. Animal Behavior

The running behavior inside the Legacy Dome was characterized in [10] (72 sessions, N = 

5 rats) and reproduced in Table 1. In these sessions, the ramp rate of the experimental gain 

(Gexp) in Epoch 2 was constant for each rat. Thus, the length of each session was dependent 
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on the amount of deviation of the final Gexp from its initial value of 1. Consequently, the 

distance traversed in physical space during a session was highly variable (median = 251.7 m, 

min = 53.1 m, max = 624.9 m).

In the experiments using the Current version of the dome, the only restriction on the animal 

was a spatial constraint to run on a circular track. There were no restrictions on body or 

head movement, other than potential twisting of the wired recording tether. The animal was 

able to orient in any direction that it chose and freely perform behaviors such as grooming, 

head scanning, and standing up on its hind legs. A video of the rat running in the apparatus 

is provided in supplementary video 1 (caption: Fig. 8). Using this setup, we collected a 

currently unreported dataset where the rats were subjected to gain manipulation as in Eq. (1) 

under moving optic flow cues (38 sessions, N = 5 rats). The aggregate behavioral data from 

this dataset is also reported in Table 1. The median distance traversed by the rats in physical 

space across all sessions was 388 m (min = 313 m, max = 462 m). As can be seen from the 

table, the unrestricted behavioral parameters from the unrestricted dataset from the Current 
configuration (last row) are similar to the harnessed (Legacy) configuration (first four rows).

After hyperdrive implantation surgery and subsequent recovery, the rats underwent almost 

daily tetrode turning and training sessions. Training was done in order to achieve a pre-

determined behavioral criterion (40 laps run without intervention). We lack complete records 

for the training sessions; however, knowing that turning and training occurred in tandem, we 

counted the number of turning sessions as 19.2 ± 5.9 days for the Legacy configuration and 

12.0 ± 3.5 days for the Current configuration. This indicates that training time in the Current 
dome is significantly shorter (p = 0.024, N = 5, Wilcoxon rank-sum test).

3.2. Characterization of place fields under visual manipulation

In [10] it was reported that in the presence of a rotating set of landmarks, the spatial 

information score [28] of place cells for each animal in the dataset was higher when 

calculated relative to the landmark frame of reference than the lab frame of reference, 

a quantitative verification that the place cells most often continued to fire in consistent 

locations relative to the landmarks. As previously reported, all simultaneously recorded 

place cells behaved as a single coherent population in all 72 sessions and this ensemble 

stayed locked to the landmark frame in 60 of 72 sessions across a range of experimental 

gains, Gexp. It was also reported that the spatial tuning of interneurons was also locked to the 

visual cues and had the same gain as the simultaneously recorded place cells.

Here, we further characterize the effect of gain manipulation on place fields, in both the lab 

and landmark frames of reference. We examined place field size, peak firing rate, and spatial 

information score in the two frames of reference. In addition, we investigated the effect of 

gain manipulation on field remapping, spatial drift, gross interspike interval distributions, 

and theta phase precession. The dataset for these new analyses was from the sessions 

reported in [10] under landmark control, as defined previously.

We developed a custom algorithm to identify boundaries of individual sweeps, or individual 

passes, through a place field (Fig. 6A; a preliminary version of the algorithm was reported in 

[29]). Specifically, a firing rate analogue was constructed by convolving the spike locations 
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in the unwrapped landmark frame of reference by a kernel density function (MATLAB’s 

ksdensity function, Gaussian kernel sampled at 0.5° bins, bandwidth = 8). The peaks in 

this curve were detected. Sweeps were defined as contiguous angular bins around each 

peak where the firing rate analogue was above 10% of the maximum. The sweeps were 

constrained to be between 5° and 120° in the landmark frame. These limits were not to say 

that smaller or larger place field sweeps do not exist, but rather were chosen as thresholds to 

compare between spatial tuning in lab and landmark frames of reference. The next step was 

to cluster the sweeps as belonging to place fields. This allowed for identification of multiple 

fields of a place cell, tracking drift of a place field, and localization of remapping events.

For each sweep, the center was defined as its geometric midpoint, which was not necessarily 

where its peak firing rate occurred. The algorithm iterated through the detected sweeps and, 

for a given sweep, identified sweeps within a 15 lap window centered on the selected sweep 

(excluding the lap of the selected sweep). All sweeps within this window were defined 

to be in proximity of the selected sweep if their geometric center was within 15° of the 

selected sweep in wrapped angular coordinates in landmark frame. If the number of sweeps 

in proximity was less than 3, or if the number of spikes in the sweep was less than 4, the 

selected sweep was deleted as it may be due to spurious spikes that did not maintain stable 

spatial tuning for a significant period. Sweeps were thus clustered into sets such that any 

given sweep in the set was in proximity to at least two other sweeps in the set. Each such set 

was denoted as a place field; in this way, each sweep was considered as one traversal of its 

associated place field.

This sweep-detection and field-construction algorithm was used to identify the fields (and 

their sweeps) in the landmark frame for the duration of Epochs 1-3 in the datasets [10] 

where the fields stayed locked to the landmark frame. The field widths and location for each 

of these passes were quantified in landmark and lab frames. This allowed quantification of 

the scaling of place fields in the lab frame of reference, reliability of firing, and spatial drift. 

As a final verification step, the detected fields were manually curated and merged when it 

was deemed by visual inspection that an algorithm split one place field into multiple fields. 

Such manual curation was only needed for about 6% of the place fields, and is similar to the 

curation process commonly employed after automated spike sorting.

A reliability score of firing for a place field over a given duration was defined as

rp = # of laps in landmark frame place field was active
# of laps rat ran in landmark frame .

The reliability score was used as an indication of stable versus remapping fields. For 

example, a reliability score of 0.5 indicated that the field was present for half the duration 

of Epochs 1-3. Note that this measure is not entirely indicative of temporal stability, as the 

temporal duration of laps in the landmark frame depended on the rat’s velocity and on the 

experimental gain of the particular session due to the constrained ramp rate of gain in Epoch 

2.
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Fig. 6B and C compare spatial information scores and peak firing rates in landmark and lab 

frames. Place cells with a single place field that fired with a high reliability (rp > 0.9) were 

selected (n = 60). As both frames of reference are coincident in Epoch 1 at Gexp = 1, spikes 

from this epoch were discarded.

Spatial information scores for each unit were computed from its firing rate in lab and 

landmark frames. The information score [28] was defined as

1
B ∑

i = 0

B
λi log2

λi
λ

where B was the total number of bins (B = 72 for this analysis), λi was the occupancy 

corrected firing rate in bin i, and λ was the mean firing rate for the unit. Spatial information 

was greater in landmark frame than in lab frame (Fig. 6B , Landmark frame: median = 3.59, 

s.d = 1.65, Lab frame: median = 0.22, s.d = 0.14), as expected based on the place field 

locations being locked to the landmarks when Gexp ≠ 1 in Epochs 2 and 3 (visual landmarks 

moving relative to lab).

Firing rates (spikes/s) were computed for each unit using all the data where the rat’s speed 

exceeded 5 cm/s. The track was divided into 72 bins (5° width). The firing rate during a 

session for a unit was the number of spikes within each bin divided by the time that the rat 

spent in that bin. Peak firing rates of the units was greater in landmark frame than in lab 

frame (Fig. 6C, Landmark frame: median = 15.39, s.d. = 6.27, Lab frame: median = 3.6, s.d. 

= 1.68)

The cumulative distribution of sizes of sweeps through firing fields in the control condition 

(Epoch 1, Gexp = 1) and in the gain manipulation conditions (Epoch 2,3, Gexp ≠ 1) showed 

that the distributions of sweep sizes more closely resembled the control conditions when 

computed in the landmark frame of reference as compared to the laboratory frame (Fig. 6D).

From place cells that fired with a single place field for the entirety of Epochs 1-3 (subset of 

place cells used in Extended Figure 5 of [10]), we computed a measure of place field scaling 

for each sweep:

fp = average field size in Epoch 1
size of individual sweep .

We assigned a gain, gp to each sweep as the average of the experiment gain, Gexp, at the start 

and the end of the sweep. If the size of the place field increased in proportion to Gexp, we 

expected that the fp for a sweep would be the same as its gp. The plot of fp against gp for n = 

4535 sweeps (Fig. 6E) showed that this was indeed the case—the field size in the lab frame 

scaled in correspondence with the applied experiment gain.

We binned place fields into gain ranges based on the gp of their last sweep. This assigned 

the place cell to the last gain at which it was active—a conservative measure since during the 

sessions, the gain always ramped away from its initial value of 1. A histogram of reliability 
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scores rp for place fields in different ranges of gain (Fig. 7A) showed that at experimental 

gains away from 1, place fields became less reliable, with a more pronounced effect at the 

lowest gain bin of 0 — 0.6, similar to what was reported in [30]. Note that this did not mean 

a loss of spatial information in the landmark frame, which remained high, as shown before 

in Fig. 6B. Instead, this indicated a higher amount of remapping during more extreme gain 

manipulations and any newly potentiated fields remained locked to the landmark frame.

We had previously reported that in the presence of visual landmarks, although the place 

fields were locked to the landmark frame of reference, there was a cumulative drift of the 

place fields relative to the landmarks that was correlated with final experimental gain (see 

Extended Data Figure 5 of [10]). This drift was likely indicative of a ‘tension’ between 

the conflicting position estimates from path integration inputs and the more dominant 

visual landmarks. To examine this further, we computed the drift rate of place fields in 

the landmark frame as

dp =
ang(mend, mstart)

# of laps in lab frame,

where mend was the mean position of the last three sweeps of a place field in the landmark 

frame, mstart was the mean position of the first three sweeps, and ang was the angular 

distance between these values. In Fig. 7B, the gain bin was again determined by the gain at 

which the last sweep of the place field occurred. This provided an indication of the general 

trend of the drift in different gain regimes and was not a fine-grained analysis of the drift 

as a function of gain and path distance. The drift rate moved from negative values at low 

gains to slightly positive values at higher gains. This result further supported the ‘tension’ 

hypothesis—the place fields drifted in the direction expected to relieve conflict between 

visual landmarks and path integration cues. Fig. 7C shows the histogram of interspike 

intervals of spikes of place cells at different ranges of gain when landmarks were visible 

(excluding interspike intervals greater than 0.5s). Peaks were seen corresponding to theta 

frequency (and its harmonics). Since theta frequency coupling was evident from spiking 

activity, we computed the theta phase of firing for each spike. During recordings, one 

channel from each tetrode was sampled at 30 KHz. This signal was down sampled to 250 

Hz and filtered to the theta band (MATLAB filtfilt command, butterworth filter, 15th order, 

passband 6–12 Hz, stopband width 3 Hz). Theta phase was extracted as the angle of the 

analytic signal (computed using MATLAB hilbert command), and the phase was shifted 

so that the mean phase at the peaks of the filtered signal was 0. For spikes from all units 

recorded on a tetrode, the theta phase of firing was computed by interpolating theta phase 

to the spike time. Fig. 7D shows the theta phase of spikes between Epochs 1–3 in sweeps 

from all place cells. By normalizing the x-axis to the extents of each sweep, one observes 

that the general structure of phase precession of firing is preserved—the theta phase of 

firing decreased as the animal ran through a place field. Theta precession appeared to occur 

with the same overall structure at all gain ranges. These analyses demonstrating the overall 

conservation of theta-phase precession do not preclude possible idiosyncratic modulation of 

theta-phase related timing of place cell spiking activity by the experimental gain condition 

manipulation; this remains an area of active investigation.
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3.3. Visual latency

In the Legacy version, the latency between movement of the animal to corresponding 

movement of the visual scene was measured by actuating a robot tied to the boom arm and 

measuring the movement of the robot and the corresponding movement of the visual cues 

from the same set of camera images. The latency was found to be ~97 ms [10].

In the Current version, the three-dimensional head position of the rat was tracked in real 

time by a custom single-camera-based tracking algorithm. The tracking accuracy of the 

algorithm was validated with a industry-validated visual tracking system and reported in 

[24] (a full report of this tracking system is in preparation). Traditionally, camera-based 

tracking systems are slower than tracking systems based on sensors such as optical encoders. 

The frame rate of the camera as well as the speed of the image-processing pipeline 

are typical bottlenecks. The Dome uses a camera capable of providing full frame rate 

(2048×2048) images at 90 frames per second, and our custom tracking algorithm kept pace 

with the camera up to 81 frames per second (~ 12 ms image processing pipeline). The 

camera was typically operated at 45 frames per second—this struck a good balance between 

data size, tracking reliability, and accuracy.

The latency between the movement of the rat’s head and the corresponding movement of the 

visual cues was measured by manually moving the crown of tracking markers; this crown 

was typically mounted on the recording implant on the rat’s head. Our software tracked 

the crown and moved a projected visual landmark in response to the crown position at a 

gain of 3 (the visual cue moved three times as fast as the crown in the opposite direction). 

The movement of the crown and the corresponding movement of the visual landmark were 

both captured by a camera placed near the track. By capturing both the input (crown) 

and output (cue) movement in the same set of camera frames, we were able to accurately 

estimate the latency from the movement of the crown to movement of the visual scene. 

Latency was quantified as the peak of the cross-correlation of the movement of these two 

objects. Trials were performed at various frame rates of the camera (30, 45, 60, 75 and 90 

frames per second). Latencies were found to be between 100–110 ms, marginally slower 

than our previous encoder-based tracking method. Crucially, the frame rate of tracking had 

a negligible effect on total latency of visual feedback. This provides flexibility in selecting a 

frame rate appropriate for examining the behavioral parameters of interest without concerns 

of significantly altering tracking latency.

To put this latency in perspective, it is useful to consider the amount of spatial error that 

it can introduce. Note that the amount of error depends on three factors: the latency, the 

animal’s running speed, and the experimental gain. The angular speed that the landmarks 

rotate on the surface of the dome is given by the animal’s angular running speed times ∣1 − 

Gexp∣; if we consider an extreme experimental gain manipulation of either Gexp = 2 or Gexp 

= 0, then the landmarks move at the same angular rate as the animal, in either the opposite 

or same direction, respectively. Typically, the animals run at about 25 cm/s (Table 1), which 

corresponds to about 20 deg/s as they circumnavigate the table. If that motion is delayed by 

100 ms, it corresponds to an error of about 2°. Given that the dome is 2.3 m in diameter, in 

these circumstances the latency introduces a spatial error in the projection of the visual scene 

of about 4 cm at the equator of the dome.
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4. Discussion

The Dome is a virtual reality apparatus that enables flexible investigation of sensory 

contribution to the cognitive map in the rodent hippocampal formation. Unlike contemporary 

rodent VR apparatuses, the Dome is designed to have rats physically locomote, thus 

maintaining intact path integration inputs. Every physical element of the Dome is either 

circularly symmetric with respect to the vertical (z) axis or is rotating around that axis along 

with the locomoting rat, so as to minimize the information the animal has about its angular 

position on the track, except as desired (Design overview and subsystems). We strive to 

maintain this illusion in multiple sensory modalities, including visual, olfactory, auditory, 

and tactile. This ensures that the only polarizing sensory cues that the rat receives—i.e. the 

only information it has about its angular position on the circular track—is from projected 

visual cues and its own perception of non-visual self motion. This apparatus, while critical 

to investigating the relationship between path integration and visual landmarks, brings with 

it a set of challenges in experimental design, our solutions to which are laid out in this 

manuscript. The software and control design of the Dome allows it to be readily modified to 

add manipulations of further sensory modalities, and recording of more complex behavioral 

data (Software and Control).

4.1. Applications of the Dome to investigate neural correlates of path integration under 
naturalistic movement conditions

Using the Dome, we previously showed that the path integration gain, as measured from 

the activity of a population of hippocampal place cells, is a highly plastic variable that can 

be recalibrated by landmark cues [10]. It was shown previously that neural correlates in 

the hippocampus maintained their spatial tuning fields in environments with impoverished 

external landmarks or even in the dark [31, 32, 33]. This suggests that rats utilize self-

motion inputs such as optic flow, vestibular inputs, proprioception, and motor efference, 

in order to update the neural representation of spatial position [34]. These cues provide 

information about motion and not position and must be integrated over time to update 

the representation of spatial position [35, 36]. In addition, the integrated signal has to be 

calibrated with respect to motion in the real world. This calibration can be achieved through 

tuning a ‘path integration gain’ factor—the ratio between movement of the animal through 

the world to the corresponding movement of position in its internal representation [10, 30, 

37, 9, 38, 39].

Using the Dome, we can present visual cues in the form of a set of polarizing visual 

landmarks and a set of stripes that define a purely optic flow cue. The gain of each set 

of visual cues can be manipulated independently. As shown in Fig. 5, these gains likely 

modulate distinct streams of spatial information; by manipulating them independently or in 

concert, we can quantify the pair-wise interactions between visual landmarks, optic flow, 

and the remaining path integration cues. Such manipulations would allow us to introduce 

conflict between (virtual) visual cues and (naturalistic) path integration cues, and quantify 

their relative contributions as well as influence on each other in informing the cognitive map.

In short, we find that the animals continue to run within the Dome in a naturalistic 

way, without dramatically changing their behavioral characteristics as a function of the 
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experimental gain. We also find that place cell activity maintains a number of key 

characteristics reported widely in the literature. While there were modulations of both 

behavior and neural activity during gain manipulations, the system seems to have been 

“stretched” and not “torn”: the modulations are certainly interesting and deserve deeper 

inquiry; however they are also similar enough to known phenomena so as to engender 

confidence that the neural computations within the Dome are naturalistic.

4.2. Comparison with head- or body-fixed VR systems

Traditional VR apparatuses where head- or body-fixed rats run on air-supported balls can 

simulate essentially infinite two-dimensional visual environments. In the Dome, however, 

the movement of rats are restricted to a one-dimensional, circular trajectory. As an 

advantage, rats in the Dome have access to a richer suite of path integration cues. 

There is usually a trade-off in terms of constraints on behavior versus constraints on the 

measurements available as a result of the behavior or as the result of the experimental 

recording techniques afforded by head-fixed or head-free conditions. We deem naturalistic 

locomotor performance to be crucial investigating the role of path integration in the 

formation and maintenance of the cognitive map. Consider a head-fixed animal exploring 

a 2D VR world. The vestibular signal is clamped at a constant value. However, as the 

animal explores a 2D virtual world, visual inputs signal that the head direction is changing 

and the head position is moving, creating a persistent conflict with vestibular signals. A 

similar conflict arises in body-fixed preparations, in which animals can generate vestibular 

signals by moving their heads. However, these signals are in conflict with visual cues 

when the animals rotate the visual world by moving the trackball with their legs but do 

not make corresponding head movements consistent with the rotating cues. Adaptation to 

the continuous multimodal conflicts in these systems may happen in different ways. Even 

something as straightforward as down-weighting either of the signals can lead to a cascade 

shift of neural responses of downstream conjunctive representations and computations. The 

resultant network dynamics will be at a new equilibrium and can manifest a form of 

cognitive representation that differs from one under ethologically relevant conditions. Such 

dynamics may explain conflicting results in the literature between some VR systems that 

show apparently normal place field firing and others that show apparently normal temporal 

dynamics of spiking but with no consistent spatial relationship to the environment [6, 5, 

37]. Thus, while experiments and manipulations in head- or body-fixed systems have yielded 

important insights about the neural system under investigation, care must be taken that 

the results are interpreted in the context of these constraints—indeed, one can find similar 

cautionary tales in other organisms such as flies [40, 41]. In the context of a laboratory 

preparation to investigate the cognitive map, recording from a rat behaving as close as 

possible to its ethologically relevant conditions is crucial to interpreting the recordings 

to reveal the natural network dynamics [23]. We believe that for spatial navigation in 

mammals, the Dome can provide a critical link between fully tethered VR systems and 

completely free behavior, helping ease the comparison across these regimes. Since animals 

are freely locomoting, the Dome apparatus can be applied across species without needing 

to alter restraints. However, modifying the dome for other animals will involve some design 

considerations, such as determining the appropriate size and scale of the apparatus, and 
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ensuring that the position tracking and control bandwidth are sufficient to keep the animal 

within the radial boom arms.

4.3. Low latency modulation of visual feedback

The ability of the Dome apparatus to continuously modulate visual feedback with low 

latency (discussed in Gain manipulation of visual feedback and quantified in Experimental 

Validation) was, in our opinion, critical to the success of this experiment protocol. In a 

natural environment, the animal can use stable landmarks for localization. When the animal 

moves, these landmarks move across the visual field with a delay corresponding to the 

time for synaptic transmission. With internal compensation of this delay, the animal can 

check if the movement of the landmarks is within the time window of association with its 

own self-movement. The low latency visual feedback of the Dome makes it likely for the 

visual scene modulation to be perceived as causally linked to the animal’s own movement 

without experiencing the dissonance of the visual scene changing with a perceivable lag. 

Additionally, the animal may perceive the change in the visual scene as being causally 

related to its own movement if the change in the visual scene matches its prediction of 

how much the visual scene should change, given its estimate of self-movement. If the 

brain performs a comparison between predicted and actual location frequently enough, the 

ability to gradually and continuously change the experiment gain becomes crucial. This 

ability ensures that the error between how much the animal predicts the visual scene to 

have changed versus how much its actually changed remains small. If this error is small 

enough that trust in the stability of the landmarks isn’t eroded but still remains consistent 

and larger than noise, it further enables the plastic nature of the path integration gain to 

become evident.

4.4. Possible future experiments using the Dome

The Dome apparatus is very versatile for experiments involving visual cue manipulation. 

In addition, our ability to track the rat’s head position and orientation in real-time and 

at high rates can in principle allow two-dimensional movement and projected cues that 

simulate three-dimensional objects (See [17, 42] for implemented examples in rats, mice, 

fish and flies). However, the size of the traversable environment is still limited by the size 

of the table surface or environment boundaries. In comparison to head- and body-fixed 

preparations, wired recording and reward delivery will require a more complicated approach 

in a two-dimensional experiment inside the Dome.

The apparatus also allows for modifications that can bring other sensory cues under the 

control of the experimenter. Some potential modifications are described below. These 

experiments are conceptual but will hopefully illustrate the range of possible applications.

1. A bank of speakers placed under the table can provide directional audio cues to 

the animal. These can be used to generate an auditory landscape in addition to / 

in lieu of visual landmarks.

2. The double tabletop design allows the upper table to be motorized and actuated 

while the rat is running on it. This manipulation would allow us to change the 

gain between vestibular and proprioceptive inputs as a continuous variable. For 
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example, in the special case where the table is moved in the opposite direction of 

the rat at the same speed (gain = 0, similar to a body-fixed VR), linear vestibular 

inputs will be largely extinguished while proprioceptive and motor efference 

inputs will be maintained.

3. Instead of the two boom arms ahead of and behind the rat, we can place the 

rat on a base with wheels. This ‘car’ configuration could be used to move 

the rat passively. This would maintain vestibular input while extinguishing 

proprioceptive and motor efference input related to natural movement. We 

implemented this configuration successfully and recorded place cells in one 

animal (not shown). A similar setup was used by [38] to investigate CA1 activity 

under modified path integration input.

4. As also explored in [38], the rat can be provided with a button to ‘drive’ the 

car voluntarily, in order to engage attention and maintain the hippocampus in a 

theta-modulated state.

5. Rotating the table as described above is akin to placing the rat on a treadmill. 

An additional manipulation can be gained if the rat is actually placed on 

a treadmill which in turn can be rotated around using the radial boom 

arm. This system would forgo the increased inertia of a moving tabletop 

and provide a direct manipulation of vestibular and proprioceptive inputs. 

The treadmill velocity determines a proprioceptive manipulation, whereas the 

treadmill movement relative to the laboratory would determine a vestibular 

manipulation. Previous work in non-human primates has shown that in cases 

where vestibular measurements of self-motion match the sensory expectations 

(e.g., due to corollary discharge / efference copy), the vestibular signals are 

attenuated [43]. This inherent cancellation of vestibular cues needs to be taken 

into account while interpreting data from such a manipulation where the brain 

integrates active (rat running on treadmill) and passive (treadmill moving on 

table) vestibular components.

The current dome hardware and software design allows the incorporation of any of these 

proposed manipulations. Depending on the scientific question at hand, this flexibility of 

experimental manipulations will prove crucial to our investigation of the integration and 

function of the cognitive map. Our intent with this manuscript is to document and make 

public the detailed hardware and software design of the dome, so that other research groups 

can take advantage of these rich manipulations that the Dome offers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Rendered view of the dome apparatus. Note that the dome shell is opaque but was rendered 

semi-transparent for illustration. The projector (top) produces an image that gets reflected 

by an angled plane mirror, passes through the hole at the top of the shell, and onto a 

hemispherical mirror. The image is thus projected onto the inside surface of the shell. 

The shell is supported on two rigid support legs. The table inside the dome has a similar 

support structure. Three boom arms are attached to the central pillar which also supports the 

spherical mirror. Two of these arms are in front of and behind the rat respectively. The third 

arm serves to clean the table during experiments.
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Figure 2: 
Dome subsystems. (A) Dome shell and support legs. Note that a sectioned view of the shell 

is shown. The support legs are anchored to the floor of the laboratory, and the shell can pivot 

on the support legs. The handle, control cable and latch are used to lock or pivot the Dome. 

(B) Projection system. The plane mirror can be tilted in two axes using control knobs; this 

can be used to adjust image alignment. The top hat blocks the view of the rat above the 

Dome, and the collar blocks its view of the spherical mirror. Figure is to scale. (C) Side 

view. A camera is mounted above the top hat to view and track the rat. The central pillar is 

rotated using a motor and gear system. Control signals (e.g. for feeding) can be sent to, and 

neural signals can be received from, the rotating central pillar through a commutator placed 

beneath the central pillar. A white-noise producing speaker is placed at the bottom center of 

the apparatus. Figure is to scale. (D) Table top. The rats runs in the enclosed region between 

the front and back boom arms. The recording tether is laid out along the back boom arm, 

whereas the feed tube is routed along the front arm. The feed assembly is mounted on the 

rotating central pillar.
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Figure 3: 
Software Architecture. Three networked computers are used to run the Dome experiments. 

They communicate through the ROS framework, which then interfaces with lower-level 

software. Computer 1 is primarily used for experimental control and generating the 

projected visual image. Computer 2 performs the neural signal acquisition recording. 

Computer 3 is used for processing and saving camera frames, tracking rat position, and 

for neural decoding when applicable.
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Figure 4: 
Illustration of the profile of the gain, Gexp, during a typical recalibration experiment [10]. 

During Epoch 1, the gain was initiated at Gexp = 1, corresponding to stationary landmarks. 

In Epoch 2, the landmarks began to move according to an ever increasing or decreasing 

gain. During Epoch 3 a final experimental gain, Gexp = Gfinal, was maintained. Finally, 

the landmarks were extinguished during Epoch 4. The number of laps for each Epoch is 

illustrative and varied across actual experiments.
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Figure 5: 
Dome experimental feedback diagram. The blocks represent abstract computational 

elements and the lines represent how signals flow through the system. From an experimental 

perspective, we assume that the rat’s output is the force it applies to the tabletop, which 

is scaled acceleration due to Newton’s laws. Acceleration integrates to velocity which 

integrates to position. Typically, the rat receives feedback in the form of position, velocity, 

and acceleration cues in the absolute (laboratory) frame. Our movement of visual cues sets 

up two additional frames, relative to landmarks and stripes respectively. These frames are 

determined by their respective (experimentally applied) gains, Glm and Gstr. Stripe frame 

information is available to the rat only as optic flow velocity. Information in the landmark 

frame is available through relative visual position. Through the design of the apparatus, we 

have weakened information about position in the lab frame (dashed line).
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Figure 6: 
Characterization of place fields in the Dome. (A) Example of automated detection of sweeps 

through place fields and segmentation into different fields. Plots shows spikes from place 

cells (small dots) in two sessions plotted as a function of total laps run during a session 

(x-axis) and angle relative to the moving landmarks (y-axis). Asterisks show the extent 

of the automatically detected sweeps through the fields. The top plot shows a control 

session control session(Gexp = 1), with spikes from one place cell (green dots) with two 

fields, one which reliably fired in every lap (blue), while the other was potentiated partway 

through the session (red). The bottom plot shows a gain manipulation session with 5 place 

cells (5 colors) whose fields cover the landmark frame of reference. This is the same 

session shown in Fig. 9. (B) Histograms of spatial information score of place fields with 

high firing reliability computed in lab (green) and landmark (red) frames. (C) Histograms 

of peak firing rate of place fields with high firing reliability computed in lab(green) 

and landmark(red) frames. (D) Cumulative distribution of sweep sizes. The black curve 

represents the distribution of sweep(individual pass through firing field) sizes when Gexp 

= 1(2977 sweeps). Green curves represent the field sizes in the lab frame when Gexp < 

1(solid) and Gexp > 1 (dashed). Red curves represent the sizes of the same sweeps in the 

landmark frame of reference. (number of sweeps: Gexp > 1 : 4710; Gexp < 1: 2071). The 

distribution of sweep sizes in the landmark frame stayed more closely aligned with those in 

the control condition(E) Scaling of place fields. From place cells with one field that fired 
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for the duration of Epochs 1-3, we plotted the 2D histogram of the place field scaling factor 

against the experiment gain of each sweep(n=4535 sweeps). To account for a heterogeneous 

distribution of sweeps across the gain range, the column bins are normalized by the sum of 

sweeps binned in the column. The data is distributed around the unity line, demonstrating 

that place field size scaled with the experimental gain.
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Figure 7: 
Place field sweep metrics. The rows show data from different gain ranges. (A) Histogram of 

reliability scores, rp for place fields (top to bottom, n = 42, 48, 94, 59, 60) (B) Histogram 

of spatial drift rate of the same fields in landmark frame. (C) Distribution of inter-spike 

intervals for all spikes in all sweeps for all place fields (top to bottom, number of spikes 

n = 12224, 36047, 73111, 36142, 33663). Plot shows a strong peak in the theta range 

irrespective of gain. (D) Average theta precession. 2D histogram of theta phase of spiking. 

The x-axis represents normalized extent of a sweep, and y-axis represents theta phase. The 

theta phases of all spikes from sweeps of place fields are binned in these figures (top to 

bottom, number of spikes n = 13875, 23831, 68312, 35686, 36909). Theta phase precession 

during sweeps appears unchanged at different gain ranges at this level of analysis.
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Figure 8: 
(Supplementary Video 1): Rat running inside the dome apparatus. Video was captured using 

an overhead camera. A 30s. clip was contrast-enhanced and a timestamp was added (top left 

corner). Contrast enhancement was necessary since the video is captured at low exposure 

to prevent saturation of the tracking markers attached to the head of the rat. The large dark 

circle is the table top and the circle with the bright border at the center is the hemispherical 

mirror. The rat runs on the outer periphery of the table in the space enclosed between two 

radial boom arms. The third boom arm, with a paper towel attached for cleaning the table 

can be seen on the opposite side of the rat. As the rat runs, this camera image is used to track 

the position and orientation of the crown of markers and the position is used to actuate the 

central pillar. This is a wired recording configuration: the recording tether is routed through 

the back boom arm and above the rat before being attached to the hyperdrive implant. Liquid 

reward is dispensed at pseudo-random intervals and the rat can be seen periodically stopping 

to lick up the food before continuing to run.
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Figure 9: 
Example gain manipulation session. The x axis for all plots denotes the laps that the rat ran 

in the laboratory frame. The top plot shows the experimental gain (black), which was 1 for 

the first epoch, ramped to Gfinal = 1.153 in the second epoch and maintained this value in 

the third epoch. The same spikes from 5 units (colors correspond to units) are plotted with 

respect to their angle in the lab frame (middle plot) and angle in the landmark frame (bottom 

plot). In the landmark frame, the bounds of automatically detected sweeps are denoted by 

the correspondingly colored asterisks. Although the firing fields of these neurons drift in the 

laboratory frame as soon as the experimental gain moves away from its initial value of 1, the 

fields occur at the same locations in the landmark frame, i.e. they are locked to the landmark 

frame and exhibit landmark control. The bottom plot is identical to one of the plots in Fig. 

6A
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Table 1:

Behavioral parameters. For Epochs 1-4 (Fig. 4), the values were reported in the Extended Data from [10]; 

this data set comprised N = 5 rats. In Epoch 1, the experiment gain, Gexp is 1. In Epoch 2, Gexp is ramped 

from 1 to a target final gain. In Epoch 3, Gexp is held constant at the target gain. In Epoch 4, the landmarks 

are extinguished. For Optic flow, the values were computed from an unpublished dataset, N = 5 distinct rats. 

Values are shown as mean (s.e.m.).

Dataset Velocity
(cm/s)

Pauses
per lap (s)

Pause
duration(s)

Interpause
interval (s)

Interpause
distance (cm)

Epoch 1 24.6 (0.7) 0.9 (0.2) 8.8 (1.0) 55.8 (8.2) 887 (136)

Epoch 2 25.2 (0.9) 1.0 (0.1) 6.5 (0.5) 61.8 (18.0) 1119 (399)

Epoch 3 25.0 (1.0) 1.5 (0.2) 8.8 (1.0) 26.3 (3.5) 461 (79)

Epoch 4 24.2 (1.0) 1.5 (0.3) 9.2 (0.8) 34.9 (9.4) 531 (125)

Optic flow 23.5 (0.7) 0.8 (0.2) 10 (0.7) 41.0 (6.7) 579 (96)
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