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Abstract: The pivotal role of inflammation in the pathophysiology of heart-failure (HF) development
and progression has long been recognized. High blood levels of pro-inflammatory and inflammatory
markers are present and associated with adverse outcomes in patients with HF. In addition, there
seems to be an interrelation between inflammation and neurohormonal activation, the cornerstone of
HF pathophysiology and management. However, clinical trials involving anti-inflammatory agents
have shown inconclusive or even contradictory results in improving HF outcomes. In the present
review, we try to shed some light on the reciprocal relationship between inflammation and HF in an
attempt to identify the central regulating factors, such as inflammatory cells and soluble mediators
and the related inflammatory pathways as potential therapeutic targets.
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1. Introduction

Heart failure is a common syndrome in western communities and despite the advances
of the last decades, the rates of morbidity and mortality remain high [1]. Although the
pathophysiology of this entity has been thoroughly investigated, many questions remain
unanswered. In addition to the activation of the sympathetic nervous system and the renin-
angiotensin-aldosterone system, which are considered the cornerstones of the syndrome’s
pathophysiology and management, the role of inflammation has been widely discussed
for many years. There further seems to be an interrelation between neurohormonal acti-
vation on one hand and inflammation and free radical production on the other. Indeed,
many scientific reports suggest the reciprocal relationship of heart-failure syndrome and
inflammation. This has been documented by the presence of high blood levels of pro-
inflammatory and inflammatory indexes and their association with adverse outcomes in
patients with heart failure [2–4]. Thus, the pivotal role of inflammation in the pathophysiol-
ogy of heart-failure development and progression is well recognized. Moreover, there is
solid evidence supporting the hypothesis that inflammation and redox disorders are linked
with arrhythmia burden [5]. However, anti-inflammatory therapeutic modalities have not
yet had a significant impact in cardiovascular medicine since the results of the clinical
studies have been ambiguous. The Canakinumab Anti-inflammatory Thrombosis Outcome
Study (CANTOS) and the Colchicine Cardiovascular Outcomes Trial (COLCOT) were the
first two randomized clinical trials that showed promising results in the prevention of
cardiovascular medicine [6,7]. However, there are several things to be addressed in the
direction of dealing with inflammation in cardiovascular health and the clinical implemen-
tation of anti-inflammatory therapies. It seems that early initiation of anti-inflammation
therapy has a beneficial effect on the heart [8]. Have we really understood the nature of
this reciprocity? Is it possible that there is a central mediator, a “master key” that regulates
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both conditions and is not yet well defined? It would therefore be of interest to attempt a
search for this ‘master key’ that might regulate the relationship between inflammation and
heart failure, further providing a potential therapeutic target.

2. Inflammation

Inflammation is defined as the response of the immune system to a variety of stimuli
that might be infectious or tissue harmful. Regardless of the initial insult, there is a series
of programmed sequelae depending on the ability of the immune system to eliminate
the ‘enemy’ and restore the tissues’ normal structure and function. The inflammatory
process can be divided, without clearly defined and therefore overlapping borders, into
three sequential phases, including the acute phase, the intermediate and the restore/repair
phase. However, an alteration of this physiological sequence may occur, leading potentially
to a different homeostatic status, namely a chronic phase of inflammation, which might
evolve into a catastrophic pathway (Figure 1).
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system; SNS—sympathetic nervous system; ROS—reactive oxygen species).

In the early phase, there is a stepwise process that includes inducers (exogenous,
endogenous), sensors (pattern recognition receptors), mediators (leucocytes, cytokines
etc.) and effectors (tissue targets; Figures 2 and 3). In this early phase of inflammation,
there is an activation of the bone marrow and splenic cells, along with the activation of
circulating blood cells (leucocytes, mast cells, dendritic cells, etc.) [9]. At the same time,
T-naïve lymphocytes are called to produce different pre-inflammatory substances that
might be either protective [e.g., interleukin (IL)-10] or harmful (e.g., IL-6, 18, 1b) [9]. The
target of this first phase is to eliminate necrotic tissue by activating protection-elimination
mechanisms such as autophagy, mitophagy, degradation, fragmentation, etc., aiming
at structural restoration and repair. Along with the structural restoration/repair effort,
there is neurohormonal activation (renin-angiotensin-aldosterone system, sympathetic
nervous system, natriuretic peptide system) that is involved in order to maintain cardiac
output, tissue perfusion and oxygenation and hence to support the basic metabolic needs
of peripheral tissues.
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The end of this early phase signals the beginning of the intermediate and the ensu-
ing repair phase, the latest identified by the up-coming interaction between multicellular
protein expression, specialized matrix-protein activation (fibronectin, osteopontin, pro-
teoglycans, etc.) along with cellular sources of participation (cardiomyocytes, fibroblasts,
macrophages, vascular cells, structural extracellular matrix), thus leading to the regula-
tion of inflammation and healing response [10]. To do so, the homeostatic process has to
proceed to the final maturation phase, in order to restore cardiac function and to satisfy
the metabolic needs of peripheral tissues. In the case of failed or deviated maturation,
heart failure emerges (Figures 1 and 3) [11]. At this very crucial point, there may be a
down-regulation of lipid mediators (lipoxins, resolvins, protectins, etc.) [12,13] and an
over-activation of toll-like receptors [14], leading to a new homeostatic status, signaling the
chronicity of the homeostatic distortion [15–17], thus accentuating cardiac adverse remodel-
ing. As far as this is true, the emerging question, from this point and beyond, is whether the
initial index event or the subsequent homeostatic imbalance produces the condition that
might be named the real ‘enemy’. Do we face the birth of a self-destruction mechanism?
Has the homeostatic process reached its entelechy? There is a need for further investigation
in these potential disease-relevant pathways of inflammation and homeostasis. Indeed, if
the body fails to eliminate the enemy, new characteristics of inflammation emerge, signaling
a new homeostatic status. A status that is dynamic, involves many feedback systems and
adapts to the internal environment. Thus, we face a step forward of the homeostasis that
passes from the acute face to a different type of adaptation indicating chronic inflammation
(Figure 1) [18]. Several reports suggest that passing from the acute to chronic phase is a key
step, beyond which heart failure manifests [19–23].

2.1. Following a Self-Catastrophic Path—Missing the Balance

Following an acute index event, the body, as a whole, tries to retain its homeostatic
status. If the cause is of minimal aggressiveness, then the homeostatic status remains
within normality by using low adaptation mechanisms. However, in the case of a major
index event, the body tries to maintain homeostatic status by any means in order to limit
the cause, to heal, resolve and ultimately to repair the tissues’ structure and function. In
this respect, when a severe disturbance of homeostasis occurs, then the inflammatory
process is activated as the acute-intermediaterestore phase, followed, in case of failure of
the above-described sequence, by the chronic phase. Regardless of the cause of a sterile
inflammation, there is tissue damage and consequently a release of intracellular (nuclear
and/or cytosolic proteins, etc.) and extracellular (hyaluronic acid, fibronectin, etc.) products
(Figure 3). The release of these proteins activates a series of injury-associated molecular
pathways through cardiac receptor signaling. At the beginning, release of inflammatory
cytokines, neutrophil aggregation and activation, release of proteases and ROS production
occur. Failure of this initial reaction to restore tissue integrity activates a forward step
of inflammation, in which the toll and nucleotide binding and oligomerization domain
(NOD)-like receptors (NLRs) are involved with further accumulation and activation of pro-
inflammatory mediators. At this crucial phase, it is very important to maintain equilibrium
between protein degradation (cysteine-protease system, ubiquitin proteasome, autophagy,
etc.) and protein synthesis. If this equilibrium fails, apoptogenic mediators, misfolded
proteins and damaged mitochondria lead to the phase of chronic inflammation (Figure 4).
The NLRs, joined by caspase-activity complexes, form the inflammasome (Figure 3) that
further stimulates the production of IL-1b and IL-18 that affect left ventricular systolic
function, alter mitochondrial function and decrease sympathetic activity [24,25].
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The role of NLRP3 inflammasome (NLR family, pyrin domain-containing 3) in heart
failure is well documented [26–28]. NLRP3 inflammasome sets off the maturation of
proinflammatory cytokines (IL-1β and IL-18) to initiate the inflammatory response and
plays a key role in modulating chronic inflammation, altering the physiological adaptation
of cardiomyocyte and leading to heart failure progression [26]. Recent data showed that
two other inflammasomes seem to be involved in the inflammatory process in failing hearts.
Inflammasome protein absent in melanoma 2 (AIM2) and NLR family CARD domain-
containing protein 4 (NLRC4) have been found to be over-expressed and activated in
human-heart tissues as well in vivo animal models. These two other inflammasomes may
contribute to the chronic inflammation in heart failure and also a therapeutic target [27]. The
inflammasome also defines the interplay between innate and adaptive responses, paving
the way toward the development of heart failure. Furthermore, the involvement of the
immune process (effect of T and B cells) promotes chronicity according to the self-antigen
hypothesis, the production of autoantibodies and tissue fibrosis, suggesting a role for
autoimmune mechanisms [22,29]. This self-protection/elimination process integrates the
endogenous inducers, cell-, tissue-, plasma- and extracellular matrixderived signals and
might develop in an uncontrolled manner. Any injured myocardial cells can maintain a
basal, stressed, apoptotic or necrotic state. If the amount of injured tissue is enormous and
overpasses the homeostatic capacity to restore cell-tissue normality, then the detrimental
chronic inflammatory phase develops [30]. On the other hand, the successful restoration of
homeostasis prevents the harmful effect of chronic inflammation [31,32].

2.2. Homeostatic Mechanisms

To achieve homeostasis, a balanced activity between protein synthesis-degradation
and organelle capacity to eliminate apoptogenic proteins and damaged mitochondria
should be activated and well-functioning. If this is not the case, then the cardiomyocyte
death along with extra-cellular cardiac matrix dysregulation, lead to myocardial cellular
dysfunction and ultimately to heart failure (Figure 4). In other words, the body tries
to protect itself from itself. Indeed, when mitochondrial morphology and function are
disturbed (lack of fission, fusion and hence mitophagy), mitochondrial DNA is released
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into cytosol, and along with the misfolded proteins and the activation of the mitochondria-
associated endoplasmic reticulum membranes (MAMs), promotes the enhancement of a
self-destruction process, that might involve the entire body [33,34]. In case of a cardiac
harmful event, there is an activation of danger-associated molecular patterns (DAMP)
released by the nucleus (e.g., DNA, RNA), the mitochondria (e.g., DNA) and the cytosol
(e.g., RNA). In this respect, regardless of the initial triggering event (pressure overload,
volume overload, myocardial infarction, etc.), there is an activation of an inflammatory
process associated with the harmful release of cell proteins along with the activation of the
aforementioned self-elimination/protection mechanism. Thus, if there is an imbalance of
this sequel, then the chronic inflammation is switched on, and in case of an uncontrolled
process, heart failure develops. In other words, it seems that if the homeostatic mechanism
(degradation system, autophagy, etc.) is successful, inflammation is limited. On the other
hand, if the homeostatic protective mechanism cannot control and limit the harmful events,
the self-catastrophic pathway promotes cardiomyocyte death and hence heart failure. The
inevitable question that arises is whether the cause of heart failure is inflammation per se
or the incapacity of the homeostatic protective mechanisms.

Damaged and un-repaired mitochondria are the source of reactive oxygen species,
and along with mitochondrial DNA release, generate proinflammatory cytokines and
the activation of inflammasome, promoting inflammation chronicity. This leads to an
increase of the rate and amount of myocardial cell death and hence to the development
of heart failure. Although the role of inflammasome (and its subfamilies) is not very well
understood, it appears that its formation and activation have dual contradictory roles. The
first one is to eliminate the ‘enemy’ and restore the normal anatomy and function of the
tissue, while the second one, under certain circumstances, could be harmful by distorting
the normal activity, which is to avoid chronic inflammation and to promote the protective
mechanisms of homeostasis; in other words, to recognize the released material as foreign
and to attack these unrecognized substances in order to ‘protect’ the cell and consequently
the normal anatomy and function of the tissue [35,36].

It should be stressed that cardiomyocyte homeostasis as described above is different
from heart (organ) and body homeostasis. The heart as an organ tries to adapt to stressors
and noxious agents mediated by inflammation and redox disorders with an effort to
maintain its function in the human body.

2.3. Organelle Communication

The normal function of a cell depends mainly on the structural functional integrity of
its constituents, the organelles. The endoplasmic reticulum (ER) is an organelle that regu-
lates important intracellular function, including protein synthesis, calcium transportation,
etc. In the case of an index event, the ER is stressed and tries to maintain normality through
homeostasis. In fact, ER-associated degradation, the unfolded protein response, reticu-
lophagy, proteostasis, autophagy, etc., are activated in order to maintain normality [37–39].
In addition, there is communication with the other organelles, lysosomes, mitochondria,
plasma membrane, etc., thus facilitating the normal functions of the cell, including lipid
metabolism [40], calcium homeostasis [37,41], ion exchange [40], etc. However, if the index
event surpasses the capacity of the cell to retain homeostasis or if ER homeostatic properties
are impaired, then the cell-defending mechanisms fail, thus leading to a possible harmful
path [42–44].

Although there is vast communication among the organelles, it seems that the most
important one is between the ER and mitochondria [45,46]. Indeed, these two organelles
form the ER-mitochondria contacts (ERMCs) [47], constituted by both lipid and protein
complexes [48]. Studies have demonstrated that ERMCs are involved in the progression of
several cardiovascular diseases [40,49–53], because they are involved in several biological
processes, such as calcium homeostasis, apoptosis, autophagy, protein synthesis and fold-
ing, inflammation etc. [54–61]. After an index event, misfolded proteins are accumulated
in the ER promoting the activation of the unfolded protein response in order to maintain



J. Cardiovasc. Dev. Dis. 2023, 10, 19 7 of 13

proteostasis. In the case of failure of the misfolded protein repair, or of a large amount
of accumulated unfolded proteins, a vicious circle begins [62,63]. This vicious circle is
characterized by the loss of homeostatic capacity, promoting apoptosis. However, ER
activation facilitates steroid synthesis, ER stress, phospholipid metabolism in mitochondria,
autophagy and apoptosis [63], and under certain circumstances can increase transcription-
factor expression (ATF) 6 and 4 and promote apoptosis either alone or in cooperation
with mitochondria [64–66]. A self-catastrophic sequence thus begins. Indeed, when the
collaboration between these two organelles is impaired, a progression to advanced heart
failure may occur [67,68]. In fact, it has been stated that uncontrolled ER stress provokes
distortion of myocardial architecture, alteration of mitochondrial metabolism and function,
leading to an energy deficiency, along with a reduction of calcium transfer and consequently
impairment of cardiac contractility and relaxation, hence heart failure [69,70].

2.4. Targeting Inflammation, Oxidative Stress and Mitochondrial Dysfunction

Regardless of whether the inflammation is the cause or the consequence of heart
failure, it remains an important factor and a potential therapeutic target [71]. Although,
several studies have been conducted in order to investigate the role of anti-inflammatory
therapies, the results have hitherto been poor or controversial [72]. Notably, anti-cytokine
therapies were tested in the ATTACH and RENEWAL studies with poor results [73,74]. On
the other hand, the CANTOS trial has shown that the inhibition of IL-1b with canakinumab
was followed by a significant trend for a dose-dependent reduction in the incidence of
the composite endpoint of hospitalization for heart failure and heart failure-related mor-
tality [75]. However, this was not the case in other studies, showing that after IL-1b
inhibition with canakinumab, substantial residual inflammatory risk remained, related
to both IL-18 and IL-6 [76]. Other studies based on anti-inflammatory therapies have
been published [77–79], among which those using either immunomodulation [80] or anti-
inflammatory drugs [81–83], showing overall poor results. The same was true when
N-terminal pro-B-type natriuretic peptide (NT-pro BNP) or high-sensitivity C-reactive
protein (hs-CRP) were used as endpoints [84,85].

These data support the need for a better understanding of the inflammatory process.
As it has been pointed out, important inflammatory mediators are released after the
activation of the inflammasome, suggesting that the inflammasome could be a therapeutic
target. Since the inflammasome is part of homeostatic mechanism, one could speculate that
homeostatic controlled response is the master key to investigate and target.

Regarding oxidative stress, its role in pathogenesis of heart disease and heart failure
has been thoroughly studied [86,87]. The clinical studies examining the effects of several
anti-oxidative strategies have not shown the beneficial effects that preclinical studies
described [87]; however, innovative antioxidant perspectives are worth being evaluated.
Targeting glutamyl cycle or NAD+ production, the endogenous antioxidant capacity of the
cardiomyocyte may be of interest in targeting new treatment modalities in heart-failure
patients [88].

As far as mitochondrial dysfunction is concerned as an approach for therapy to
improve cardiac function directly, several pathways have been marked as potential phar-
macologic targets, such as blocking increased reactive oxygen species, blocking mitochon-
drial permeability transition pores (MPTP), improving the efficiency of electron-transport
complexes and regulation of mitochondrial ion homeostasis [89]. Different molecules (mi-
toquinone, elamipretide, CGP-37157, cariporide, etc.) have been proposed as therapeutic
agents targeting each of the possible above-mentioned pathways; however, further research
is warranted in bioenergetic insufficiency in heart failure [90].

Leaving apart all these pharmacological targets, we have to consider that in pa-
tients with heart failure, exercise-based approaches have been shown to improve quality
of life and functional capacity and to reduce hospital admissions [1]. The pivotal anti-
inflammatory role of exercise training has been suggested to be a large number of mediators
including macrophages [91–97]. In contrast to pharmacological interventions, exercise train-
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ing ameliorates the inflammatory profile, suggesting the capacity of the body to restore the
deviation. Is this because we pharmacologically target the inflammasome products rather
than the inflammasome per se? In addition to exercise, neuromodulation with low-level
transcutaneous vagus nerve stimulation in a pilot randomized clinical trial showed an
improvement in cardiac function and in inflammatory cytokines profile in patients with
heart failure with preserved ejection fraction [98].

Several studies have shown no promising results even when they used NLRP3 in-
hibitors [99–105] or caspase-1 inhibition [106–111]. Furthermore, other studies using inhi-
bition of other subunits of the inflammasomes NLRP 1, 6-7, 12, NAIP, NLRC4, and AIM2
show their unknown role in the inflammation process [112–129].

Do we have to suppress inflammasome activity? Is the inflammasome the corner
stone of the process? How can we suggest depressing the first defensive mechanism?
Shortly, what must be the therapeutic goal—o target the mediators or the inflammasome
products? Or do we have to somehow find the way and the tools to re-organize the normal
homeostatic status?

Data from the A systems BIOlogy Study to TAilored Treatment in Chronic Heart
Failure (BIOSTAT-CHF) study cohort have introduced some potential therapeutic targets,
such as the blockage of inducible costimulator ligand (ICOSLG), TNF superfamily member-
14 (TNFSF14), CD28, CD70 and the enhancement of interferon-γ production [130].

3. Conclusions

Inflammation in heart failure is a very complex process and many factors, some
of them totally unknown, are involved. It seems that on the way to finding out the
interaction between inflammation and heart failure, we might miss the real ‘enemy’ that
is the deranged and malfunctioning homeostatic properties. A better understanding of
inflammatory pathways in cardiomyocyte damage would allow for potential therapeutic
targets, pharmacological and non-pharmacological. The research continues; the questions
have been set out and the long way towards entelechy has begun.
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