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Diabetes mellitus is a worldwide health problem that usually comes with severe

complications. There is no cure for diabetes yet and the threat of these complications is

what keeps researchers investigating mechanisms and treatments for diabetes mellitus.

Due to advancements in genomics, epigenomics, proteomics, and single-cell multiomics

research, considerable progress has been made toward understanding the mechanisms

of diabetes mellitus. In addition, investigation of the association between diabetes and

other physiological systems revealed potentially novel pathways and targets involved in

the initiation and progress of diabetes. This review focuses on current advancements in

studying the mechanisms of diabetes by using genomic, epigenomic, proteomic, and

single-cell multiomic analysis methods. It will also focus on recent findings pertaining to

the relationship between diabetes and other biological processes, and new findings on

the contribution of diabetes to several pathological conditions.

Keywords: diabetes, comprehensive network, system analysis, cardiovascular disease complications, peripheral

artery disease

INTRODUCTION

Diabetes mellitus is a critical public health issue that causes incapacitation and mortality in both
acute and chronic complications of the disease. It affects various races and populations. The
prevalence of diabetes in adults globally was ∼6.4% in 2010 and was predicted to rise to 7.7% in
2030 (1). Diabetes in general is a chronic metabolic disease, characterized by β-cell dysfunction
and/or insulin resistance and hyperglycemia.

Diabetes mellitus is classified as a spectrum of metabolic disorders in which the American
Diabetes Association (ADA) divides into four categories: type 1 diabetes (T1D), type 2 diabetes
(T2D), monogenic diabetes (MD) and gestational diabetes (GD). T1D is an autoimmune illness
that is caused by the beta cells of the pancreas’ Langerhans islets being destroyed. These beta cells
secrete insulin, and thus insulin has to be used throughout T1D patient lives. T1D accounts for
around 5–10% of all diabetic cases. Insulin resistance and impaired secretion, as well as increased
hepatic glucose synthesis, are all pathological symptoms of T2D. Approximately 90% of diabetics
have T2D (2). In fact, over 29 million people in the US have T2D. Many risk factors, both genetic
and non-genetic, have been identified that play a role in the process of T2D. For example: obesity,
physical inactivity, advanced age, hypertension, hyperlipidemia, and family history are all risk
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factors. Furthermore, cardiovascular disease, stroke, periodontal
disease, neuropathy, retinopathy, foot ulcers, and amputations
are well studied complications associated with T2D (3).

Monogenic diabetes is caused by a defect in a single gene
and often has a similar clinical presentation to T1D and T2D.
Gestational diabetes was once considered to be an early stage of
T2D (3). Now it is thought that there is increased susceptibility
to T2D enabled by pregnancy-induced insulin resistance which is
characteristic of gestational diabetes. After the patient has given
birth, typically their glucose levels will return to normal.

The significant health consequences of diabetes have led to
an emphasis on early identification, management and treatment
strategies for diabetic patients. In this review, we will summarize
recent findings on the mechanisms of diabetes that have
used genomic, epigenomic, proteomic, and multiomics single-
cell analysis methods (4, 5). Given the huge contribution of
cardiovascular complications to the severity in outcome of
diabetes, we will also discuss recent findings on the relationship
between diabetes and the physiological systems it affects, such as
lymphangiogenesis, angiogenesis, gut microbiota diversity, and
more. With further research being done in these areas, we will be
better equipped to therapeutically intervene in the development
of diabetes and its associated cardiovascular complications.

ADVANCEMENT IN ELUCIDATING THE
MECHANISMS OF DIABETES

Genomics Research
Genomic analysis to detect risks for chronic diseases such as
diabetes is quickly progressing in the clinical setting, thanks
to the use of next-generation sequencing technology including
whole-genome sequencing.

T1D is a multifaceted disorder with genetic and
environmental risk factors. In the last several decades,
numerous studies have been conducted to identify T1D-
susceptibility genes in which more than 40 different genetic loci
associated with T1D have been identified (6, 7). The human
leukocyte antigen (HLA) area on chromosome 6p21, protein
tyrosine phosphatase non-receptor type 22 (PTPN22) on 1p13,
interleukin 2 receptor subunit alpha (IL2RA) on 10p15, the
insulin gene (INS-VNTR) locus on 11p15, as well as the cytotoxic
T-lymphocyte associated protein 4 (CTLA4) locus on 2q33 are
all among the different genetic loci associated with T1D (8).
CTLA4 is an immunoglobulin that plays an important role in
the pathogenesis of autoimmune disorders like T1D (9). The
interleukin-2 receptor complex’s -chain is encoded by the IL2RA
gene, which has eight exons. In regulatory T-cells, the expression
of IL2RA is essential in controlling the immune response and
preventing autoimmune disease (10). Recently, several studies
have been conducted and found the frequency of them in
different populations to be very different (11, 12).

T2D is a complex disease that leads to serious consequences.
Thus, there has been an emphasis on early identification of
individuals at high risk for T2D. Several clinical factors correlated
with T2D risk that can be identified early on include body mass
index (BMI), age, and family history. With the advancement

in genomics, including genomic factors in risk assessment and
management could make risk prediction and treatment of T2D
more precise.

Around 40% of the risk, onset, and progression of diabetes
is due to genetic factors, which varies from person to person
(13). There have been more than 50 loci associated with
T2D risk identified by the Genome Wide Association Studies
(GWAS) since 2007 (14–17). Several genes associated in insulin
production, glucose metabolism, and beta-cell activity have
been identified. One study (18) found the association of 21
genetic variants with T2D and confirmed that individuals with
a high genetic score had an increased risk of T2D. The study
(18) looked at 65 single nucleotide polymorphisms (SNPs),
seven of which were found in four genes which are Gli-
similar 3 (GLIS3), transcription factor-7–like 2 (TCF7L2), leucine
rich repeat containing G protein-coupled receptor 5 (LGR5),
and protein tyrosine phosphatase receptor type D (PTPRD).
These 7 SNPs were strongly associated with T2D. GLIS3 is a
diabetes susceptibility gene that participates in the propagation
of pancreatic beta cells. TCF7L2 was observed to have a
relationship with BMI and has been demonstrated to affect β-cell
responsiveness to insulin.

Furthermore, because oral anti-hyperglycemic drugs are
affected by pharmacogenomic variation in a high number of
T2D patients, research suggests genomics could play a role in
choosing the most successful therapy (19). Several studies have
revealed that genetic variations are involved in drug absorption,
transport, metabolism, and action, and that these variations
may alter drug pharmacokinetics or pharmacodynamics (20,
21). Since the susceptibility loci, identified by GWAS, for T2D
mellitus alter insulin secretion and/or sensitivity, they may
also influence the efficacy of the insulin secretagogue and/or
sensitizer. The potassium voltage-gated channel subfamily Q
member 1 (KCNQ1) gene, for example, has been linked to
repaglinide and rosiglitazone efficacy in East Asians and at the
same time confers the highest risk of T2DMellitus in East Asians
(22, 23).

In overall, existing knowledge of the role of genetic variables
in diabetes supports the notion that diabetes is a complicated
disease that differs from person to person. In addition, important
information on the genetic underpinnings for various therapeutic
responses to pharmacologic therapy is now being discovered.
With increasing knowledge about the importance of genetic
information in the onset, progression and treatment of diabetes,
genome-based strategies can be considered to improve the risk
prediction and customized management of individual patients.
Both of which will contribute to better health outcomes for
diabetic patients.

Epigenetics Research
In the past few years it has been determined that mainly
environmental factors have been considered as predisposing
factors for weight gain or the development of T2D (24). Despite
significant efforts to find genetic susceptibility variations, little
progress has been made, and the common genetic variables
that cause diabetes susceptibility can only account for a small
portion of individual risk variants. In addition, there is evidence
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that the current diabetes epidemic is driven by environmental
factors. Recent studies have shown that in addition to a
good balance between energy intake and energy expenditure,
normal metabolic regulation in adulthood is also affected
by the pre- and post-natal environment. In fact, maternal
calorie restriction during pregnancy can alter the metabolic
phenotype of their children by epigenetic control of certain
genes, which can be passed down to future generations. Thus,
it is important to identify the epigenetic markers of diabetes
and the methylation and/or histone acetylation levels of genes
involved in metabolic processes. Recent studies have pointed
out that endocrine disruptors, which are chemicals that interfere
with many homeostatic mechanisms, play a role in the high
incidence of diabetes. Given the existing data on the effects of
endocrine disruptors such as obesogens, it seems that exposure
to these disruptors may play an important role in the diabetes
pandemic (24).

Epigenetics has been defined as a heritable change in gene
function without changes in the nucleotide sequence, however
this is not a universal definition (25). Epigenetic changes can
be handed down from one cell generation to the next (mitotic
inheritance) as well as between generations of species (meiotic
inheritance). Epigenetics can be affected by the environment,
which makes it a potentially important pathogenic mechanism
for complex multifactorial diseases such as T2D (Figure 1).
DNA methylation, histone modification, and microRNA are
all epigenetic factors that can help explain how cells with the
same DNA differentiate into different cell types with different
phenotypes (26), all of which aid in explaining how cells with
identical DNA differentiate into different cell types with different
phenotypes. DNA methylation and histone modification, in
particular, are important in the pathogenesis of T2D.

DNA methylation necessitates the activity of
methyltransferases, of which there are two types: DNA
methyltransferase 1 (DNMT1), which replicates the DNA
methylation pattern (maintains methylation) between cell
generations during replication, and DNA methyltransferase 3A
(DNMT3a) and DNA methyltransferase 3 beta (DNMT3b),
which are both responsible for DNA de novo methylation
(27). The way in which this DNA methylation occurs is still
poorly understood and needs further research if we are to
understand the mechanisms behind the pathogenesis of T2D.
For recent research on DNA methylation, see Patra et al. (28).
Examples of ways to determine these genetic signals include
using the Chromatin analysis methods, such as ATAC-seq and
DNase-seq, which have been applied to a large number of islets
to generate aggregated spectra that mask important cells and
regulate heterogeneity (29, 30). In addition, GWAS have been
able to identify >400 independent signals that encode genetic
predispositions for T2D (31). Finally, more than 90% of linked
SNPs are found in non-coding regions and contain chromatin-
defined islet enhancer elements, indicating the presence of
significant transcriptional regulatory components for diabetes
disease risk (32).

Histone modification starts with the formation of chromatin.
The nucleosome, which consists of around 147 DNA base
pairs surrounding histone octamers, is the most fundamental

component of chromatin. Histone octamers are composed
of H3-H4 tetramers, with one H2A-H2B dimer on each
side. Although the core histones are densely packed, histone
modifying enzymes can alter their NH2 terminal tails, causing
acetylation, methylation, phosphorylation, SUMO acylation, or
ubiquitination (33). An example of this modification involves
histone modifying enzyme HDAC which has been shown to
remove histone acetyltransferase (HAT) and add acetyl groups
(33–35) to lysine residues in the tail of histones. Although
enhanced HAT activity and histone acetylation have been linked
to increased gene transcription, the exact mechanism that
promotes transcription is unknown (36). On top of this, histone
methyltransferases and histone demethylases have been shown to
mediate HAT activity (37). Taken together, understanding how
histone modification and acetylation are regulated is important
for determining the transcription mechanism’s access to DNA,
as well as DNA replication, recombination, and chromosomal
organization, all of which are crucial in understanding its
relationship to T2D.

Proteomics Research
Integrative profiling of proteins expressed in cells, tissues, and
organs has been done using proteomics. Proteomics research
has provided potential tools for the systematic investigation
of proteins that are differently expressed between healthy
individuals and cancer patients (38), as well as Alzheimer’s
disease (39) and diabetes patients (40). Proteomics has been
widely used in diabetes studies focusing on different stages of
diabetes with diverse sample sources.

A longitudinal study of the human plasma proteome
discovered possible protein indicators in T1D progression,
resulting in a promising list of protein markers that dysregulate
temporally before islet autoimmunity develops. (41). Key
enzymes against oxidative stress, CAT and SOD1, were identified
(41). Eri Takahashi et al. (42) carried out serum proteomics
using a T2D mouse model and identified differentially expressed
proteins in the prediabetic state, among which the level of
serine protease inhibitor (SERPIN)A3 was found to be elevated
significantly. This change was also confirmed to be increased in
T2D patients, indicating SERPINA3 could be used for the early
detection of type 2 diabetes mellitus (42).

Proteomic analysis of human islets from patients with T1D
was also carried out (43). Upon human pancreatic islets being
exposed to palmitate, lipidomics and proteomics were done
which revealed proteins implicated in the action of saturated fatty
acids as well as potential pathways for how chronic saturated free
fatty acids disrupt beta-cells and lead to the development of T2D
mellitus (44).

Adipose tissue is an endocrine organ secreting multiple
bioactive factors such as leptin, tumor necrosis factor-α and
interleukin-6, all of which influence insulin resistance and
β-cell dysfunction (45). White adipose tissue (WAT) and
brown adipose tissue (BAT) are two types of adipose tissue
that are linked to the development of metabolic diseases.
As a result of these studies, differentially expressed proteins
involved in cytoskeleton function and structure, oxidative stress,
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FIGURE 1 | Diabetes research has entered a new era of single-cell biology. (A) Single-cell analysis has entered the multiomics age. By using multiomics single-cell

analysis, such as ATAC-seq, ChIP-seq, scRNA-seq, RNA-seq and proteomics analysis, the transcriptome factors or regulators of blood vessels and lymphatic vessels

can be accurately identified. (B) Lifestyles, such as smoking, sedentary lifestyle, alcohol, and obesity can significantly affect the vascular diseases, such as

atherosclerosis, diabetes, even including different cancers.

inflammation, and retinoid metabolism have been identified in
TD-related adipose tissues (46–48).

Proteomic analysis of protein expression in diabetic
patient samples provides detailed qualitative and quantitative
information on the proteins implicated in the course of diabetes.
This could potentially yield pathomechanistic insights and lead
to the development of new therapeutic targets for diabetes
intervention. The importance of such promising potential
markers warrants greater investigation and research.

Single-Cell Multiomic Analysis
Characterizing the transcriptome profile of a single cell through
single-cell RNA sequencing (scRNA-Seq) has become a universal
tool for identifying known and new cell types, as well as
understanding tissue structure and function, ushering in a new
era of single-cell biology (4, 5, 49) (Figure 1). This has been
shown to be especially true in complex organs and tissues with a
high degree of cellular heterogeneity, such as mammalian brains
and tumors (50, 51).

In the past few years, using scRNA-Seq to analyze pancreas
cells at the individual level has made great strides. Among them,
exciting discoveries have been made in the immunology of T1D
and T2D. For example, scRNA-Seq analysis has shown that
increased expression of the anion transporter SLC26A9 delayed
the onset of cystic fibrosis diabetes, a unique type of diabetes that
has similar characteristics to T1D and T2D (52).

ScRNA-seq has also been shown to be useful in the cellular
characteristics of human in vitro β cell differentiation, providing
a perspective for the use of human stem cell differentiation
as a useful therapeutic that could guide future efforts to focus
on islet cell differentiation and regeneration in diabetic models
(53). The single-cell transcriptome analysis of the human ductal
tree indicates that progenitors might be activated in situ for
therapeutic purposes (54). Other successful examples include a
study done by Baron and Muraro et al. who used scRNA-Seq
to deconvolute a large number of human and mouse pancreas
gene expression samples to detect disease-related differential
expression. The data set provided resources for discovering
new cell type-specific transcription factors, signal receptors, and
medical-related genes in human and mouse pancreases (55, 56).
Another research team conducted single-cell transcriptomics
analysis of the human endocrine pancreas and also demonstrated
the powerful functions of single-cell RNA-seq (57).

T2D is a complex disease characterized by pancreatic
islet dysfunction, insulin resistance, and blood sugar level
disturbances (Figure 2). Pancreatic islets are a mixture of cell
types expressing different hormonal programs, so each cell type
may contribute differently to the underlying regulatory processes
that regulate T2D-related transcription circuits. There are many
ways to use genetic signals of T2D to identify the type of
activity undergone by islet cells and to provide higher-resolution
mechanical insights into genetically encoded risk pathways for
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T2D. Single-cell genomics has exploded in popularity during the
last decade. The most prevalent technique is single-cell RNA
sequencing (RNA-seq), which assesses gene expression. Other
approaches examine methylation, genetic variation, protein
abundance, and chromatin accessibility, among other things.
To date, single-cell analysis has entered the multiomics age
(4, 5). Some research has combined these methodologies—and
the associated layers of data—with “multiomics” investigations.
In a technique called scNMT-seq, Argelaguet integrated gene
expression profiling, methylation, and chromatin accessibility.
Another technique called CITE-seq profiles both transcription
and protein abundance. An additional technique known as
G&T-seq captures both genomic DNA and RNA (5, 58, 59).
A recent multiomics single-cell analysis identifies new cell
types and processes that may contribute to the pathogenesis
of T1D immunity as well as provide new cellular and
molecular insights into human pancreatic function (bioRxiv,
2021, doi: 10.1101/2021.01.28.42859). In addition, due to the
rapidly growing suite of software tools, there will be more and
more applications of multiomics single-cell analysis in diabetes
research (Figure 1).

While genomic analysis on diabetic risk prediction and
pharmacological responses in the clinic suggests the importance
for the development of individual/personal-based diabetic
medicine, epigenetics research has generated new knowledge
about one of the most important environmental risk factors
for diabetes. Advances in proteomics research and single-cell
multiomic analysis have been providing unpreceded insights
into specific cell-type and molecular networks involved in the
pathogenesis of diabetes. In overall, mechanistic findings in these
areas will help to better understand the mechanisms of diabetes,
which would lead to identifying new therapeutic targets in the
pathophysiological systems that cause diabetic complications.

DIABETES AND CARDIOVASCULAR
SYSTEMS AND BEYOND

Angiogenesis and Diabetes
Angiogenesis is a well-studied process that entails the formation
of new blood vessels from existing blood vessels and is involved
in a large number of physiological and pathological conditions.
During embryonic development, wound healing, menstruation,
and angiogenesis must occur to provide adequate blood flow and
oxygenation to growing tissues (60). Vascular disease associated
with aberrant angiogenesis is a feature of some long-term
diabetic consequences. Diabetic retinopathy and nephropathy are
both linked to excessive angiogenesis. Inhibition of angiogenesis
can lead to impaired wound healing, impaired development
of coronary collateral vessels, embryonic vascular disease in
pregnancy with maternal diabetes, and transplant rejection in
diabetic recipients (60).

The majority of the vasculature in a healthy adult is
dormant, with only 0.01 percent of endothelial cells undergoing
division. Excessive or insufficient vascular growth as in the
case of pathological angiogenesis contributes to numerous non-
neoplastic disorders. In some diseases, vessels do not grow,

but rather abnormally remodel (61). Angiogenesis has been
recognized as a hallmark of cancer and various metabolic and
inflammatory diseases, such as obesity, T2D, atherosclerosis and
NAFLD (61). Both physiological and pathological angiogenic
variants are controlled by carefully orchestrated, temporally
and spatially controlled signals from surrounding tissues, and
it is the sum of these signals that causes the sequential
release of angiogenic stimulators (e.g., VEGF, bFGF, PDGF) and
inhibitors (e.g., endostatin, angiostatin, thrombospondin). In
the past decade, research in molecular mechanisms underlining
pathological angiogenesis (blood vessel growth) has grown at an
explosive rate, and has led to the approval of anti-angiogenic
drugs for the treatment of cancer and eye diseases (62).

Endothelial progenitor cells (EPCs) are a subtype of
progenitor cells, which are first isolated in the circulation
(63), and have the capacity to differentiate into mature ECs
in vitro and in vivo (64). Dysfunctional EPCs with impaired
vascular repairing capacity have been reported in diabetes (65).
In a small clinical study of cardiovascular disease patients
with or without diabetes, an increase in EPC numbers was
promoted by statin administration, which was associated with
HDL changes (66). Although large clinical trials are needed
to validate EPCs as independent indicators of cardiovascular
risk (67), several recent pre-clinical studies support its role
in restoring angiogenesis in diabetes. For example, EC-specific
overexpression of metallothionein (MT), an antioxidant protein,
prevented impairment of angiogenesis in a hind limb Ischemia
model of mice fed a high-fat diet (HFD) or treated with
streptozotocin (STZ) (68). The protection was likely due to
the preserved function of EPC, attributable to a reduction in
oxidative stress and an enhanced expression of hypoxia-inducible
factor 1a (HIF-1a), stromal cell–derived factor (SDF-1), and
VEGF in ischemic tissues (68). Endothelial-colony-forming cells
(ECFCs) are isolated as a novel type of progenitor cells (69). Like
EPCs, ECFCs have the potential capacity to promote angiogenesis
in vitro and in vivo which could be impaired by diabetes
with similar mechanisms (70). ECFCs, which are of endothelial
origin, are believed to be a better cell therapy tool for vascular
regeneration in ischaemic models (70) because ECFCs express
CD31+, CD34+, CD146+, VEGFR2+, and von Willebrands
factor (69). On the other hand, EPCs are of myeloid origin and
express CD31+, CD34+, CD45+, VEGFR2+, and Tie-2+, with a
low proliferative capacity. Further investigation, however, needs
to be done to prove the applicability of ECFCs in pre-clinical and
clinical settings (70).

Although diabetes can cause a variety of pathologies,
vascular complications account for most of the morbidity
and mortality of diabetes (71). Furthermore cardiovascular
disease causes 75% of the deaths of diabetic patients (71).
Diabetes can cause macrovascular and microvascular problems
characterized by endothelial dysfunction, which can have
serious consequences for wound healing (72, 73). Inhibition
of the vascular endothelial growth factor (VEGF-VEGFR2)
signal axis is related to endothelial dysfunction typical of
diabetes (74, 75). Under high glucose exposure, VEGFR2 ligand
and intrinsic kinase-independent phosphorylation occurs in
the Golgi apparatus of endothelial cells, thereby impairing
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FIGURE 2 | Diabetic compilations are caused by insulin resistance leading to persistently elevated glucose levels or hyperglycemia. Different factors that may cause or

exacerbate blood glucose levels are highlighted under “Lifestyle.” High levels of blood glucose in diabetic vessels can cause different diabetic complications such as

Diabetic Foot Ulcer, Diabetic Nephropathy, Cardiovascular Disorders, Diabetic Retinopathy, Peripheral artery disease and Stroke.

transport of receptors to the cell surface. The result is
that VEGFR2 on the plasma membrane of endothelial cells
gradually decreases, thereby weakening the angiogenic response
of diabetes.

There is evidence that beta cells are an important ally of islet
endothelial cells (EC). In addition, ECs seem to directly affect
the expression and secretion of insulin genes and the survival
of β cells. Pancreatic islet EC is an important partner for β

cell function (76). This dynamic relationship is very important
in the context of type 1 and type 2 diabetes and has been
shown to establish the potential of EC or its progenitor cells to
enhance the reconstitution of blood glucose control after islet
transplantation in animal models (76, 77). Dysfunctional islet
endothelium may lead to the progression of type 1 diabetes,
the deterioration of type 2 diabetes, and the failure of islet
transplantation (76). Treatments that prevent the breakdown
of the complex β-cell/EC axis in pancreatic islets or restore
this crosstalk may improve the prognosis of diabetic patients in
the future.

In order to assess pathological or diabetic angiogenesis,
there are many in vivo, ex vivo, and in vitro bioassays that
are available for proper evaluation of angiogenesis (78). In
vitro bioassays are used to detect EC cells proliferation, tube
formation and migration, and in vivo bioassays, such as the
corneal micropocket assay, matrigel plug assay, tail edema,
and dermal punch biopsy wound healing assays are all used to
evaluate angiogenesis and lymphangiogensis (78). Abnormal
angiogenesis contributes to vascular disorders in diabetes.
Provided the distinct role of angiogenesis in macrovascular
and microvascular complications of diabetes, future studies
should identify tissue-specific regulators of angiogenesis
and their underlying mechanisms by using conventional
approaches coupled with single-cell multiomic analysis and
other integrative methodologies.

Lymphangiogenesis and Diabetes
Lymphatic vessels and blood vessels create an intricate
system that aids in the management of tissue pressure
and the production of edema. Lymphatic endothelial cells
and lymphangiogenesis play critical roles of homeostasis,
metabolism and immunity in both physiological and pathological
angiogenesis. Except for the reproductive organs during ovarian
cycles and pregnancy, the majority of lymphatic vessels in
adult tissues are dormant (79). A variety of pathological
conditions such as inflammation and tumor formation promote
lymphangiogenesis and lymphatic vessel remodeling in the adult
(80). In addition, lymphangiogenesis is enhanced post organ
transplantation for inducing immune system reactivation in
the draining lymph node, resulting in organ rejection (81). In
general, a consequence of chronic complicated disorders, such as
diabetes, is poor lymphangiogenesis (82) (Figure 1).

Recently, studies have suggested the therapeutic roles of
lymphangiogenesis in various pathological conditions. For
example, excess lymphangiogenesis favors metastasis and
inflammation, however insufficient lymphangiogenesis can
cause lymphedema (82, 83). The reasons and effects of adult
lymphangiogenesis is still up for debate for whether it is beneficial
or detrimental. Enhancing lymphangiogenesis protects against
diabetes and other metabolic diseases (82). Obesity and diabetes
have been linked to a lack of lymphatic architecture and impaired
lymphatic function (84–89). Diet-induced obesity impairs
lymphangiogenesis as indicated by decreased LYVE1 positive
lymphatic vessel density (87), and corroborating impaired
lymphangiogenesis in diabetic mice (82, 90). Transcription
factor prospero homebox 1 (Prox1) is one of the key regulators
of lymphangiogensis (46). Disturbed lymphangiogenesis in
Prox1+/− mice induced obesity, coupled with decreased lymph
flow in adult mouse models (91, 92). Obesity is considered
to make up 80–85% of the risk of developing T2D. Recent
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studies have shown that obese people are 80 times more likely
to develop T2D than people with a BMI below 22 (https://www.
diabetes.co.uk/diabetes-and-obesity.html). Enhancing VEGFR3
expression and VEGFR3 signaling by depleting epsins modulates
VEGFR2/3 in endothelial cells promotes lymphangiogenesis
and augments lymph flow in type 2 diabetic mice (82, 93)
(Figure 1). LEC specific epsin depletion increased VEGFR3
expression and reduced VEGFR3 endocytosis and degradation
resulting in enhanced wound-healing and surgery-induced
lymphedema resolutions in diabetic mice (82). Since the animal
model was in stage III of diabetic progression via STZ injection
combined with HFD, the promoting lymphangiogenesis in
the diabetic mouse did not increase insulin sensitivity. This
might be due to damaged pancreatic β-cells having no response
to any excess glucose which would usually decrease insulin
responsiveness. In HFD-induced obese mice, overexpressing
VEGF-D increases lymphatic density in adipose tissue, which
lowers local immune cell buildup and improves systemic
metabolic response by reducing insulin resistance and enhancing
insulin sensitivity (94). There are little lymphatic vessels in mice
white adipose tissue and promoting de novo lymphangiogenesis
in adipose tissue enhanced insulin sensitivity in HFD mice
treated for 16 weeks. Even if the body weight was similar
between adipose tissue-VEGF-D-overexpressed mice and
littermate controls, enhanced lymphangiogenesis in adipose
tissue increased insulin sensitivity and reduced insulin resistance
compared to the controls. Lymphatic vessels play a role in
glycerol clearance and removal of infiltrated immune cells
which improves metabolism in obese mice (94). Different fat
pads develop and mature at different rates (95). For example,
epididymal adipose tissue exhibits very little lipid component
until P4 while other fat pads (e.g., subcutaneous, retroperitoneal
adipose tissue) display high lipid component on postnatal day
1 (95). VEGFR3 and Prox1 show a significant percentage of
distribution in the epididymal adipose tissue until postnatal
day 5, indicating lymphangiogenesis may play an inhibitory
role in lipid deposition in adipose tissues. Notably, angiogenesis
contributes to adipose tissue development (95) while lymphatics
might play an inhibitory role in lipid deposition in the adipose
tissue. While VEGF-D also promotes angiogenesis via VEGFR2
(96), there is no significant increase in angiogenesis by VEGF-D
overexpression in adipose tissues (94, 97). Hence, there is a
protective effect via adipose tissue-VEGF-D-overexpression due
to enhanced lymphangiogenesis.

Although human adipose tissue shows noticeable
expression of lymphatic vessels (98), very little lymphatics
are expressed in murine adipose tissues controversially
(95, 97). What are the specific roles of lymphatics in
adipose tissues? Which regions of adipose tissues express
lymphatics? To further substantiate these findings and
questions, future studies utilizing genetically modified mouse
models should be used to identify the spatiotemporal and
distinct roles of lymphatics in various adipose tissues. In
addition, the role of lymphangiogenesis in other metabolic
tissues, including liver and skeletal muscle, warrant
further investigation.

Tumorigenesis and Diabetes
Tumor angiogenesis is distinct from other kinds of angiogenesis
in terms of timing (99). Angiogenesis is unusually prolonged in
some non-malignant processes, however it is still self-limited,
such as in pyogenic granuloma or keloid development. Diabetes
has been linked to an increased risk of cancer, according to
extensive studies (100–102) and increased mortality of cancer
patients (103). Previous research on the link between diabetes
and cancer has found that diabetics are more prone to develop
malignancies of the liver, pancreas, endometrial, colon, rectum,
breast, and bladder (104) (Figure 1).

The mechanism of such an increased risk in these patients
remains unclear whether: (i) the association is mainly due to
shared risk factors such as obesity (105); (ii) diabetes itself
alters cancer risk which may be related to insulin resistance
(106), hyperinsulinemia (107–109), proinflammatory status and
increased oxidative stress (1–35) (110); (iii) the risk of cancer is
modified with medications administered to combat diabetes; or
(iv) a combination of all these assumptions.

More observational studies have been accumulating with
regard to the effects of diabetes treatment in cancer incidence.
Insulin growth factor (IGF) is an important hormone for normal
and transformed cell growth, development, differentiation and
survival, which may play an important role in mammary
tumorigenesis and diabetes (111). Several studies have found
that anti-hyperglycemic drugs for diabetes treatment may be
associated with either an increased or reduced risk of cancer
(112, 113). Meta-analysis of observational studies found that
while treatments with metformin decrease insulin resistance, it
may also reduce the risk of colorectal and hepatocellular cancer in
diabetic patients (114, 115), but sulfonylureas and insulin, which
may cause hyperinsulinemia, did not show a significant influence.
In pancreatic cancer, metformin, thiazolidinediones and insulin
use had no significant effect while sulfonylurea use was associated
with a 70% increase in the odds of having pancreatic cancer (116).
Remaining concerns were expressed for a potential link between
pioglitazone (117) and a novel class of oral glucose-lowing drug
Sodium-glucose cotransporter 2 (SGLT2) inhibitors (118) with
bladder cancer. Besides glucose-lowing drugs, a retrospective
study of 92,366 women with newly diagnosed T2D observed
a decrease in risk of endometrioid cancer in diabetic patients
treated with statins (119). Long-term prospective trials and
post-marketing surveillance studies are, however, required in
the future.

In addition to increased incidence of cancer, diabetes also
has deleterious effects on cancer prognosis. Diabetes was found
to be strongly related with an increased risk of death from
overall cancer in a study (120) in more than 771,297 Asians with
pathologies of the endometrium, liver, thyroid, kidney, breast,
ovary, pancreas, and prostate [hazard ratio 1.26 (CI 1.21–1.31)].
Extensive studies have provided themechanism in which diabetes
influences a poor cancer prognosis, including strengthening
metastatic potential of cancer, favoring cancer growth (121).
Also, impaired immune function in diabetes possibly results in
a more aggressive cancer course. At the same time, researchers
are trying to use probiotics, especially microbial short-chain fatty
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acids (SCFAs) to fight against inflammation and protect from
tumorigenesis in people with diabetes (122).

Preexisting diabetes is linked to an increased risk of morbidity
and mortality in cancer patients, according to all of these studies.
There are also studies that investigated the impact of cancer on
long term outcomes of diabetes (123). Researchers followed three
cohorts of diabetes patients subsequently diagnosed with breast,
colorectal or prostate cancer for 10 years, and they found that in
the UK, incidence of cancer appears to have little adverse impact
on diabetes-related mortality (123).

These findings are clinically meaningful which point to the
importance of appropriate cancer screening among diabetic
patients and management of diabetic patients with cancer.

Gut Microbiota Homeostasis and Diabetes
All organisms that live in the gastrointestinal (GI) tract are
referred to as gut microbiota. The human body is home to
trillions of microorganisms (124), all of which serve a crucial part
in normal intestinal function and the host’s overall health. Some
studies linked gut microbiota with diabetes (Figure 1).

The gut microbiota is mostly formed of four phyla:
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria.
Each individual has a unique microbiota composition (125).
Diet, disease status, drugs, and host genetics will all have an
impact on the composition. Among them, diet is the main
contributor to the diversity of microbiota. It has been suggested
that diet accounts for 57% of the variations while host genetics
only account for 13% (126). Diet has been shown to affect the
content and function of the gut microbiome in both animal and
human studies. One study (127) switched mice from low-fat,
plant polysaccharide–rich diet to a high fat and sugar diet, which
altered the composition of the microbiota within a single day.
Mice fed a high-fat, high-sugar diet showed a higher number
of Erysipelotrichi class bacteria in the Firmicutes phylum and a
lower number of Bacteroides spp. (127). Bacteroides spp., E. coli,
and other bacteria were found in reduced numbers in mice on a
vegetarian diet (127).

It’s becoming clear that gut microbiota has a role in a variety
of disorders, including type 1 and type 2 diabetes. T1D is an
autoimmune illness caused by the immune system’s destruction
of pancreatic β-cells. It is mainly caused by a genetic defect as well
as epigenetic and environmental factors. Increased rates of T1D
incidence in recent years have been attributed to genetic factors
as well as changes in lifestyle, such as nutrition, hygiene, and
antibiotic use, all of which can have a direct impact onmicrobiota
(128). Several studies have found changes in gut microbiota
composition between people with T1D and healthy people.
Compared with age matched healthy controls, gut microbiota
in children with high genetic risk for T1D showed less diverse
and less dynamic microbiota (129). These findings underscore
the importance of learning more about the function bacteria may
have in the development of T1D (128–131).

Obesity and T2D are also linked to dysbiosis of the gut
microbiota, according to extensive research conducted in animal
models and humans. Studies in germ-free mice revealed changes
in the gut microbiome makeup that could have a role in
disease development, including obesity and diabetes (132–134).

AKKermansia muciniphila, a mucin-degrading bacteria found
in the mucus layer, was isolated in one study. In rodents and
humans, it has an inverse relationship with body weight. This
study found that the abundance ofAKKermansiamuciniphilawas
reduced in obese and type 2 diabetic mice, and that prebiotic
feeding restored AKKermansia muciniphila abundance, which
was linked to improvements in metabolic diseases such as
fat mass gain, adipose tissue and insulin resistance. Butyrate-
producing Roseburia intestinalis and Faecalibacterium prausnitzii
concentrations were found to be lower in T2D patients, but
Lactobacillus gasseri and Streptococcus mutans, Proteobacteria,
and some Clostridiales were found to be greater among 345
Chinese individuals (135). T2D is also linked to increased
bacterial expression of oxidative stress-related genes, resulting in
a proinflammatory signature in the gut microbiome (135). All
of these studies point to a link between the gut microbiome’s
makeup and T2D.

For the mechanisms of how gut bacteria affect T2D, most
studies focused on the involvement of microbiota in obesity
and their role in insulin signaling and low grade inflammation.
High-calorie diets contribute to obesity and T2D has been
demonstrated by numerous studies (136, 137) and increasing
evidence suggests that the link between diet and obesity lies
in the gut microbiota (125, 138, 139). One study in mice
found that the abundance of A. muciniphila decreased in obese
and T2D mice. Prebiotic feeding of A. muciniphila improved
metabolic profiles, and reduced fat mass and insulin resistance
induced by high fat diet (140). Qin et al. (135) showed T2D
patients had a moderate degree of gut microbial dysbiosis, a
decrease in universal butyrate-producing bacteria, which play
a role in regulating important T2D pathways including insulin
signaling, inflammation and glucosehomeostasis (135, 141, 142).
On the other hand, gut microbiota has been shown to affect the
production of key insulin signaling molecules such as GLP-1 and
PYY through SCFA and its binding to FFAR2 (143). Interestingly,
recent studies reported that administration of metformin, the
routinely used drug to control hyperglycemia in T2D, alters the
composition of the microbiota (144–146).

Numerous studies have suggested that gut microbiota may
have a role in the development of diabetes, as well as the
importance of gut microbiota in metabolic illnesses that affect
key pathways such as energy balance and inflammation. As
a result, a better understanding of the relationships between
gut microbiota may provide novel therapeutic interventions of
diabetes the future.

CARDIOVASCULAR AND OTHER
COMPLICATIONS IN DIABETES

Diabetic Retinopathy
Studies divide diabetic retinopathy (DR) into two progressive
stages: non-proliferative retinopathy (NPDR) and proliferative
diabetic retinopathy (PDR) (147). Non-proliferative retinopathy
is characterized by high glucose which induces dysfunction and
structural damage to the retina blood vessels, causing them to
leak and dilate (148). At the NPDR stage, vision isn’t significantly
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altered and the condition is asymptomatic (149). PDR on the
other hand can result in aberrant, fragile retinal neovessel
formation and blindness (150, 151). The vision loss can occur
from proliferation of new immature retinal vessels as well as
increased leakage and permeability of retinal blood vessels (151).
Pericyte loss, which is a hall mark early risk factor for DR,
results in local outpouching of capillary walls which is used as
a diagnostic for DR (152). Capillary obstruction and ischemia
result from a significant loss of pericytes. When pericytes are lost,
hypoxia-inducible factor 1 is activated, which causes VEGF to
be upregulated (153–155) (Figures 2, 3). Therapeutic drugs such
as Pegaptanib, Bevacizumab, Ranibizumab and Aflibercept have
been implanted to target VEGF to inhibit its expression since this
factor has been found to be highly upregulated in patients with
retinopathy (156, 157). These anti-VEGF therapies significantly
reduce retinal inflammation, growth of neovessels, and when
combined with Ang-2 produces an enhanced effect in reducing
retinal inflammation, retinal apoptosis and neovascular leakage
(157, 158).

Studies also report that hyperglycemia is a known treatable
risk factor for DR. It has been studied that cellular elements
in microvasculature are particularly sensitive to damage from
hyperglycemia (159). Hyperglycemia is also responsible for
apoptosis of pericytes as well as retinal inflammation (160).
More importantly however, hyperglycemia plays a broader role
in various metabolic pathways, such as upregulated VEGF,
increased polyol and PKC pathway activity, chronic oxidative
damage, increased activation of renin angiotensin, chronic
inflammation and abnormal clumping of leukocytes, which are
all involved in the progression of diabetic retinopathy (161–164).

Diabetic Nephropathy
The thickening of the glomerular basement membrane is a
common early change in both type 1 and type 2 diabetic
nephropathy, according to studies (165). A related consequence
is the expansion of cellular and matrix components in the
mesangium which ultimately restricts and distorts glomerular
capillaries which diminishes the capillary filtration surface (165).
In combination with mesangial expansion, other mechanisms
that inhibit glomerular filtration rate include the excess secretion
of Semaphorin3a (sema3a) from podocytes (166). Excess sema3a
exacerbates other diabetic nephropathy (DN) risk factors such
as the development of kimmelstiel-wilson lesions and podocyte
effacement and injury (166, 167). Thus, many studies have
focused on developing therapeutics to inhibit signaling pathways
that promote sema3a such as the JNK and Rac1/NF-κB p65
signaling pathways (167, 168). Oher well known risk factors
that are critical to the pathogenesis of DN include deposition
of extracellular matrix proteins (ECM), which include collagen,
laminin and fibronectin, in the mesangial and the glomerular
basement membrane.

Studies have also focused on the ambiguous role of circular
RNAs in signaling pathways that result in the promotion of
ECMs such as circRNA_010383, circRNA_15698, and circRNA
CDR1as/ciRS-7 (169–171). In addition, signaling pathways such
as Notch, Wnt, mToR, epac-rpa-1 may all play critical roles in
the accumulation of ECMs as well as renal fibrosis (172). Further

research should be done on how these signaling pathways are
related to ECM accumulation. However, some of those signaling
pathways have been shown to have independent roles in DN
development and podocyte apoptosis.

For example, in addition to various downstream transcription
factors that are thought to regulate the Notch signaling pathway,
a recent study has found an additional regulating mechanism
via cross talk between miRNAs and the Notch pathway (173).
Under high-glucose condition models, overexpression of miR-
145-5p inhibited high glucose-induced podocyte cell apoptosis
and it was found that the direct target of miR-145-5p was Notch1
(173). Thus, inactivation of the Notch signaling pathway by
overexpressing miR-145-5p could attenuate podocyte death in
DN. It has also been established that the Wnt pathway plays
an independent role in the progression of DN (174). In a study
focusing on panax notoginseng (PN), it was concluded that PN
plays a role in inhibiting wnt1 in the Wnt/β-catenin signaling
pathway which causes a downstream effect of reducing epithelial-
mesenchymal transition (EMT), which contributes to podocyte
dysfunction, as well as restoring normal protein expression of
nephrin (174).

In addition to the critical role of inhibiting Notch and Wnt,
inhibition of the mTOR pathway has been studied as a target
to ameliorate DN. A recent study found that sperm-associated
antigen 5 (SPAG5) plays a role in activating the AKT/mTOR
signaling pathway by forming a positive feedback loop with
SPAG5-AS1, miR-769-5p and transcriptional repressor YY1
(175). Furthermore, it was concluded that regulating expression
of SPAG5 could regulate podocyte injury under high glucose
conditions since SPAG5 directly regulates the AKT/mTOR
pathway (175). Another study demonstrated that transplantation
of adipose-derived stem cells (ADSC) derived from exosome
(ADSC-exo), attenuated podocyte damage in DN (176). The
mechanism being that ADSCs-exo mediates the transport of
miR-486 to podocytes by regulating activation of the mTOR
pathway, leading to decreased podocyte injury (176).

Other critical pathways that lead to podocyte injury and
dysfunction involve KDM6A and KLF10 which present a positive
feedback loop in podocytes causing podocyte dysfunction under
diabetic conditions (177). This pathway is so critical that mouse
models were protected against diabetic induced treatment once
this pathway was inactivated (177). Other pathologies that lead
to podocyte dysfunction include nephrin down-regulation (178).
Involved in nephrin downregulation is PACSIN2 which has been
found to be highly expressed in podocytes of diabetic animal
models (178). Though the relationship between PACSIN2 and
nephrin is till speculative, studies have shown that nephrin
relies on a complex of PACSIN2 and rabenosyn-5 for nephrin
endocytosis and recycling (178, 179). Thus, overexpression of
PACSIN2 combined with rabenosyn-5 could increase nephrin
endocytosis resulting in a breakdown of podocyte effacement,
ultimately leading to podocyte dysfunction and death.

Cell senescence could be another mechanism in which
DN occurs according to some studies. Conversely, the disease
conditions presented by DN also most likely accelerate the
progression of the disease (180). Cell senescence has been found
to cause a loss of self-repair in cells as well as their regenerative
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FIGURE 3 | The mechanisms in which diabetes can increase the severity of Peripheral Artery Disease (PAD) via increasing the severity of hypoxia which results in

narrowing of arteries. Due to the inhibition of HIF-1 in diabetes, an impaired response to hypoxia can lead to diabetes and diabetic complications. (A) Under

non-diabetic conditions, HIF-1 signaling responds to reduced oxygen levels, resulting in a steady state of hypoxia. (B) In the case of diabetes, although the tissue is

more hypoxic, HIF-1 signal transduction is inhibited, resulting in impaired adaptive response to hypoxia, leading to the development of diabetes and its complications

(155). (C) The consequences of increased PAD severity and hypoxia severity are highlighted in the boxes and describe the consequences respective to the degree of

PAD severity.

ability (180). This would be particularly pathological to renal
cells leading to accelerated aging of the kidney. Hyperglycemia in
diabetic patients is related to the production of reactive oxygen
species (ROS) that cause oxidative stress resulting in activation
of pathways which cause renal damage and onset cell senescence
(181). Similarly, studies have found that overproduction of
mitochondiral reactive oxygen species (mtROS) in DN due to
excessive metabolic demand could also be mechanism that could
lead to damaged renal cells (182).

Diabetic nephropathy is a progressive kidney disease affecting
kidney glomeruli, arterioles, tubules and the interstitium.
Dapagliflozin and Prevention of Adverse outcomes in Chronic
Kidney Disease (DAPA-CKD), a randomized controlled trial
(183, 184), demonstrated beneficial kidney and cardiovascular
outcomes with dapagliflozin vs. placebo in participants with
Chronic Kidney Disease (CKD) with and without diabetes
(185). More prespecified analyses from this landmark trial have

confirmed dapagliflozin’s cardio-renal protective effects, in favor
of combined therapy (186). In light of the mechanistic findings
presented in this review, future studies should test integrative
approaches to identify dual or multiple targets to deal with this
complex disease.

Diabetic Cardiomyopathy
There is a significant relationship between the prevalence of
heart failure and diabetes. In the absence of other traditional
cardiac risk factors such as coronary artery disease, hypertension,
and valvular heart disease, diabetes alone can cause heart
failure, namely diabetic cardiomyopathy (DCM), presenting
pathological changes in cardiac structure, metabolism, and
function (187). In fact, diabetes is prevalent in anywhere between
10 and 40% of heart failure subjects due to cardiomyopathy (188).
The major manifestations include cardiac stiffness, myocardial
fibrosis, and hypertrophy, eventually progressing to clinical heart
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failure (189). Due to its’ significant impacts on human health, the
mechanisms behind the pathogenesis of DCM have been a hot
topic of research.

The pathological factors of diabetes relevant to the
pathogenesis of cardiomyopathy include hyperlipidemia,
hyperglycemia and systemic insulin resistance (190).
Hyperlipidemia and hyperglycemia were discussed in a
recent study in their relationship to inhibiting expression of
transcription factor Sp1 which was shown to be involved in
downregulating mitochondrial calcium uptake 1 (MICUI1)
(191). More specifically, restoring normal function of
mitochondrial calcium uptake 1 (MICU1), which was
confirmed to be downregulated in the hearts of diabetic
mice via hyperlipidemia and hyperglycemia, was important
for inhibiting the progression of cardiomyopathy (191). Thus,
confirming with previous studies, it was concluded that
reduced mitochondrial Ca2+ uptake via downregulated MICU1
caused dysfunction in diabetic hearts (191). Hyperglycemia
and hyperlipidemia also play crucial pathological roles in
cardiomyopathy via hyperglycemia-induced oxidative stress
and fibrosis development due to increased ROS generation
(192). Sirtuin 1 (SIRT1) is a deacetylase that has been previously
shown to have a protective effect against cardiovascular disease
in the context of resisting sustained oxidative stress (193).
Thus, it would be very therapeutically beneficial to target SIRT1
as a means of reducing or preventing cardiomyopathy. This
rational was implemented in this study focusing on the role
of Tetrahydrocannabinol (THC) in mitigating oxidative stress
caused by hyperglycemia by activating SIRT1 (192). The study
confirmed with past research that SIRT1 is inhibited due to high
glucose levels in the mouse hearts of diabetic cardiomyopathy
models. The study also confirmed that superoxide Dismutase
2 (SOD2) is a product of SIRT1 activation and plays the
main role in regulating ROS homeostasis when deacetylated.
Interestingly, SIRT1 was dramatically upregulated when
THC was administered and any pathological downstream
transformations, such as reduction of deacetylation SOD2,
were shown to be reversed (192). This is a novel therapeutic
finding that hasn’t been demonstrated before. It is also worth
noting that activation of SIRT3 combined with administration of
melatonin had a similar protective effect in reducing oxidative
stress brought on by hyperglycemia (194). However, SIRT4 did
not have these same protective effects and in fact was found to
promote cardiac dysfunction by increasing ROS levels (195).

Although hyperglycemia, systemic insulin resistance, and
hyperinsulinemia are regarded as the key etiological factors
of DCM (187), multiple mechanisms may act at systemic,
myocardial, and cellular/molecular levels, including metabolic
abnormalities (e.g., lipotoxicity and glucotoxicity), mitochondrial
damage and dysfunction, oxidative stress, abnormal calcium
signaling, inflammation and epigenetic factors. For example,
recent studies demonstrated in diabetic animal models that
decreased cardiomyocyte function is a potential mechanism
leading to DCM, which could result from decreased AMPK
signaling, or increased AMP-activated protein kinase (MPK)
signaling and increased protein kinase C (PKC) and mitogen-
activated protein kinase (MAPK) signaling. Upregulation of

double-stranded RNA-activated protein kinase (PKR) pathway
also caused glucolipotoxicity in DCM (196). A new study
using multi-omics technology in a HFD-STZ model showed
that the formation of short-chain acylcarnitine species in
T2D mouse hearts activated networks to redistribute excess
acetyl-CoA toward ketogenesis and incomplete β-oxidation,
resulting in loss of metabolic flexibility and the capacity of
the heart to respond to subsequent cardiovascular events
(197). Clearly, these disturbances would predispose the heart
to extracellular remodeling and hypertrophy, both eventually
leading to heart failure (187). Along with the deleterious
hyperglycemic and hyperlipidemic effects on DCM, immerging
research has analyzed the impact of HFD-induced diabetes
on cardiac dysfunction in the context of lipotoxicity (198).
The transcription factor studied was PPAR-γ, which has been
demonstrated to regulate the expression of genes related to lipid
metabolism (198). Consistent with previous studies, PPAR-γ was
found to be highly expressed in diabetic heart models, however
this study first demonstrated that PPAR-γ was directly associated
with upregulation of ketogenic enzymes HMGCS2, PDK4 and
BDH1 all of which are involved in controlling lipotoxicity and
subsequent cardiac dysfunction (198–200). Therefore, ablation of
PPAR-γ in diabetic-heart mouse models lead to improvements in
cardiac contraction and prevention of fibrosis development both
of which are suggestive of better cardiac function (198).

Some research has been done on the expression of non-coding
RNAs (LncRNAs) and their involvement in the pathogenesis
of DCM. To highlight a single study, it was found that
LncRNA Kcnq1ot1 was significantly upregulated in high glucose
cardiac fibroblasts as well as diabetic myocardial tissues
(201). The main pathological pathway discussed in relation to
DCM involved regulating caspase-1, the hypothesis being that
downregulating Kcnq1ot1 repressed activation of miR-214-3p
which reduced expression of caspase-1 and its downstream
inflammatory cytokines such as interleukin 6, interleukin 10,
and the IL-1 family, all of which are involved in DCM
induced heart failure (202). Other studies that focused on
lncRNAs, such as myocardial infarction–associated transcript
(MIAT) (203), myosin heavy-chain-associated RNA transcripts
(Mhrt) (204), and H19/miR-675 (205), all similarly found
that forced expression or overexpression of these lncRNAs
lead to preservation of cardiomyocyte apoptosis involved
in the pathogenesis of DCM. Thus, there is therapeutic
protentional in knocking out these specific lncRNAs in
ameliorating DCM.

Taken together, it is clear that there is emerging research
in the area of therapeutically treating DCM. As described
above, numerous findings have been made that deal with
the mechanisms behind DCM, such as targeting certain
transcription factors like Sp1, deacetylases such as SIRT1
and oxidative stress (206). There are also some findings
dealing with blocking long non-coding RNA (207) like
Kcnq1ot1, Mhrt, and exsosomal miRNAs, like H19/miR-
675 all of which have been demonstrated to promote
DCM (208). Future studies should show additional
mechanistic findings through the use of advanced and
integrative methodologies.
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Diabetic Complications in Peripheral Artery
Disease
Peripheral artery disease (PAD) by itself affects 27 million
individuals in both Europe and North America annually (209).
The known risk factors of PAD are old age, risk of cardiovascular
disease, and ethnicity, specifically if one is of Hispanic or African
American descent (210). Diabetes in relation to PAD has been
studied and has been shown to exacerbate PAD. For example, a
20 year follow up study found a significant increased risk of death
for patients with diabetes and PAD compared to patients without
diabetes (211). Thus, research in how diabetes contributes as a
risk factor for PAD-associated mortality is critical (Figure 3).

The main mechanisms in which diabetes fosters the
development of PAD are mainly through the same mechanisms
that cause cardiovascular disease. Derangements in the vessel
wall caused by vascular inflammation and endothelial cell
dysfunction, aberrant blood cells, and an increase in reactive
oxygen species are among these mechanisms (155, 212)
(Figure 3). Hyperglycemia, a pathological consequence of
diabetes, causes damage to the vascular endothelium in a variety
of pathways such as the protein kinase C and advanced glycation
end products pathways all of which lead to dysregulation of
growth factors, cytokines, epigenetic changes, and abnormality of
non-coding RNAs leading to macrovascular complications such
as PAD (213). Another way in which hyperglycemia can cause
damage to the vascular system is by inducing hypoxia which leads
to oxidative stress (OxS) and subsequent vascular damage (214).
This mechanism is illustrated in Figure 3. Moreover, oxidative
stress (OxS) seems to play a pathophysiological role in PAD
and atherosclerosis via its association with the production of
reactive oxygen species ROS. Production of ROS from OxS is
caused by OxS impairing nitric oxide (NO) synthesis (215).
Over production of ROS, which at low levels act as signaling
molecules that mediate vascular cell proliferation, migration, and
differentiation, can be detrimental to microvascular angiogenesis
(216). Therefore, it is clear there is some sort of cascading
affect between OxS and cardiovascular diseases such as PAD,
and oxidative stress biomarkers are key for identifying their
progression (215).

However, there are some studies that speculate alternative
mechanisms in which diabetes causes PAD. For example, one
study found that serum levels of omentin-1, an adipocytokine,
were significantly lower in diabetic patients with PAD compared
to diabetic controls without PAD and that these levels
significantly dropped as disease severity progressed (217). This is
the first study to assess reduced serum omentin-1 levels as being a
potential biomarker for PAD and thus should be researchedmore
(217). Hyperglycemia was reported to hyperphosphorylated
PKCβ in diabetic animal models resulting in impaired ischemia-
induced activation of the canonical NF-κβ signaling pathway
and inferior experimental PAD outcomes (218). Interestingly,
both omentin-1 and PKCβ expression levels had significant
correlations with severity of PAD in diabetic models. Another
potential useful biomarker that was studied included prolonged
heart rate-corrected QT interval (QTc) which was found to have
a significant positive association with severity of PAD in patients
that have diabetic foot ulcers (219). Additionally, there is some

evidence that links elevated leptin levels with the presence and
severity of PAD and diabetes (220).

To further highlight potential therapeutic targets, one study
concluded that glucose normalization could be targeted as
a therapeutic in diabetic patients to ameliorate PAD (221).
Specifically, this study showed that impaired VEGFR expression,
via greater ubiquitination under high glucose conditions, was
linked to impaired perfusion recovery in Type 1 diabetes.
Another study focused on acylated ghrelin (AG) and found
that plasma AG was significantly lower in animal models with
diabetes and PAD (222). By modulating specific miRNAs such as
miRNA 126 and 132, they were able to influence the expression
levels of AG which promoted a proangiogenic response. In
other words, restoring AG to normal plasma levels lead to
revascularization in diabetic and PAD models which means that
exogenous AG could be a promising therapeutic for treating PAD
in diabetic patients (222).

Micro RNAs (miRs) seem to play an independent role in
diabetic PAD; however, more research needs to be done on
the specific mRNAs that affect diabetic PAD. To exemplify a
few, diabetes-induced upregulation of mRNA-133a was found to
impair angiogenesis in PAD by reducing nitrogen oxide synthesis
in endothelial cells (223). Conversely, inhibiting expression of
miR-133a resulted in improved angiogenesis after experimental
post-ischemic inducement in diabetic mice (223). Another
miR identified as miR-93 enhanced blood perfusion after
experimental hind limb ischemia, making it a valuable target for
modulation in promoting angiogenesis particularly in ischemic
tissue (224). Thus, there is some evidence to support that miRs
play an important role in recovering from PAD reduced blood
perfusion; however, more investigation is warranted.

Studies have shown that diabetes accelerates atherosclerosis
and that peripheral artery disease is a marker of advanced
atherosclerosis (225). Patients with PAD and diabetes were found
to have an increased risk of cardiovascular death or ischemic
stroke as well as a higher risk for lower extremity amputations
compared to patients with PAD and no diabetes (226). More
specifically, patients with T2D and PAD had lower heart
rate variability which is indicative of autonomic dysfunction
(227). Furthermore, autonomic cardiovascular dysfunction in
relationship with atherosclerosis has been studied. Specifically it
was found that diabetic patients with low heart rate variability
had higher levels of inflammatory markers such carotid intima-
media thickness (IMT) (228).

Concerning the lower extremity amputation risk, advanced
PAD can result in chronic limb threatening ischemia (CLTI)
which is associated with a higher risk of lower limb loss
(229). Since amputation risk of lower extremities is a common
complication of patients with PAD and diabetes (230), it
is important to be able to assess PAD risk among diabetic
patients before they develop diabetic foot ulcers in which
amputation then becomes more necessary. One major indicator
of amputation risk that can be non-invasively assessed is by
determining the ankle brachial index (231). The results of
this study showed that patients who exhibited a lower ankle
brachial index were at a higher risk for a foot ulcer and thus
an amputation.
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An emerging method that could be more predictive include
ultrasound measurement methods that, for example, can be
used in plantar soft tissues in order to predict diabetic related
changes in the foot (232). In one study, it was found that
Sub-MTH fat pads were significantly thinner and subhalangeal
fat pads were significantly thicker in diabetic neuropathic
feet compared to neuropathic controls (233). Another study
conducted in China used similar ultrasonographic methods to
detect foot muscle atrophy in Chinese patients with type 2
diabetes mellitus. The extensor digitorum brevis muscles (EDB)
as well as the muscles of the first interstitium (MILs) had
a reduced transverse diameter, thickness, and cross sectional
area in all of the patients’ nondominant feet, according to
this study (234). In other studies, it has been found that the
use of ultrasound can assess a significant reduction in the
thickness of the intrinsic foot muscles and plantar tissues in
patients with T2D (235). There is also evidence that people
with T2D have stiffer heel pads (236). Taken together, these
studies represent useful data for using ultrasonography as a
noninvasive and cost effective way to detect early diabetic
complications in the foot. Advancement in this technology
would be critical for patients who have diabetes and PAD
in order to prevent or reduce their need for amputation
(Figure 3).

PERSPECTIVES

Currently the incidence and prevalence of diabetes mellitus
around the world is very high and diabetes has become a
threat to mankind globally. With the advancement of genomics,

epigenomics, proteomics, and multiomics single-cell analyses,
more promising and powerful approaches for mechanistic
studies of diabetes have come to fruition. Also, the association
between diabetes and other physiological systems, especially the
cardiovascular system, revealed more potential pathways and
targets involved in the progression of diabetes. Therapeutically
intervening in these pathways will also help us to mitigate
the effects that diabetes has on other pathologies described in
this review such as retinopathy, nephropathy, peripheral artery
disease, and cardiomyopathy. The information described in this
paper would present a tremendous leap forward in predicting,
diagnosing, managing and treating diabetes.
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