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Abstract

Functional connectivity (FC) in resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to
find coactivating regions in the human brain. Despite its widespread use, the effects of sex and age on resting FC
are not well characterized, especially during early adulthood. Here we apply regression and graph theoretical
analyses to explore the effects of sex and age on FC between the 116 AAL atlas parcellations (a total of 6670
FC measures). rs-fMRI data of 494 healthy subjects (203 males and 291 females; age range: 22–36 years)
from the Human Connectome Project were analyzed. We report the following findings. (1) Males exhibited
greater FC than females in 1352 FC measures (1025 survived Bonferroni correction; p < 7:49E� 6). In 641
FC measures, females exhibited greater FC than males but none survived Bonferroni correction. Significant
FC differences were mainly present in frontal, parietal, and temporal lobes. Although the average FC values
for males and females were significantly different, FC values of males and females exhibited large overlap. (2)
Age effects were present only in 29 FC measures and all significant age effects showed higher FC in younger
subjects. Age and sex differences of FC remained significant after controlling for cognitive measures. (3)
Although sex · age interaction did not survive multiple comparison correction, FC in females exhibited a faster
cross-sectional decline with age. (4) Male brains were more locally clustered in all lobes but the cerebellum;
female brains had a higher clustering coefficient at the whole-brain level. Our results indicate that although
both male and female brains show small-world network characteristics, male brains were more segregated
and female brains were more integrated. Findings of this study further our understanding of FC in early adulthood
and provide evidence to support that age and sex should be controlled for in FC studies of young adults.
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Introduction

Resting-state functional magnetic resonance imag-
ing (rs-fMRI) is a powerful neuroimaging technique

that enables researchers to measure spontaneous fluctuations
in activity between distinct brain regions (Biswal et al.,
1995). Unlike task-based fMRI, rs-fMRI does not require
participants to be trained in specific tasks, and therefore, re-
sults are not confounded by task performance. Functional
connectivity (FC) measured through rs-fMRI is utilized to
explore the brain’s intrinsic functional networks (Biswal

et al., 2010), and the presence of consistent functional net-
works has been replicated across numerous studies (Allen
et al., 2011; Damoiseaux et al., 2006, 2008; Shehzad et al.,
2009; Smith et al., 2009; Zuo et al., 2010).

Intrinsic FC can be used as a tool for human connectomics
(Van Dijk et al., 2010), and variability of resting-state net-
works may be useful for characterizing both normal and abnor-
mal brain function. Differences in resting-state FC compared
to healthy controls have been found in autism (Muller et al.,
2011), attention-deficit/hyperactivity disorder (Uddin et al.,
2008), Alzheimer’s disease (Li et al., 2013), unipolar
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depression (Anand et al., 2009), epilepsy (Wurina et al., 2012),
and schizophrenia (Jafri et al., 2008; Venkataraman et al.,
2012). Although consistent FC group differences have
been found between patients with neurodevelopmental/neu-
ropsychiatric disorders and matched controls, classification
of patients based on FC measures has proven to be a difficult
task (Arbabshirani et al., 2013). This difficulty emphasizes
the need for better characterization of FC in healthy popula-
tions before extending FC research to atypical populations.
In this study, we characterize the effects of sex and age on
FC in healthy young adults.

Sex plays an important role in FC, but conclusions regard-
ing sex effects are not well established. Males and females
have been shown to differ in various connectivity analyses.
Bluhm et al. (2008) examined the default mode network
(DMN) and detected stronger FC for females within the pos-
terior cingulate cortex/precuneus and the bilateral medial
prefrontal cortex, whereas no brain region exhibited greater
FC for males. Another study using independent component
analysis (ICA) by Allen et al. (2011) performed a statistical
comparison between sexes on frequency composition, spa-
tial map, and functional network connectivity measures.
Although sex effects were not found to be as extensive as
aging effects, specific ICA components (in auditory, senso-
rimotor, and attentional networks) did show significant sex
differences. Tian et al. (2011) applied graph theoretical
analysis on 90 Automatic Anatomical Labeling (Tzourio-
Mazoyer et al., 2002) atlas regions and reported that com-
pared to females, males had higher clustering coefficients
in the right hemispheric networks but lower clustering coef-
ficients in the left hemispheric networks. Sex-related dif-
ferences in the developmental trajectories of functional
homotopy (Zuo et al., 2010) and lateralization (Liu et al.,
2009) have also been examined. Despite these findings,
sex effects on rs-fMRI FC remain inconclusive and in some
cases contradictory; while Biswal et al. (2010) found con-
sistent sex variations of FC using three distinct methods
(seed-based, fractional amplitude of low-frequency fluctua-
tions, and ICA), Weissman-Fogel et al. (2010) found no sig-
nificant differences between sexes in FC and therefore
reported no need to control for sex for rs-fMRI studies.
Therefore, further effort is required to derive a clear under-
standing of sex effects.

Similarly, the effects of age on FC are not well character-
ized. Previous studies have examined the heterogeneous effects
of age-related differences in FC at different developmental
stages from the fetus in utero (Thomason et al., 2015) to el-
derly populations (Bernard et al., 2013; Madden et al., 2010;
Seidler et al., 2015). During fetal development, primitive
forms of motor, visual, default mode, thalamic, and temporal
FC networks were observed. Increased long-range cere-
bral–cerebellar, cortical–subcortical, and intrahemispheric
FC were discovered during gestation at 24–38 weeks (Tho-
mason et al., 2015). Disrupted FC in elderly populations
has been reported in the corticocerebellar network (Bernard
et al., 2013), in the DMN (Xiao et al., 2015), and in the motor
system network (Langan et al., 2010; Seidler et al., 2015).
Furthermore, multiple studies have reported that FC in the
DMN may be most susceptible to aging effects (Bluhm
et al., 2008; Campbell et al., 2013; Damoiseaux et al.,
2008; Esposito et al., 2008). Aging effects on FC have
been studied using various methods such as ICA, seed-

based analyses, region of interest (ROI)-based analyses,
and graph analyses (Dennis and Thompson, 2014). How-
ever, findings regarding age differences are not well estab-
lished and many studies are based on small cohorts with less
than 100 subjects. In addition, age-related FC variability
studies most often compare two distinct age groups (Ber-
nard et al., 2013; Wu et al., 2011) between adolescents
and middle-aged adults or elderly populations (Andrews-
Hanna et al., 2007; Evers et al., 2012; He et al., 2013;
Shaw et al., 2015). Therefore, it is not clear if previously
reported age effects of FC emerge in early adulthood. To
our knowledge, no previous studies have examined full
brain FC in early adulthood using high-quality images on
a large number of subjects and this study will attempt to
address this knowledge gap.

The primary goal of this article is to examine rs-fMRI FC
of the whole brain between ROIs as defined by the AAL atlas
using data from the human connectome project (HCP). We
aim to test and identify sex and age effects on FC by linear
regression. In addition, local and global brain graph proper-
ties will be derived to explore differences in brain organiza-
tion between males and females.

Materials and Methods

Data acquisition and preprocessing

This study includes 494 healthy adults (203 males and 291
females, age: 22–36 years) from the first rs-fMRI run (Ses-
sion 1, phase encoding in a left-to-right direction) of HCP
S500 release (db.humanconnectome.org). Subject demo-
graphics and behavioral measures are presented in Table 1,
including two-sample t-test p-values between sexes for
four demographics and seven cognitive scores. The seven
cognitive scores were selected based on the NIH cognition
battery toolbox (www.nihtoolbox.org).

All HCP rs-fMRI data were acquired on a Siemens Skyra
3T scanner housed at Washington University in St. Louis.
MR imaging protocols are described in the S500 release
manual available at db.humanconnectome.org. During the
resting scans, participants were asked to keep their eyes
open with relaxed fixation on a projected bright cross-hair
on a dark background. Duration of the scan was 14 min
33 sec with a TR of 0.72 sec, equating to 1200 volumes.

The preprocessed data we downloaded had undergone stan-
dard preprocessing steps (such as motion correction and spa-
tial normalization) and ICA denoising to remove non-neural
spatiotemporal components (Griffanti et al., 2014; Salimi-
Khorshidi et al., 2014). In addition, the 24 head motion param-
eter (Satterthwaite et al., 2013) time series were high-pass fil-
tered and were then regressed out of the data. To confirm that
head motion did not contribute to FC sex differences, we cal-
culated two-sample t-values of the frame displacement (Power
et al., 2012, 2014) between males and females and found no
significant differences. Similarly, we calculated the correla-
tion between frame displacement and age and found that
there was no significant association.

Linear regression and graph theoretical analyses

The workflow of this study is shown in Figure 1.
Step A: Preprocessed rs-fMRI data were downloaded from

the HCP site (db.humanconnectome.org). To explore the brain
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networks at the macrolevel, the AAL atlas was utilized to seg-
ment each subject’s whole-brain rs-fMRI into 116 regions (90
cortical/subcortical regions [45 for each hemisphere] and 26
cerebellar/vermis regions). The AAL segmentation methodol-
ogy has previously been applied in various brain imaging stud-
ies (Park et al., 2013; Shirer et al., 2012; Xu et al., 2015). The
list of brain regions contained in the AAL atlas is provided in
Supplementary Table S1 (Supplementary Data are available
online at www.liebertpub.com/brain). Within each AAL re-
gion, an average time series was calculated.

Step B: From the time series matrix of size 1200 · 116
(time points · AAL regions), FC matrices (116 · 116) were

derived for each subject by applying Pearson correlation
across the whole duration of the time series. For better inter-
pretation, the 116 regions were reordered and grouped into 7
brain lobes according to the hierarchical clustering of AAL
brain regions implemented by Salvador et al. (2005).

Step C: The number of FC was reduced from 116 · 116 =
13,456 to 6670 by removing duplicate FC present in the sym-
metric FC matrix. All FC were then Fisher’s z-transformed,
rearranged to FC row vectors, and the FC row vectors were
stacked across subjects. A 494 · 6670 (subjects · FC) group
FC matrix across all subjects was constructed for subsequent
regression analysis.

FIG. 1. Steps of FC analyses. (A) Preprocessed rs-fMRI data were parcellated using the AAL atlas into 116 brain regions.
(B) Pearson correlation was calculated for each subject’s time series to obtain a 116 · 116 FC matrix. (C) FC of all subjects
were concatenated to derive a group FC matrix. (D) Linear regression analysis was applied to the group FC matrix to identify
sex and age effects on FC. (E) Group comparisons between sexes were implemented for graph properties of two categories:
functional integration and segregation. FC, functional connectivity; rs-fMRI, resting-state functional magnetic resonance im-
aging. Color images available online at www.liebertpub.com/brain

Table 1. Subject Demographics and Cognitive Measures (N = 494)

Male (N = 203) mean (SD) Female (N = 291) mean (SD) p

Age (years) 29.0 (3.5) 29.4 (3.4) 0.24
Education (years) 14.7 (1.9) 14.9 (1.9) 0.18
Incomea 5.1 (2.2) 5.0 (2.2) 0.68
Right-handedness ratiob 185/203 = 0.91 261/291 = 0.90 0.60
Executive function/inhibition 104 (10) 102 (9) 0.11
Executive function/cognitive flexibility 103 (10) 103 (10) 0.91
Episodic memory 101 (17) 107 (17) 9E-5c

Working memory 103 (14) 102 (14) 0.23
Processing speed 99 (17) 101 (16) 0.15
Language/vocabulary comprehension 109 (15) 106 (15) 0.02c

Language/reading decoding 108 (15) 104 (15) 0.01c

Cognition scores are age adjusted based on the NIH cognition battery toolbox.
aTotal household income categories: <$10,000 = 1, 10K–19,999 = 2, 20K–29,999 = 3, 30K–39,999 = 4, 40K–49,999 = 5, 50K–74,999 = 6,

75K–99,999 = 7, ‡100,000 = 8.
bSchachter et al. (1987).
cIndicates statistical significance for p < 0.05.
SD, standard deviation.
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Step D: Regression analysis was applied to each column
of the group FC matrix. The initial full model included
sex, age, and sex · age interaction as covariates:

Fi = b0
i þ bs

i sexþ ba
i ageþ bint

i sex · ageþ ei (1)

where Fi is the FC vector for a pair of AAL regions across
subjects. i = 1, 2, . . . 6, 670 corresponds to all possible com-
binations of AAL regions. bi’s are the regression coefficients
and ei is the error term.

The backward stepwise approach (Ronald Christensen,
2001) was applied to select the best model for each FC. We
used this scheme since using one model (same set of covari-
ates) for all 6670 FC is not appropriate due to the fact that
not every FC measure may incorporate the effects of all the
potential covariates. In each round, the backward stepwise ap-
proach calculates a significance p-value quantifying the effect
of removing each covariate of the current model. It then
removes the covariate that had the most insignificant effect
in each iteration until any further reduction would exert signif-
icant difference in the F-statistic of the model compared to the
model at a previous iteration. This approach yields five possi-
ble models and they are as follows: M1: no covariates, M2: sex
only, M3: age only, M4: sex and age; M5: sex, age, and sex ·
age. The p-values of regression coefficients in each model
were used to identify the significant effects on FC. To explore
how the behavioral measures would affect the sex and age ef-
fects on FC, in a separate analysis, seven cognitive measures
listed in Table 1 were added to the regression models deter-
mined by the backward stepwise model selection.

Step E: Each 116 · 116 FC matrix was thresholded and
converted to a binary adjacency matrix for graph theoretic
analyses. Graph measures are dependent on the total cost
of the network, for example, the network clustering coeffi-
cient and global efficiency increase monotonically as edges
are added to a graph. Therefore, to ensure the most direct
mathematical comparability of graph properties across sub-
jects, a proportion threshold (Bassett et al., 2012; Bullmore
and Bassett, 2011) based on graph density was applied to
each FC matrix, where density threshold ranged from 0.05
to 0.95 at 0.05 intervals. For example, when a density thresh-
old of 0.1 is applied, for each subject, the top 10% of the FC
are retained and the FC matrix is converted to a binary adja-
cency matrix. Different thresholds were applied to compare
group differences of graph properties at various graph densi-
ties. This thresholding scheme was reported to be more stable
compared to absolute (correlation-based) thresholds (Garri-
son et al., 2015).

Network measures in this study were derived using the
Brain Connectivity Toolbox (Rubinov and Sporns, 2010).
Nodal clustering coefficient and nodal local efficiency were
adopted to examine the regional characteristics of the func-
tional brain network. The clustering coefficient of a node is
a measure of the degree to which that node in the graph
tends to cluster together with its neighboring nodes. The
local efficiency quantifies how well information is exchanged
within that neighborhood. For the global network matrices, the
network clustering coefficient (C) and the characteristic path
length (L) were calculated. These are two key graph parame-
ters that can also characterize the small-world organization of
a network. C is the average of the nodal clustering coefficients
across the nodes. L is the average of shortest path length be-

tween all pairs of nodes and quantifies the number of process-
ing steps for information transfer across the brain. To handle
the possible infinite path lengths between disconnected
nodes, L was calculated as the harmonic mean of geodesic dis-
tances (Latora and Marchiori, 2001). The number of nodes in-
cluded in the largest connected component was calculated for
different proportion thresholds. The small-worldness metric of
a network (r) was then estimated as the ratio between the nor-
malized clustering coefficient and the normalized characteris-
tic path length: r = C=Crand

L=Lrand
(Humphries and Gurney 2008),

where Crand and Lrand are the average of C and L derived
from 30 corresponding random networks generated by rewir-
ing each edge approximately 10 times while preserving the
original degree distribution (Maslov and Sneppen, 2002; Rut-
ter et al., 2013; Wang et al., 2010). Compared to a random net-
work, a small-world network has a similar L value but a higher
C value. Therefore, if the value of r is greater than 1, a net-
work is considered to exhibit small-world characteristics.
Graph properties for both individual nodes and the whole-
brain network were compared between males and females
by two-sample t-tests.

Results

Linear regression model

FC measures with significant regression models (F-statistic
p < 7:49E� 6 corresponding to Bonferroni threshold at
a = 0.05) are presented in Figure 2, where the correspond-
ing model of an FC is color coded. Regression models for
1994 of 6670 FC measures (30%) were significant. Out of
the 1994 significant models, M2–M5 are chosen 321 (16%),
1 (<0:1%), 1026 (51%), and 646 (32%) times, respectively.
This indicates that FC variability is best captured by M4 (sex
and age) and M5 (sex, age, and sex · age) for the majority of
the FC measures. M2, for which the model only contains the
sex covariate is the next best fit, while M3 for which the
model contains age only is selected just once. In Figure 2,
we also note that out of the 1994 significant FC models,
938 (47%) are present in the top-left 3 · 3 block, which con-
tains the frontal, parietal, and temporal lobes.

Sex and age effects of functional connectivity

For FC measures with significant regression models, the sig-
nificance of sex, age, and sex · age covariates is further ex-
plored. Under Bonferroni correction at a = 0:05, there is no
significant sex · age interaction. ROI pairs with significant
sex or age effects are shown in Figure 3. Out of the 1994 FC
measures that have significant model fits based on the F-
statistic, in 1352 FC measures, males have higher FC than fe-
males and 641 females have higher FC than males. Out of the
1352 FC measures where males show higher FC, 1025 are
significant after Bonferroni correction (p<7:49E� 6), but
out of the 641 measures where females show higher FC
than males, none are significant after Bonferroni correction
(Fig. 3A). FC measures that are higher for females failed
to survive even at a more lenient threshold of p < 0.001
uncorrected. Age effects are less widespread; only 29
FC measures have a significant relationship with age
(Fig. 3B) and indicate higher FC in younger subjects. For
both sex and age covariates, the significant effects on FC
are mostly present in the frontal, parietal, temporal, and
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medial temporal lobes. Besides, significant aging effects are
also present in subcortical and cerebellar regions. Twenty
ROI pairs with the most significant sex or age effects on
FC are listed in Table 2.

The percentages of intralobe and interlobe FC values hav-
ing significant sex effects are presented in Supplementary
Figure S1. The highest ratio (43%) is located between the
frontal and temporal lobes. Frontal–occipital (31%) and
temporal-subcortical (28%) also exhibit high interlobe FC
ratios for significant sex effects. The percentages of FC val-
ues for sex effects in the frontal, parietal, and temporal lobes
range from 21% to 43%. In contrast, the percentages in the
occipital, subcortical, and cerebellar regions are all less
than 4%.

We also noted that the total intracranial volume (Gray mat-
ter + White matter + CSF, calculated by FreeSurfer in the HCP
MR Structural pipelines) is significantly higher in males
(p<1E� 59). However, including total intracranial volume
as a covariate into the regression model does not change the
general pattern of sex/age effects (illustrated in Supplemen-
tary Fig. S2).

Effects of sex and age on FC after adding cognitive mea-
sures to the regression models are presented in Figure 4.
Compared to Figure 3A, 534 out of the 1025 ROI pairs for
sex effects survive and three new pairs (AAL4—AAL87,
AAL74—AAL103, and AAL86—AAL87) emerge. Regard-
ing age effects, 21 out of the 29 ROI pairs survive and two
new pairs (AAL13—AAL81 and AAL13—AAL83) emerge.

In the above regression analysis, no significant covariates
for the seven cognitive measures survive Bonferroni correction
at p<7:49E� 6 corresponding to a = 0.05. As an alternative,
we calculated the direct correlations between the FC measures

and each of the cognitive scores. The following significant as-
sociations (Bonferroni corrected, p<7:49E� 6 correspond-
ing to a = 0.05) are found: (1) The language/vocabulary
comprehension measure correlates with FC for AAL10–
AAL66 and (2) The language/reading decoding measure is
correlated with FC for AAL10–AAL66 and AAL16–AAL24.

Sex and age interaction effects of functional connectivity

There were no sex · age interaction effects on FC that sur-
vive Bonferroni or false discovery rate correction. This was
also confirmed by a separate ANCOVA. For regression analy-
sis of FC versus age for males and females separately, there
were no significant differences in the age regression coeffi-
cients (or the slopes) between genders. For males, not a single
slope is significant after Bonferroni correction at p <7:49E� 6
corresponding to a = 0.05, while slopes for 134 (which were all
negative) out of 6670 FC measures in females were significant.
In this study, we explore whether the age effects on FC are
qualitatively different between male and female groups.

In Figure 5A, B, for two ROI pairs with the most significant
age or sex effects on FC in the previous regression analysis,
both males and females show negative slopes and the slopes
of female regression lines are larger in magnitude than
males. Next, the experiment for examining different age re-
gression coefficients between males and females was extended
to all FC measures. Results for all 29 FC measures with signif-
icant age effects and 30 FC measures with the most significant
sex effects in previous analysis are shown in Figure 5C, D, re-
spectively. In Figure 5C, all the slopes are negative and the
magnitude is larger for females in 27 out of 29 ROI pairs.
In Figure 5D, the female slopes are still negative, while

FIG. 2. Significant regression models with F-statistic p<7:49E� 6) for all ROI pairs are color coded according to the best
model fit. The above p-value corresponds to Bonferroni corrected threshold at a = 0:05: The 116 AAL regions are grouped into 7
brain lobes separated by red dash lines. ROI, region of interest. Color images available online at www.liebertpub.com/brain
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males show positive slopes in four ROI pairs. Except for three
pairs in which males show a larger magnitude negative slope,
male slopes are above the female slopes in all other ROI pairs:
either male and female slopes are both negative or male slopes
are positive, while females slopes are negative. For all ROI
pairs, 3787 out of 6670 (57%) FC measures demonstrate neg-
ative age regression coefficients for both males and females
and the magnitude for the female slope is larger compared
to the male slope.

Sex difference of graph properties

As shown in Figure 6A, B, sex differences for the nodal
clustering coefficient and the nodal local efficiency are similar.
For all lobes but the cerebellum, the stacked sex differences

are in the positive side for most AAL regions. A majority of
brain nodes in the cerebrum demonstrate stronger clustering
coefficient and higher local efficiency in males compared to
females and this result is replicated at different graph density
thresholds. Sex effects in the medial temporal and the subcor-
tical lobes are relatively weak, with significant sex differences
present at only few densities. The only lobe that clearly exhib-
its stronger clustering coefficient and higher local efficiency in
females compared to males is the cerebellum.

Across the range of graph density studied in this article
(0.05–0.95), the 116 nodes in the graph may not be fully con-
nected so there may exist isolated nodes from the major com-
ponent. Therefore, we explored the size of the largest
connected component (number of nodes in the component)
and checked if it was different between males and females.

FIG. 3. ROI pairs with significant (A) sex effects and (B) age effects (p < 7:49E� 6 corresponding to Bonferroni threshold at
a = 0.05) on FC are presented, in the FC matrix (left) and on brain map (right). In the matrix plots, ROI pairs with significant sex
and age effects are color coded to indicate the model from which the significance of the covariates is derived. For the brain map,
100 ROI pairs with the most significant sex effects are presented for visualization and for the age effects, all surviving pairs are
presented. Color images available online at www.liebertpub.com/brain
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Figure 6C illustrates that above a graph density threshold of
0.5, more than 90% of the nodes are connected. Except the
densest case (0.95), females show a larger size for the con-
nected component in all the other 18 densities, out of
which 14 demonstrate a significance of p < 0:0001. This result

suggests that when the graphs are constructed to have the same
wiring cost, the networks in female brains have more connected
nodes than in males. Figure 6D–F shows male versus female
group comparisons for the three global measures as a function
of graph density. For both male and female, these three indices

Table 2. ROI Pairs with the Most Significant Sex or Age Effects on FC

For sex effects For age effects

ROI pair � log10p ROI pair � log10p

Temporal pole: superior temporal gyrus (left)–
median cingulate and paracingulate gyri (left)

25 Cerebellum 4 and 5 (right)–
hippocampus (left)

8

Temporal pole: superior temporal gyrus (left)–
median cingulate and paracingulate gyri (right)

22 Inferior temporal gyrus (left)–superior
frontal gyrus, dorsolateral (left)

8

Superior temporal gyrus (left)–median
cingulate and paracingulate gyri (left)

21 Thalamus (right)–lenticular nucleus,
putamen (left)

8

Superior temporal gyrus (right)–median
cingulate and paracingulate gyri (left)

19 Lenticular nucleus, putamen (left)–caudate
nucleus (left)

7

Temporal pole: superior temporal gyrus (left)–
anterior cingulate and paracingulate gyri (left)

19 Inferior frontal gyrus, orbital part (left)–inferior
frontal gyrus, triangular part (left)

7

Middle temporal gyrus (left)–inferior
frontal gyrus, orbital part (left)

19 Inferior temporal gyrus (left)–supramarginal
gyrus (left)

7

Median cingulate and paracingulate
gyri (left)–precentral gyrus (left)

18 Superior temporal gyrus (left)–supramarginal
gyrus (left)

7

Postcentral gyrus (left)–median cingulate
and paracingulate gyri (left)

18 Inferior temporal gyrus (left)–inferior parietal,
but supramarginal and angular gyri (left)

6

Superior temporal gyrus (left)–median
cingulate and paracingulate gyri (right)

17 Lenticular nucleus, putamen (left)–caudate
nucleus (right)

6

Median cingulate and paracingulate
gyri (left)–insula (right)

17 Inferior temporal gyrus (left)–inferior
temporal gyrus (right)

6

p represents the significance of p-value of the covariate (sex or age) in the regression analyses.
FC, functional connectivity; ROI, region of interest.

FIG. 4. Effect of behavioral measures on sex and age effects on FC. For regression models that included seven cognitive
measures as covariates, ROI pairs with significant (A) sex effects and (B) age effects on FC are presented. FR, frontal; PA,
parietal; TE, temporal; ME, medial temporal; OC, occipital; SU, subcortical; CE, cerebellum. Color images available online
at www.liebertpub.com/brain
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monotonically decrease and converge to 1 as the graph den-
sity increases, indicating that it becomes harder to distinguish
the brain graph from its corresponding random graph at higher
densities. While there is no significant male versus female
difference for the normalized characteristic path length, fe-
male networks demonstrate consistently higher normalized
clustering coefficient and higher small-world properties for
graph densities from 0.15 to 0.65 and the two-sample t-test
p values for these differences were p < 0:0001.

To confirm that the above two-sample t-test sex differences
in graph measures were not influenced by age, we repeated the
analysis with a regression model that contained sex and age as
covariates. Effects of sex were similar to previous results and
effects of age were much weaker and not consistent across
graph densities (Supplementary Figs. S3 and S4).

Discussion

Sex effects on functional connectivity
and on graph properties

One of the most significant results from our analyses is
that there exist extensive sex-related differences of FC in
the brain, and all FC measures that show statistically signif-

icant sex effects are greater in males than in females.
Whereas most studies that note sex differences tend to
have a mix of greater connectivity for either males or females
(Allen et al., 2011; Filippi et al., 2013). Results of our study
show that although FC differences were higher in females for
certain pairs of FC measures, none of them survived multiple
comparison correction. A previous study that investigated a
group of healthy subjects spanning an age range similar to
that of our cohort reported higher FC in the parietal and oc-
cipital regions for males compared to females (Filippi et al.,
2013). This finding is replicated in our study. The increased
parietal FC in men mirrors the result of fMRI studies for
complex cognitive tasks (Thomsen et al., 2000), where
males predominantly exhibited parietal activation. Our find-
ings regarding increased FC in males in occipital regions
are supported by Biswal et al. (2010), where FC of occipital
regions is higher in males across three different methods
(seed-based, fractional amplitude of low-frequency fluctua-
tions, and ICA). Higher FC of both parietal and occipital
lobes in males may possibly reflect the increased motor and
visuospatial skills in men (Hamilton, 2008; Weiss et al., 2003).

Despite these robust sex differences, it should be noted
that there is a large degree of overlap in FC of males and

FIG. 5. Age effects on FC for males and females separately. (A) Scatter plots of FC versus age for males and females, for two
ROI pairs with the most significant age effects in regression analysis. (B) Scatter plots of FC versus age for males and females,
for two ROI pairs with the most significant sex effects in regression analysis. Regression lines are drawn for males and females
separately to show different age regression coefficients (different slopes of the regression lines). Different age regression coef-
ficients for males and females for (C) 29 ROI pairs with significant age effects on FC and (D) 30 ROI pairs with significant sex
effects on FC. Standard errors are shown as the shaded area. Color images available online at www.liebertpub.com/brain
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females. To illustrate this overlap, in Figure 7, we present FC
histograms for five ROI pairs with the most significant sex
effects. Although the average FC values for males and
females are significantly different, there is a large overlap
of FC values between the two groups. This male/female
overlap of FC is also present across all ages, as indicated
in Figure 5A, B.

While some of our results strongly replicate previous find-
ings, several findings do not. For frontal and temporal lobes,
Filippi et al. (2013) reported stronger female FC, but we
show the opposite trend (male >female). fMRI studies of lan-
guage processing have indicated that, in comparison to
males, females tend to have a higher bilateral activation in
the frontal and temporal, when females had higher language
performance scores (Baxter et al., 2003; Kansaku et al.,
2000). The distinction regarding the directionality of sex dif-
ferences may be attributed to the fact that in our cohort, two
scores related to language processing are significantly higher

in males (Table 1), which is unlike previous studies. Further-
more, previous studies did not use whole-brain AAL parcel-
lations to calculate FC and this may be another reason
for disparate findings. However, the association between
language performance and frontal and temporal FC requires
further investigation.

In a separate analysis, we evaluated the effect of cognitive
measures on sex differences of FC. After the seven cognitive
measures were incorporated into the regression models, the
main pattern of the sex effects for the frontal, parietal, and
temporal lobes in Figure 3A remained significant (Fig. 4A).
This result was true for the age effects as well as we observed
little change after adding the cognitive scores to the regres-
sion model. Therefore, we conclude that the sex and age ef-
fects on FC are robust to the cognitive measures.

With regard to the sex effect of graph measures, we first
examined the size of the connected graph (Fig. 6C). Bassett
et al. (2012) reported that this metric, defined as the number

FIG. 6. Male versus female differences for graph properties. (A, B) show the sex differences for the nodal clustering coef-
ficient and the nodal local efficiency, respectively. 116 brain regions are divided into seven lobes by the red lines. The sex dif-
ferences (sign tð Þ· �log10pð Þ) are color coded for different graph densities and are stacked together. Both the direction
and significance of male versus female difference are displayed: above zero means male > female and below zero means
female > male; the height of segment represents � log10p where p is the two-sample p-value and the scale is given as a line
segment for p ~ 10� 10. Only significant differences (p<0:05=116) are presented and stacked. (C) Mean and standard deviation
of the size of the connected component, which is the number of nodes in the largest connected subgraph, as a function of graph
density are plotted for males and females separately. (D–F) Mean and standard deviation of the normalized network clustering
coefficient, normalized characteristic path length, and small-worldness metric, as a function of graph density, are shown for
males and females separately. Color images available online at www.liebertpub.com/brain
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of nodes in the largest connected component, was signifi-
cantly correlated with more complex graph measures (e.g.,
global efficiency or betweenness centrality) in a wide
range of graph densities. Therefore, the size of the brain net-
work may be an important indicator of the underlying topol-
ogy. Our findings that female functional networks have
significantly more connected nodes than males suggest an in-
creased network homogeneity in female brains.

For the regional graph properties, we observed that nodes
in the cerebellum have higher clustering coefficient and local
efficiency for females, while nodes at other lobes show sex
difference in the opposite direction. The most significant dif-
ference is in the parietal and occipital lobes, which may add
credence to sex differences in FC discussed earlier. Results
regarding the regional graph properties are in agreement
with one diffusion imaging study (Ingalhalikar et al.,
2014), in which the cerebellum was the only region that dis-
played higher participation coefficients in males, while in all
other lobes, the cross-module participation dominated in fe-
males. Since higher participation coefficients indicate that
connections are more uniformly distributed among the
lobes, the diffusion study illustrated that in males, for all
lobes but the cerebellum, FC is more focused within each
module. This adds evidence to our findings of higher cluster-
ing coefficient and local efficiency in males, while the fe-
male connections are more spread between lobes and the
network is less modular. This result and the larger size of
the female brain networks jointly support the notion that

female brain networks, compared to male networks, are
more spatially distributed but at lower correlation strengths.

For the global properties of the graph, the normalized net-
work clustering coefficient and the normalized characteristic
path length were derived to calculate the small-world metric.
While males and females do not differ in the characteristic
path length, the normalized network clustering coefficient
for females is significantly higher in a wide range of densities.
This is consistent with the results in Yan et al. (2011) and
makes the small-world metric to be higher for female net-
works. While both male and female brains clearly demonstrate
small-world characteristics, there exist differences in the
trade-off between local segregation and global integration of
the network topology. We observed that male brains prevail
in functional segregation, while female brains facilitate func-
tional integration. Combining the effect of sex on FC and on
graph metrics, we hypothesize that males are more likely bet-
ter at performing a single task, whereas females are more
equipped for performing multiple tasks, as has also been sup-
ported in a study using DTI (Ingalhalikar et al., 2014).

Age effects on functional connectivity

Age effects on FC have been explored in various studies.
Among the findings, the extensive involvement of the medial
temporal regions in age effects has been previously reported
(Chou et al., 2013; Jacques, 2009; Li et al., 2014). However,
only a few medial temporal regions (temporal pole and

FIG. 7. FC histograms for five ROI pairs with the most significant sex effects as listed in Table 2. Male and female FC his-
tograms are shown vertically. The FC is derived by Fisher z-transforming the Pearson correlation coefficient so that the range of
it is not restricted between � 1 and þ 1. The mean value of the FC distributions is indicated by a short black line. Color images
available online at www.liebertpub.com/brain
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hippocampus) are present for age effects in our analysis.
Given that the medial temporal lobe plays an important
role in human memory (Buckner, 2004), we hypothesize
that the medial temporal regions reported in studies involv-
ing large age ranges are due to significant memory deficits
observed in later life. In our study, correlations between
age and episodic/working memories are not significant and
this adds evidence to the above hypothesis.

In our analyses, age effects on FC within cortical regions
are mostly present in frontal, parietal, and temporal lobes.
The effect of age on these three lobes has been reported in pre-
vious studies. Steffener et al. (2012) reported decreased FC in
older adults between the supplementary motor area and the
middle cingulate and between the precuneus and the middle/
superior frontal cortex. Campbell et al. (2012) revealed re-
duced FC within the frontoparietal network in older adults,
suggesting decreased activity and coherence within a putative
control network. Also, the DMN, for which most components
are in frontal or parietal lobes, has been consistently demon-
strated to be susceptible to aging (Andrews-Hanna et al.,
2007; Damoiseaux et al., 2008; Ferreira and Busatto, 2013;
Grady, 2012). Our analyses detect age-related FC reductions
in the medial prefrontal cortex, hippocampus, and inferior pa-
rietal gyrus, which are components of the DMN. This provides
evidence that DMN regions are subject to aging, even in early
adulthood. Finally, Campbell et al. report lower FC for older
subjects in insula, superior temporal, middle temporal, and in-
ferior temporal regions.

Besides the cortical lobes, our findings of age effects for
the subcortical and cerebellar regions are also in line with
previous studies. The caudate, putamen, and pallidum (Bol-
linger et al., 2011), which together constitute the basal gan-
glia, have been reported to demonstrate age effect on FC.
Given that age-related differences in functional activation
of the basal ganglia have been consistently reported during
cognitive and motor tasks (Rubia et al., 2007; Wu and Hal-
lett, 2005), the presence of reduced FC between putamen
and caudate in our results indicates that the basal ganglia
can be a robust marker for age effects. The role of the cere-
bellum in normal aging has been reported, where cerebel-
lum–striatum and cerebellum–medial temporal lobe FC
disruptions were noted (Bernard et al., 2013). This matches
well with our results where FC between cerebellar regions
and putamen/caudate (part of the dorsal striatum) and the hip-
pocampus (part of the medial temporal lobe) is lower for older
subjects. Bernard et al. (2013) suggested that the decreased
striatal–cerebellar and hippocampus–cerebellar FC may be at-
tributed to reduced dopamine levels and deficits in memory/
associative learning in normal aging, respectively.

Application of the AAL atlas as a limitation

Although FC derivations based on anatomical ROIs have
been explored extensively using different parcellation
schemes (Craddock et al., 2012; de Reus and van den Heuvel,
2013; Marrelec and Fransson, 2011; Poldrack, 2007; Shirer
et al., 2012), researchers have become more aware that func-
tional inhomogeneity for anatomical parcellation may induce
biases for network construction and graph analyses.

To determine the extent to which the average AAL time-
courses were representative of the respective AAL regions,
we calculated the number of voxels that were significantly cor-

related ( p < 0.05) with the average time series within each
AAL region. Out of 116 AAL regions, we found that 63 re-
gions (54%) had more than 50% of voxels with significant cor-
relations to the average time series. This indicates that using
the AAL atlas for functional parcellation is reasonable.

The AAL atlas parcellation helped to locate significant sex
and age effects on FC. However, it performed poorly in iden-
tifying associations with behavioral measures (see Sex and
Age Effects of Functional Connectivity). In future studies,
we intend to explore FC and FC associations to behavioral
measures using other parcellations.

Conclusion

In this study, we demonstrated significant sex and age ef-
fects in early adulthood for healthy subjects using full brain
resting-state FC. Our findings indicate widespread sex ef-
fects in which males exhibit higher FC than females for all
significant measures. For the much less widespread brain re-
gions associated with age effects, the involvement of some
systems (e.g., DMN, basal ganglia) match well with findings
in previous studies, which spanned larger age ranges, there-
fore suggesting robust markers for aging. Graph measures
using a proportional threshold scheme demonstrate that
both male and female brains exhibit small-world characteris-
tics but with subtle significant differences in the organization
of the networks. While male brains generally have higher
clustering coefficient and higher local efficiency at the
nodes of the graph, female brains are more connected at
the whole-brain level. These findings illustrate the necessity
of including sex and age as covariates in future fMRI studies
and provide evidence that brain networks show male/female
differences. The sex differences of FC indicate that male
brain networks show signs of segregation and that female
brain networks show signs of integration.
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