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Copper (Cu) ion dys-homeostasis and α-synclein amyloid deposits are two hallmarks of
Parkinson’s disease (PD). Here, I will discuss the connections between these features, with
a major focus on the role of Cu in the α-synuclein (aS) amyloid formation process. The
structurally disordered aS monomer can bind to both redox states of Cu (i.e., oxidized Cu(II)
and reduced Cu(I)) with high affinity in vitro. Notably, the presence of Cu(II) (in absence of
aS N-terminal acetylation) and Cu(I) (when in complex with the copper chaperone Atox1)
modulate aS assembly into β-structured amyloids in opposite directions in vitro. Albeit the
link to biological relevance is not fully unraveled, existing observations clearly emphasize
the need for more knowledge on this interplay and its consequences to eventually combat
destructive reactions that promote PD.

Parkinson’s disease and copper metabolism
Parkinson’s disease (PD), for which there is only symptomatic treatment [1,2], is the second most com-
mon neurodegenerative disorder after Alzheimer’s disease. Assembly of the protein α-synuclein (aS) into
oligomers and β-sheet-rich amyloid fibrils is linked to the molecular pathology of PD [3,4]. aS amy-
loids constitute the major content of pathological neuronal inclusions, Lewy bodies, found postmortem
in the brain (substantia nigra region) of PD patients [5–7]. In accord, duplications, triplications, and
point-mutations in the aS gene, enhancing concentration and aggregation propensity, are linked to famil-
ial PD cases [8]. At physiological conditions, the 140-residue aS can be detected in both an intrinsically
unstructured form in the cytosol and a helical state on lipid membranes [9,10]. Despite the key role of
aS in the onset and progression of PD, the functional role of this protein remains obscure, but appears
related to synaptic vesicle trafficking, clustering, and membrane fusion (Figure 1) [11–13]. In agreement,
aS is localized at presynaptic nerve terminals associated with synaptic vesicles [14–16]. The process of aS
assembly to amyloid fibers is thought to result in toxic gain-of-function, in similarity to other neurodegen-
erative diseases where aggregation involves other amyloidogenic proteins. Amyloid formation of aS can
be modulated by synthetic as well as naturally occurring molecules, for example, heavy metals, ring-fused
2-pyridones [17], other amyloidogenic proteins [18], bacterial proteins [19], chaperones [20], as well as
by solution conditions, such as altered pH and oxidative stress.

Recent studies have suggested that metal ions play pivotal roles in PD and other neurodegenerative
disorders [21–24] and imbalances of metal levels are strongly associated with many neurodegenerative
diseases [25]. In fact, amyloid deposits, including Lewy bodies, are enriched in metal ions in addition
to proteins. Cu ions, as well as other metal ions, are highly concentrated in the brain [26] and a grad-
ual increase in brain metal ion content is thought to be a consequence of normal aging [27]. Cu is a
redox active metal (cycling between reduced Cu(I) and oxidized Cu(II) states) that provides activity to
several essential enzymes in humans [28]. In PD, Cu levels are found to be decreased in brain tissue (espe-
cially in the substantia nigra region which is the part most affected in PD) but increased in cerebrospinal
fluid and blood [21,24]. The decrease in cellular Cu appears coupled to decreased expression of the Cu
uptake protein, copper transporter 1 (Ctr1), which transports extracellular Cu into the cytoplasm. The
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Figure 1. Artistic drawing of synaptic vesicles fusing with the plasma membrane at the presynapse

Copper (Cu) ions are used as signaling molecules in the brain and are released from vesicles at the synapse. Neuronal signaling

processes, including the roles of aS, Cu, and their putative interaction, are important to study for insights into the origin and

progression of PD. Picture painted by my colleague, professor Fredrik Höök, Chalmers University of Technology.

cytoplasm is a reducing environment and Cu ions are therefore transported to their destinations in the Cu(I) form
[29]. Notably, there are no free Cu ions in cells under physiological conditions; instead, the metal ion is always
protein-bound. In the cytoplasm, the Cu(I) chaperone Atox1 [30] transports Cu from Ctr1 to P1B-type ATPases
(ATP7A and ATP7B) in the Golgi, for loading of Cu-dependent enzymes [31], via direct Cu-bridged protein–protein
interactions. Over 50 different proteins in human cells are thought to bind Cu but how Cu is delivered to those pro-
teins (and their Cu-dependent functions) is elucidated for only a fraction [32].

In neuronal cells, ATP7A has been found to relocate to presynaptic nerve terminals where it loads synaptic vesicles
with Cu [26,33]. Like neurotransmitters, Cu ions are players at synapses (Figure 1), modulating neuronal excitability
via binding to receptors such as gamma-aminobutyric acid (GABA) and N-methyl-D-aspartate (NMDA) receptors
[26,33]. Thus, not only is Cu important for specific enzymatic functions, emerging data show that these ions also
participate in cell–cell signaling [26,33]. Cu released in the synaptic cleft can transiently reach concentrations over
100 μM and such ions are thought to be in the Cu(II) form. Thus, if Cu-loaded vesicles are disrupted before fusion
with the plasma membrane, Cu(II) ions could be released inside cells. In addition, because oxidative stress is another
hallmark of PD, Cu(I) ions may transiently be oxidized in disturbed brain cells. Considering the above, it may be of
functional as well as pathological relevance that aS is annotated in UniProt (www.uniprot.org) as Cu-binding, and the
protein has been found to bind both Cu(II) and Cu(I) in vitro. Thus, intracellular or extracellular aS may encounter
both Cu(I) and Cu(II) in vivo (although in vivo interactions not directly proven yet).

Here, I will take a biochemical approach and describe the current understanding of roles of Cu in aS amyloid
formation (and thus PD). As will be clear upon reading, there are many outstanding questions. Part of the reason I
write this text is to emphasize the need for additional research both in vitro and in vivo.
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Figure 2. Scheme of aS sequence, its amyloid formation mechanism, and amyloid structures

(A) The primary sequence of aS, with its three parts labeled along with Cu(II), Cu(I), and Atox1-Cu(I) interaction sites. The lipid–vesicle

interaction part of aS is also indicated. Typically, in cells, the N-terminus is acetylated. (B) Amyloid formation involves primary

nucleation, fiber elongation, and secondary processes (such as secondary nucleation and fiber fragmentation). Cu may affect all

these steps. It is not known if Cu(II)/Cu(I) can bind to oligomers or preformed fibers directly. It is also not known where (if) the Cu

ions end up in the final amyloid structure when added to aggregating monomers. There may also be off-pathway reactions (not

indicated in figure). (C) Amyloid fibers visualized by atomic force microscopy (left) and an example of a high-resolution structure of

an aS amyloid (pdb: 2N0A), right.

Cu binding to aS monomers
In vitro, both Cu(I) and Cu(II) bind to aS [34,35] and structural features, binding sites, and affinities for these in-
teractions have been the focus of many spectroscopic studies [34–38]. Whereas the high affinity Cu(II) site involves
backbone nitrogen atoms in residues Met1 and Asp2, and at some conditions His50, the high-affinity Cu(I) site in-
volves side chain sulfurs of Met1 and Met5 [39,40]. Notably, all these Cu-binding sites are in the N-terminal part
of aS, which is also the binding region for lipid vesicles (Figure 2A). The affinities, falling in low-μM or nM range,
together with various coordination geometries have been comprehensively summarized in, e.g., [41]. In addition,
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and perhaps related to initiation of aggregation, electron paramagnetic resonance data have demonstrated a binding
mode in which Cu(II) bridges between two aS peptides [42].

It was recently reported that, when bound to aS, Cu could reversibly cycle between oxidized and reduced forms
with a biologically relevant redox potential [43–45]. Subsequent work showed that Cu-bound aS was able to act as
a ferri-reductase using Cu as a catalytic center to reduce Fe ions [46,47]. Since the co-ordination sphere for Cu(II)
and Cu(I) are markedly different (only Asp2 as common ligand), one would expect a high reorganization energy for
such transitions. Still, redox activity of Cu-bound aS could increase cellular oxidative stress, which may cause tyrosine
cross-links [48] and oxidation of, e.g., the neurotransmitter dopamine [24]. With respect to the latter, it is intriguing
that dopaminergic neurons (mostly found in substantia nigra) have the highest susceptibility to degeneration/death
in PD. Still, Cu redox activity was found to be reduced when bound to aS as compared with free Cu, and therefore the
complex was proposed to scavenge oxygen radicals [49]. In addition to the N-terminal high-affinity Cu sites, there
are also low-affinity binding sites for both redox states of Cu in the C-terminal part of aS [50]. Also, other metal ions
can interact (weakly, mM affinities) with negatively charged residues in aS’s C-terminal part.

When considering Cu binding to aS, one must take into account that aS can undergo several post-translational
modifications (such as acetylation, phosphorylation) in vivo [50]. In fact, most aS peptides in humans are
N-terminally acetylated [51] and residues in the C-terminus may be phosphorylated [52]. It was reported that
N-terminal acetylation of aS abolishes (or, drastically reduces) Cu(II) binding at the high-affinity N-terminal-binding
site [39,53], but Cu(I) binding is preserved [54]. Residue-specific NMR characterization of Cu(I) interaction with
acetylated and nonacetylated aS showed that the metal-induced structural change was of a larger magnitude when
Cu(I) interacted with the acetylated form [54]. Since most aS is N-terminally acetylated, and Cu in the cytoplasm is
in the Cu(I) form, one may argue that Cu(II) interactions with aS are biologically irrelevant. However, as noted above,
Cu(II) may be transiently present inside cells, and it is released as Cu(II) at the synapse; to that, a small fraction of aS
in vivo may not be acetylated. Cu(II) could interact with such nonacetylated aS, inside cells or extracellularly, thereby
triggering formation of amyloid seeds that then could recruit acetylated aS for further aggregation. It is also possi-
ble that weak Cu(II) binding in the C-terminus of aS affects aggregation [52,55] at certain local or transient in vivo
conditions.

Effects of Cu on aS amyloid formation
Amyloid formation is a complicated and heterogeneous process that involves going from nm-sized unstructured
monomers to μm-sized cross-β-structured amyloid fibers. Primary nucleation, resulting in nuclei or oligomers, is
followed by elongation (i.e., monomer additions) to amyloid fibers. Amyloid fibers may then engage in secondary
processes, including fiber fragmentation and secondary nucleation on the amyloid surface, and there may also be
various off-pathway reactions throughout these reactions (Figure 2B,C). The nucleation process is slow and results
in a lag time when monitoring the kinetic process in test tubes via fluorescence from Thioflavin-T (ThT), a com-
monly used probe molecule that emits upon binding to amyloids. The lag time is followed by a rapid increase in ThT
fluorescence, indicative of amyloid fiber elongation, until, at later times, a stationary state is reached where the ThT
fluorescence, and thus the amyloid amount, remains constant. Typically, for 50 μM aS, at shaking conditions with a
glass bead, the lag time is around 15 h (pH 7, 37◦C). Without shaking and glass bead, aS aggregation takes more than
a week to begin (pH 7) [56].

Early in vitro studies of aS amyloid formation showed that many di- and tri-valent metal ions (e.g., Al(III), Cd(II),
Fe(III), Co(II), Cu(II)) accelerate the reaction when added in mM concentrations, with Cu(II) being the metal ion with
the largest accelerating effect [57,58]. Subsequent studies investigated the effects of Cu(II) at more biologically relevant
concentrations, i.e., μM range, on aS amyloid formation kinetics and, again, acceleration of amyloid formation (i.e.,
reduction in the lag time) was observed [59]. Somewhat surprising, inspection of the literature revealed only a few
subsequent in vitro studies in which the effects of metal ions on aS aggregation have been systematically studied
as a function of metal concentration, solution conditions, and aS variants. It has been shown, as expected due to
lack of strong binding, that Cu(II) has no effect on amyloid formation of N-terminally acetylated aS [60,61]. Also
the introduction of the H50Q substitution (a disease-causing mutation that involves a Cu(II)-binding residue) into
nonacetylated aS reduced the magnitude of Cu(II)-induced acceleration of aS amyloid formation [61,62].

In a recent study from my lab, we confirmed the previously observed divergent effects of Cu(II) on acetylated and
nonacetylated aS and added the new observation that A53T aS (another disease-causing mutation, not involving a
Cu(II)-binding residue) amyloid formation kinetics was not affected by Cu(II) additions regardless of acetylation
status [63]. Still, Cu(II) binds to nonacetylated A53T aS like it does to the wild-type protein based on visible circular
dichroism data. Combined with several additional experiments, we concluded that the reason for no kinetic effect
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Figure 3. Ternary complex Atox1-Cu(I)-aS

Cartoon of the complex formed between aS (green) and Cu(I)-loaded Atox1 (purple, with Cu ion as gold sphere) as deduced from

solution NMR experiments. Cu(I)-binding residues shown in stick (Met1, Met5 in aS; Cys12, Cys15, in Atox1). The affinity is in the

low micromolar range and thus this complex may form in cells. Illustration prepared by Björn Burmann, Gothenburg University.

upon Cu(II) binding to nonacetylated A53T aS is because this variant exhibits an intrinsically faster aggregation speed.
The faster aggregation speed of A53T aS as compared with wild-type aS has been linked to less long-range contacts
in the mutant’s monomeric state [64]. Thus, Cu(II) binding to wild-type aS may change the monomer conformation
toward that of A53T aS, while the variant is already in a more extended conformation. That Cu(II) binding destabilizes
long-range (aggregation blocking) interactions between the N- and the C-termini in wild-type aS has been suggested
before [62]. There have been no in vitro studies of effects of Cu(II) on amyloid fiber elongation (i.e., using amyloid
seeds, so nucleation is bypassed) or secondary processes specifically.

Notably, the effect of Cu(I) binding on αS amyloid formation in vitro has not been reported. This is because it is
hard to perform traditional aS aggregation experiments over several days at conditions where one would keep Cu(I)
in the reduced state throughout. To get around this, we recently investigated the effect of Cu(I)-loaded Atox1 on aS
amyloid formation. Once formed, Cu(I)-loaded Atox1 is stable in nonreducing conditions [65]. Atox1, as well as other
Cu transport proteins, are expressed in most neuronal cells [57,66].

Protein-mediated Cu effects on aS amyloid formation
To test if the Cu chaperone Atox1 could deliver Cu(I) to aS and, thereby, affect amyloid formation, we added
Cu(I)-loaded Atox1 to aS aggregation reactions in vitro. We found that, instead of Cu(I) transfer, a Cu-dependent
complex formed which blocked aS from forming amyloids [67]. Further biochemical characterization revealed mi-
cromolar affinity between the two proteins and interacting residues in both proteins were identified by NMR [68]. As
expected from the Cu(I) dependence, the interaction sites involved each protein’s Cu(I)-binding site: the N-terminal
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part up to residue 24 in aS and residues 11–16, which include C12 and C15 that coordinate Cu(I), in Atox1 along with
additional residues elsewhere in both proteins (Figure 3). This complex resembles the protein–protein complexes that
act as intermediates during normal Cu(I) transport in which the Cu(I) ion is bridged by residues in both proteins [69].
Importantly, the Atox1-aS interaction was not abolished by N-terminal acetylation of aS. Although only indirect ev-
idence of physical interaction in vivo, we demonstrated Cu-dependent proximity (i.e., within 40 nm of each other)
of Atox1 and aS in neuronal cells [68]. Based on the results, we imagined that metal-dependent chaperoning, as ex-
emplified by Cu(I)-Atox1, is another cellular mechanism, in addition to the protein chaperone network, that protects
and controls the proteome. Interactions between Atox1 and aS may hold back aS amyloid formation at normal condi-
tions, whereas at PD conditions, with reduced Cu content in cells, the complex is abolished and aS is free to aggregate.
However, our work does not exclude that in vivo, Atox1 instead delivers Cu(I) to aS, and aS uses the metal for a yet
unknown function.

The Atox1 interaction appeared specific as we found no aS interaction with another human Cu chaperone, the
copper chaperone for superoxide dismutase 1 (CCS). CCS loads Cu(I) to superoxide dismutase 1 (SOD1), a pro-
tein which harbors antioxidant activity and is also the amyloidogenic protein in amyotrophic lateral sclerosis. In-
terestingly, it has been shown that Lewy bodies in PD patients also contain SOD1 [70]. More recent cell studies
(co-immunoprecipitation and immunohistochemistry) revealed an interaction between aS and SOD1; it also ap-
peared that both proteins could affect the aggregation of the other protein [71]. However, no in vitro experiments
with purified proteins have been pursued and the role of Cu in these interactions has not been investigated.

Conclusions and outlook
The amyloidogenic protein aS, playing a key role in PD, is annotated as a Cu-binding protein and binds Cu(II) as well
as Cu(I) in vitro. Cu(II) ions also accelerate amyloid formation in vitro (in absence of N-terminal acetylation). The
outstanding question without answer yet is the biological relevance of these metal–protein interactions. Does aS in-
teractions with Cu play roles in aS function and/or in dysfunction in vivo? Is it too much or too little Cu, or the wrong
redox state, that is problematic? Using a cell culture model, it was reported that Cu binding to aS in cells regulates
aS cellular localization and increases aggregation as well as toxicity [72]. Another study showed that in the presence
of Cu, aS amyloid fibers were more toxic to neuronal cells than in the absence of the metal [73]. Also, silencing Ctr1
expression, thus blocking Cu uptake, reduced aS aggregation in cells and reduced neuronal loss in mice [74]. On the
other side, focusing on reduced Cu levels in PD patients’ brains causing dysfunction, there has been a clinical trial
on PD patients with the Cu(II) compound CuATSM (ATSM = diacetylbis(N[4]-methylthiosemicarbazonato)) that
is supposed to deliver extra Cu to the brain [24]. Several synthetic compounds have been tested for their ability to
deliver Cu to cells and restore metal homeostasis, but mechanisms and consequences are not clear yet [75,76].

Although the biological aspect is clearly important to investigate further, there are many biochemical and biophys-
ical experiments that could add important insights. With today’s ability to perform sensitive and quantitative kinetic
aggregation studies in vitro, we can learn a lot more about how Cu (added at different time points, at different so-
lution conditions, and with various aS variants) affects amyloid formation mechanisms using advanced analytical
approaches as well as novel single-molecule techniques. Also, the amazing improvements in structural analysis of
amyloid fibers that have been made in recent years, could be used to pinpoint Cu-binding sites in amyloids of aS
variants and reveal if Cu-binding affects the resulting amyloid fold. It is also interesting to explore if the timing of Cu
interaction (i.e., before, during, or after S amyloid formation) results in different binding sites and, if Cu-bound aS
amyloids harbor catalytic activity (reported recently for amyloid-β amyloids [77]). With respect to possible functions,
can aS interact with other Cu-transport or Cu-binding proteins (in addition to Atox1) in a Cu-dependent way? If so,
is this related to synaptic signal transmission via Cu-filled synaptic vesicles? Clearly, future studies on this topic can
constitute the careers of many scientists to come. And it should as we desperately need to find new ways to tackle
PD and other disorders involving amyloids. The prevalence of these diseases is rapidly increasing due to population
aging but we still lack cures.

Summary
• The protein aS, annotated as copper binding in UniProt, forms amyloids in Parkinson’s disease.

• aS binds copper ions in in vitro and in vivo studies imply biological consequences of such interactions.
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• Cu(II) accelerates aS amyloid formation in vitro, but N-terminal acetylation of aS (common modifica-
tion in cells) abolishes this effect.

• Protein (Atox1)-mediated Cu(I) interaction blocks aS aggregation in vitro.

• Many more in vivo as well as in vitro biochemical studies are desired to reveal both the functional
and dysfunctional significance of cross-reactivity between aS and Cu.
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