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Abstract: The corrosion of steel reinforcement necessitates regular maintenance and repair of a variety
of reinforced concrete structures. Retrofitting of beams, joints, columns, and slabs frequently involves
the use of fiber-reinforced polymer (FRP) laminates. In order to develop simple prediction models
for calculating the interfacial bond strength (IBS) of FRP laminates on a concrete prism containing
grooves, this research evaluated the nonlinear capabilities of three ensemble methods—namely,
random forest (RF) regression, extreme gradient boosting (XGBoost), and Light Gradient Boosting
Machine (LIGHT GBM) models—based on machine learning (ML). In the present study, the IBS was
the desired variable, while the model comprised five input parameters: elastic modulus x thickness
of FRP (EfTf), width of FRP plate (bf), concrete compressive strength (fc′), width of groove (bg), and
depth of groove (hg). The optimal parameters for each ensemble model were selected based on
trial-and-error methods. The aforementioned models were trained on 70% of the entire dataset,
while the remaining data (i.e., 30%) were used for the validation of the developed models. The
evaluation was conducted on the basis of reliable accuracy indices. The minimum value of correlation
of determination (R2 = 0.82) was observed for the testing data of the RF regression model. In contrast,
the highest (R2 = 0.942) was obtained for LIGHT GBM for the training data. Overall, the three models
showed robust performance in terms of correlation and error evaluation; however, the trend of
accuracy was obtained as follows: LIGHT GBM > XGBoost > RF regression. Owing to the superior
performance of LIGHT GBM, it may be considered a reliable ML prediction technique for computing
the bond strength of FRP laminates and concrete prisms. The performance of the models was further
supplemented by comparing the slopes of regression lines between the observed and predicted values,
along with error analysis (i.e., mean absolute error (MAE), and root-mean-square error (RMSE)),
predicted-to-experimental ratio, and Taylor diagrams. Moreover, the SHAPASH analysis revealed
that the elastic modulus x thickness of FRP and width of FRP plate are the factors most responsible
for IBS in FRP.

Keywords: FRP; interfacial bond strength; statistical analyses; LIGHT GBM; XGBoost; ensemble
models; SHAPASH analysis

1. Introduction

Repairing and reinforcing structures has traditionally been a dynamic and complex
aspect of building work. The use of fiber-reinforced polymer (FRP) bars, sheets, and strips
to enhance RC or even steel structural components is one of the prevalent approaches
for these kinds of repairs. Because of the corrosion of traditional steel reinforcement that
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leads to deterioration, RC structures require periodic maintenance and repair [1–3]. As a
result, to meet the strength requirements and revised code designs, old structures are being
strengthened as a newly emerging construction activity [4]. FRP laminates (FRP sheets)
are multilayer sheets with directional resistance that are glued to concrete or steel surfaces
using specific FRP epoxy resin systems. Because of their better performance, they are
extensively used for structural retrofitting and repair of insufficiently reinforced concrete
structures [5–7]. Owing to their characteristics such as light weight, great resistance to
corrosion and chemicals, higher creep/fatigue resistance, greater tensile strength, high
stiffness, and ease of application, FRP is one of the most successful approaches to reinforcing
concrete buildings [2,8–10]. Although such materials have been effectively employed for
reinforcement, as mentioned above, the problem of bonding as well as delamination in all
types of systems continues to be worrisome, as this method is dependent on the quality of
stress transmission at the concrete surface or the depth of concrete cover. FRP-strengthened
structures are susceptible to a variety of failure types, such as FRP rupture, concrete
crushing, and shear cracks, among others. The ultimate rupture strength of FRP sheets
can be improved by surface treatment prior to bonding [1]. Premature debonding can
also occur prior to approaching the final capacity, with debonding of the FRP laminate
spreading from one end to the center being the most commonly recorded failure [11,12].
Debonding may intensify at elevated temperatures, resulting in a decrease in the structural
capacity of the RC structures. Furthermore, the interfacial bond failures are influenced by
the bond’s quality owing to manufacturing [2,13,14].

Recent laboratory studies indicate that the potential for brittle debonding failures is
alarming in FRP laminates, depending on the composite action in the FRP as well as the
concrete prism [15,16]. To improve the bonding between the FRP and concrete, a variety of
approaches, such as epoxy interlocking at the surface mounting, can be utilized. Hence, the
provision of a reasonable interface between the concrete and the FRP laminate is essential
to impart flexure strength to beams.

To attain improved lamination, it is pertinent to mention that the damaged surface
layer of the concrete is removed while preparing the surface and exposing the coarse
aggregates [17–20]. Surface treatment leads to consistency at the interface of the FRP sheet
and the concrete surface, causing delayed debonding and, thus, resulting in an increased
ultimate rupture strength. Sandblasting is performed for the removal of the dust on the
uncovered surface of the concrete, using special brushes followed by washing with solvents
and drying prior to the installation of FRP sheets [2].

Single-lap shear tests (SSTs) for FRP laminates that are externally attached to the
concrete prism as well as externally attached to its grooves are depicted in Figure 1. The
force is exerted unidirectionally on the steel plate at the FRP’s tip such that the structure is
fractured. Direct application of FRP on concrete or near-surface mounting technologies,
which consist of FRP rebar and laminates inserted in the grooves and subsequently filled
with highly adhesive materials, are used for the reinforcement [21–23]. Another approach
uses FRP laminates that are externally glued to the concrete’s surface grooves. The surface
area, accessibility of the material, expense, reliability, and the use of accompanying equip-
ment all contribute to the selection of a particular technique. The relatively high prices,
environmental contamination, and facility operating processes to assess the final capacity
of specimens prior to their practical application are only a few of the challenges. Because of
their dependability and simplicity, a few conventional experimental techniques, such as
the SST, have been employed as a basic approach to measure the interfacial bond strength
(IBS). Previous research has proposed empirical or semi-empirical formulations for esti-
mating the IBS based on SST experimental data. The suggested models’ empirical relations
match the experimental data well; nevertheless, these models have not yet been verified
using additional unseen data. Furthermore, in developing these empirical relationships,
fundamental simplification assumptions have been made [2,24–27].
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Figure 1. Schematic diagram of a single-lap shear test to compute the interfacial bond strength such
that: (a) FRP is externally bonded on concrete without groove, and (b) FRP is externally attached to
the concrete with groove [2].

In a variety of engineering challenges, machine learning (ML) or artificial intelligence
(AI) is commonly utilized to discover the best solution to regression and classification
problems. These ML models are not only trained with a large series of experimental
findings, but they are also verified using unseen data. Furthermore, they have seen a
wide range of applications in composite constructions, particularly over the past couple
of years. This study takes into consideration three AI methods, i.e., Light Gradient Boost
Machine (LIGHT GBM), extreme gradient boosting (XGBoost), and random forest (RF)
regression. Liang et al. [28] predicted the creep performance of concrete by utilizing LIGHT
GBM, XGBoost, and RF algorithms. Note that a data-driven model performs prediction
on the basis of specific input data to (a) develop understanding of model decisions, (b)
determine the complex hidden nonlinear relationships, and (c) evaluate the implications
of a model’s analysis and evaluation. Mangalathu et al. [29] used a wide database in
order to analyze the feature importance for the failure mode of RC structural elements,
i.e., columns and shear walls. An RF model was formulated for the training set such
that it possessed an accuracy of 84% and 86% for the unseen data of the two types of
RC elements, respectively. Milad et al. [30] collected an experimental dataset comprising
729 experimental values to predict the FRP strain such that the governing input factors
were material geometry, strength characteristics, strain characteristics, FRP characteristics,
and confinement characteristics. They deployed XGBoost, RF, and multivariate adaptive
regression splines (MARS) algorithms and found that the latter model exhibited the highest
prediction accuracy. Xu et al. [31] concluded that the XGBoost model yielded the best
model performance and outperformed the empirical models, as well as the RF, decision
tree (DT), and artificial neural network (ANN) algorithms. Kim et al. [32] presented
four ensemble ML approaches (i.e., CatBoost, histogram gradient boosting, XGBoost,
and RF algorithms) for the estimation of FRP–concrete interfacial bond strength (IBS)
by considering an extensive dataset with the results of 855 SSTs on the FRP–concrete
IBS. They found that the CatBoost algorithm outperformed all of the other ensemble
techniques (R2 = 0.96, and other performance metrics were also lower). Su et al. [24]
used multilinear regression (MLR), support-vector machine (SVM), and ANN models to
estimate the IBS of FRP laminates to the concrete prism, and they achieved an R2 of 0.85
for the overall dataset. In yet another study on the estimation of seismic performance of
RC walls, Zhang et al. [33] revealed that the XGBoost and gradient boost (GB) algorithms
were efficacious, achieving an accuracy of almost 97%, whereas, the GB and RF regression
methods performed best in forecasting the lateral strength and ultimate drift ratio of the RC
walls. Liu [34] conducted a study by utilizing XGBoost, RF, and support-vector regression
(SVR) algorithms for the strength prediction of high-performance concrete. With the help
of data preprocessing as well as parameter optimization, these three techniques yielded a
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better prediction state (R2 > 0.9 for all cases) and good model fitting effect, where XGBoost
possessed the highest prediction accuracy. While predicting the creep performance of
concrete, Liang et al. [28] modelled the creep data in the Northwestern University (NU)
database using LIGHT GBM, XGBoost, and RF techniques. After that, SHapley Additive
exPlanations (SHAP) were computed for interpreting the predicted values on the basis
of cooperative game theory [35,36]. In contrast, the LIGHT GBM approach was found to
attain higher accuracy with a substantially shorter calculation duration. Moreover, this
game-theory-based framework (i.e., SHAP) has been efficacious in explaining various
supervised learning models [37].

To summarize, for the sake of improving the expense of civil engineering projects,
AI models based on known experimental findings are required to estimate the IBS of FRP
plates on a concrete prism. Due to highly nonlinear correlations between bond strength
and a multitude of contributing parameters, typical prediction models for FRP–concrete
coupling need further investigation [38]. The authors of the present study are of the
viewpoint that the previously formulated models can be further improved in terms of
accuracy. In addition, the parametric analysis is a desideratum for investigating the impact
of input variables on the IBS, because it finally makes the decision as to which type of
strengthening method is most efficacious and economical. Therefore, the present study
investigated the ability of the LIGHT GBM, XGBoost, RF regression models in predicting
the interfacial bond strength (IBS) of FRP laminates externally bonded to the grooves of a
concrete prism by utilizing 136 experimental SST results (anchorage made on one end of
FRP to the concrete prism, as shown in Figure 1b). Tested samples with FRP plates parallel
to the groove direction were used in the analysis.

2. Methodology
2.1. Overview of LIGHT GBM

LIGHT GBM is a Microsoft open-source gradient boosting machine learning frame-
work that employs a decision tree as a training method [39]. LIGHT GBM reportedly
surpasses existing gradient boosting techniques—including gradient boosting decision
tree (GBDT) and extreme gradient boosting (XGBoost)—in terms of learning and training
speed, as well as prediction accuracy, due to the fact that it employs two novel techniques:
exclusive feature bundling (EFB), which is designed to manage multiple characteristics
of data while avoiding overfitting issues; and gradient-based one-side sampling (GOSS),
which is used for managing huge datasets.

Consider an input data including n instances s = {(x1, y1), (x2, y2) . . . , (xn, yn)},
where {x1, x2 . . . , xn} are independent variables and {y1, y2 . . . , yn} are dependent vari-
ables. The dependent variable is the ultimate capacity (p), and the independent variables
are concrete compressive strength ( f (x)), width of groove bg, depth of groove hg, width of
FRP plate b f , and elastic modulus of FRP E f Tf . The estimated values of GBDT f (x) are the
summation of the outcomes of a set of decision tree models ht(x):

f (x) =
T

∑
t=1

ht(x) (1)

where T represents the number of trees. Finding an approximation function f that aims to
minimize the loss function L(y, f (x)) is the main focus of fitting a GBDT method, as shown
in Equation (2):

f̂ = argminEy,SL(y, f (x)) (2)

In particular, with regard to adopting GOSS for sampling, LIGHT GBM leverages
the EFB to accelerate the training procedure without compromising precision. Several
applications include attributes that are mutually incompatible, such as high-dimensional
and limited inputs. Such attributes can be aggregated into a single attribute bundle by EFB.
To use an attribute scanning method, the statistics of such attribute bundles and specific
attributes can be compiled. In brief, LIGHT GBM is a new machine learning (ML) method
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that employs GOSS for internal node splits based on variability gain and EFB to reduce the
dimensions of the input attributes. As a decision-tree-based approach, LIGHT GBM has the
significant benefit of being sensitive to multicollinearity [39]. Therefore, the incorporation
of correlated predictors or independent attributes, which is highly prevalent in concrete
data, is not problematic in the LIGHT GBM model.

2.2. Model Development

The optimization of hyperparameters is a crucial step in training machine learning
(ML) techniques, as it can improve the generalization and prediction robustness of ML
models, prevent overfitting and underfitting, and minimize the complexity of the model.
In this way, grid search techniques have been used to optimize the hyperparameters for
LIGHT GBM, XGBoost, and random forests (RFs) in order to achieve improved perfor-
mance, efficiency, and precision. This technique is used to determine the efficacy of every
combination of the specified hyperparameters and associated value ranges, and thereafter
selects the optimal hyperparameter values. Moreover, a portion of the data samples are
kept entirely masked from the models and utilized only as “testing set” to improve the
results of the ML models and prevent the occurrence of underfitting and overfitting. The
optimized hyperparameters of our analysis indicated improved results for identifying and
predicting ultimate capacity of FRP laminates bonded to concrete. The hyperparameters
for RF regression, LIGHT GBM, and XGBoost are listed in Tables 1–3, respectively.

Table 1. Tuned or optimized hyperparameters of RF regression.

Parameters Description Value Range

Learning rate To reduce the gradient step 0.1 0.001–0.1
Maximum depth Depth of tree 7 2–7
Number of trees Constructing the maximum number of trees possible 90 30–150

Table 2. Tuned or optimized hyperparameters of XGBoost.

Parameters Description Value Range

Learning rate To reduce the gradient step 0.1 0.01–0.3
Maximum depth Depth of tree 3 1–8

Number of estimators Constructing the maximum number of trees possible 600 100–800
Minimum child weight Minimum sum of instance weight (Hessian) needed in a child 3 1–5

Colsample_bytree Subsample ratio of columns when constructing each tree 0.50 0.1–0.6

Table 3. Tuned or optimized hyperparameters of LIGHT GBM.

Parameters Description Value Range

Learning rate To reduce the gradient step 0.1 0.01–0.3
Maximum depth Depth of tree 3 1–6

Number of estimators Constructing the maximum number of trees possible 500 100–800
Colsample_bytree Subsample ratio of columns when constructing each tree 0.60 0.1–1
Number of Leaves Maximum number of leaves 6 1–8

2.3. Experimental Database

The descriptive statistics of the inputs as well as the target variable employed in
the investigation are depicted in Table 4. The ultimate capacity (P, kN) of FRP laminates
with a concrete prism was treated as the target variable, and the input variables included
the FRP’s elastic modulus x the thickness of the fiber (EfTf, GPa-mm), the width of the
FRP laminate (bf, mm), the concrete’s compressive strength (fc′, MPa), the width of the
groove (bg, mm), and the depth of the groove (hg, mm). The database contained 136 tested
specimens of single-lap shear tests (SSTs) that were obtained from a previous work [40], as
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already reported in [24]. Between the two extremes, the data were evenly dispersed. EfTf
had a skewness of 0.58 and a range of 12.90 to 78.90. The database used in this study was
originally created by Moghaddas et al. [40]. The original experiments on FRP laminates
bonded to concrete prism sheets used four different widths of FRP plates, i.e., 30, 40, 50,
and 60 mm (bf, as shown in Figure 1b). The effects of four different groove sizes (i.e., 5 × 5,
5 × 10, 10 × 10, and 10 × 15) mm2 were also investigated. To demonstrate changes in
concrete strength, three distinct mix designs with concrete strengths of 25, 35, or 45 MPa
were used in accordance with ACI 211.1-91. The gradation and quality of coarse and
fine aggregates were compiled as per ASTM C33/C33M. As shown in Figure 1b, the SST
tests were performed on FRP plates that were coupled to a concrete prism on one side
(150 × 150 × 350 mm). It is important to note that this study was based on experimental
tests on FRP sheets made of the Sika wrap-200C, Sika wrap-300C, and Sika wrap-430G
types of carbon and glass fibers bonded with epoxy Sikadur 330 adhesive material, as
reported by Moghaddas et al. [40]. Single-lap shear tests were performed with the help of
a specially formulated machine, and a hydraulic jack was utilized for the application of
uniform tensile force with controlled displacements at a rate of 2 mm/min. Moreover, the
tensile force exerted on the sample was accurately determined by deploying an S-type load
cell.

Table 4. Descriptive statistics of the collected dataset.

Descriptive
Statistic

Inputs Target Variable

Elastic
Modulus of FRP ×
Thickness of FRP,

EfTf

Width of FRP, bf

Concrete
Compressive
Strength, fc

′

Width of
Groove, bg

Depth of
Groove, hg

Ultimate
Capacity, P

Unit GPa ×mm mm MPa mm mm kN

Range 65.30 30.00 25.50 5.00 10.00 20.73
Minimum 12.90 30.00 22.70 5.00 5.00 4.76
Maximum 78.20 60.00 48.20 10.00 15.00 25.49

Mean 40.33 46.10 33.72 7.94 10.33 12.05
Standard deviation 25.41 11.81 8.49 2.47 3.45 4.32

Sample variance 645.42 139.52 72.15 6.10 11.93 18.65
Kurtosis −1.23 −1.49 −1.11 −1.90 −0.88 0.30

Skewness 0.58 −0.13 0.49 −0.36 −0.09 0.80
Count 136.00 136.00 136.00 136.00 136.00 136.00

Confidence level (95.0%) 4.31 2.00 1.44 0.42 0.59 0.73

2.4. Model Evaluation

The performance of the developed models was evaluated using frequently used
statistical indices, including the coefficient of determination (R2), root-mean-square error
(RMSE), mean absolute error (MAE), relative squared error (RSE), relative root-mean-square
error (RRMSE), Nash–Sutcliffe efficiency (NSE), and performance index (ρ), in accordance
with previous literature [41–43].

3. Results and Discussion
3.1. Performance of the Developed Models

Correlations between the variables in the datasets used in this study were examined
using Pearson’s linear correlation. Figure 2 shows the correlation between the input and
output variables. The results showed little or no linear correlation between the input and
target variables, revealing the existence of a nonlinear relationship between these variables.
In addition, relationships existed between hg and bg, P and EfTf, and P and bf. Only bg
elicited a slight correlation with fc′. Using the training and validation data, we determined
how well the model performed by plotting the slope of the regression line between the
experimental and predicted observations. Furthermore, the predicted/experimental ratio
proved to be useful for assessing the models’ performance.



Polymers 2022, 14, 4717 7 of 16

Polymers 2022, 14, x FOR PEER REVIEW 7 of 17 
 

 

3. Results and Discussion 
3.1. Performance of the Developed Models 

Correlations between the variables in the datasets used in this study were examined 
using Pearson’s linear correlation. Figure 2 shows the correlation between the input and 
output variables. The results showed little or no linear correlation between the input and 
target variables, revealing the existence of a nonlinear relationship between these varia-
bles. In addition, relationships existed between hg and bg, P and EfTf, and P and bf. Only bg 
elicited a slight correlation with fc′. Using the training and validation data, we determined 
how well the model performed by plotting the slope of the regression line between the 
experimental and predicted observations. Furthermore, the predicted/experimental ratio 
proved to be useful for assessing the models’ performance. 

 
Figure 2. Pearson’s linear correlation for the data used in the model’s development. 

3.1.1. Statistical Analysis 
To predict the interfacial bond strength of FRP laminates with a concrete prism and 

its grooves, we evaluated the robustness, effectiveness, and relative analysis of the RF, 
XGBoost, and LIGHT GBM models. When comparing robust performance and strongly 
linked models, the distribution of data points must have a slope higher than 0.8 [44], a 
minimal error index (MAE, NSE RSE, RMSE, and RRMSE) [45], an R2 greater than 0.8 [46], 
and a performance index close to zero [47]. Table 5 summarizes the statistical evaluation 
results of the three adopted ML techniques using the following performance and error 
metrics: R2, RMSE, MAE, RAE, NSE, and ρ. Using the R2, the minimal values for the train-
ing and testing data—0.899 and 0.820, respectively—were recorded with XGBoost and RF 
regression, respectively, with LIGHT GBM recording the maximal values for both the 
training and testing datasets. For the other metrics measuring errors in the predicted val-
ues, the minimal values were shared between the RF regression and LIGHT GBM models. 
The RF regression recorded minimal errors in terms of RMSE, RRMSE, and NSE, while 
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3.1.1. Statistical Analysis

To predict the interfacial bond strength of FRP laminates with a concrete prism and
its grooves, we evaluated the robustness, effectiveness, and relative analysis of the RF,
XGBoost, and LIGHT GBM models. When comparing robust performance and strongly
linked models, the distribution of data points must have a slope higher than 0.8 [44], a
minimal error index (MAE, NSE RSE, RMSE, and RRMSE) [45], an R2 greater than 0.8 [46],
and a performance index close to zero [47]. Table 5 summarizes the statistical evaluation
results of the three adopted ML techniques using the following performance and error
metrics: R2, RMSE, MAE, RAE, NSE, and ρ. Using the R2, the minimal values for the
training and testing data—0.899 and 0.820, respectively—were recorded with XGBoost
and RF regression, respectively, with LIGHT GBM recording the maximal values for both
the training and testing datasets. For the other metrics measuring errors in the predicted
values, the minimal values were shared between the RF regression and LIGHT GBM
models. The RF regression recorded minimal errors in terms of RMSE, RRMSE, and NSE,
while MAE and RSE were minimal with LIGHT GBM, for both the training and testing
datasets. The performance index (ρ) revealed that LIGHT GBM and RF regression had
the best performance in the training and testing phases, respectively. The results of the
statistical analysis revealed a close agreement between the experimental and predicted
values amongst the three models. However, LIGHT GBM performed the best overall,
with the highest recorded R2 and error parameters very close to zero, making it a reliable
predictor of interfacial bond strength between the FRP laminates, in close agreement with
previous findings [44].
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Table 5. Performance index values of the LIGHT GBM and XGBoost models.

Performance
Index RF Regression XGBoost LIGHT GBM

Training

R2 0.900 0.899 0.942
RMSE 3.39 3.41 3.40
MAE 1.2 1.0 0.8
RSE 0.1263 0.1024 0.0580

RRMSE 0.2931 0.2942 0.2938
NSE 0.8737 0.8976 0.9420
ρ 0.1504 0.1510 0.1491

Testing

R2 0.820 0.825 0.865
RMSE 3.47 3.60 3.56
MAE 1.9 1.4 1.3
RSE 0.2871 0.1799 0.1554

RRMSE 0.2643 0.2737 0.2713
NSE 0.7130 0.8201 0.8446
ρ 0.1387 0.1434 0.1406

(i) Comparison of regression slopes

Figure 3 reveals the cross-plots between the predicted results of the three proposed
models (RF, XGBoost, and LIGHT GBM) and the experimental observations. By closely
observing the slope of the regression line for the training dataset, the intensity of correlation
between the results of the proposed models and the experimental data increased from
XGBoost (0.8988) to RF regression (0.9007), and then to LIGHT GBM, which was the closest
to the slope of an ideal regression line (1:1). As for the validation dataset, the trend was
similar to that observed for the training dataset, except that there was a similar correlation
between the RF regression and XGBoost models, with LIGHT GBM giving the best fit, with
a regression line slope of 0.865 as compared to 0.82 (RF) and 0.8247 (XGBoost).
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Figure 3. Comparison of the regression slopes’ trends between experimental and predicted values
for the developed models: (a) RF, (b) XGBoost, and (c) LIGHT GBM.
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(ii) Error analysis

We also analyzed the errors from the model predictions, and the results were plotted
for the training and testing datasets, as shown in Figure 4a,c,e. These plots allow us to
see the residual errors between the predicted and actual experimentally observed values,
in addition to the range of these error values. In addition, the histogram with frequency
shows the value counts and the accompanied bin width (i.e., range of errors) for each of the
proposed models. The histogram (Figure 4b,d,f) reveals that the model with the most of its
dataset within the boundaries of the least errors is the LIGHT GBM, as shown in Figure 4f
compared with Figure 4b,d for RF regression and XGBoost, respectively. This suggests that
most of the errors between the predicted and observed values are concentrated or scattered
near the zero region for all three models; however, the errors closest to zero were recorded
with the LIGHT GBM.
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Figure 4. Tracing of experimental results by the prediction: (a) RF, (c) XGBoost, (e) LIGHT GBM and
experimental to predicted ratio of: (b) RF, (d) XGBoost, (f) LIGHT GBM.

(iii) Predicted-to-experimental ratio analysis

As part of the statistical methods used to evaluate the models’ performance, the ratio
of the predicted values to the experimental values was also used so as to clearly highlight
the accuracy of the model in more detail. Some researchers [1] predicted the shear strength
of squat-reinforced concrete walls within ±20% of the predicted/experimental ratio when
they used the XGBoost model. In conjunction with other statistical evaluations, this model
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resulted in a higher interpretation of accuracy than that of other empirical models. In this
study, Figure 5 and Table 6 show the percentage of errors in the prediction of each of the
proposed models (RF, XGBoost, and LIGHT GBM). As for the RF model, Table 6 and Figure 5
show that for the training and testing datasets, [67%, 83%, and 89%] and [43%, 76%, and
93%] of the datasets lie in predicted-to-experimental ratio ranges of [0.90–1.10], [0.85–1.15],
and [0.80–1.20], respectively. In the same ranges of the predicted-to-experimental ratio, for
XGBoost, [76%, 85%, and 94%] and [68%, 78%, and 90%] of the training and testing datasets
were in the [0.90–1.10], [0.85–1.15], and [0.80–1.20] ratio ranges, respectively. The highest
percentages of the datasets lying in the predicted-to-experimental ratio range were found
with the LIGHT GBM model for both the training and testing datasets.
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Figure 5. Frequency histograms of predicted-to-experimental ratios for the: (a,d) RF regression,
(b,e) XGBoost, and (c,f) LIGHT GBM models for training and validation, respectively.

Table 6. Frequencies of predicted-to-experimental ratios for the developed models.

Predicted-to-Experimental Ratio
RF XGBoost LIGHT GBM

Training Validation Training Validation Training Validation

0.90–1.10
Frequency 64 18 81 29 72 28
Percentage 67.37 43.90 75.79 68.29 85.26 70.73

0.85–1.15
Frequency 79 31 90 36 81 32
Percentage 83.16 75.61 85.26 78.05 94.74 87.80

0.80–1.20
Frequency 85 38 91 39 89 37
Percentage 89.47 92.68 93.68 90.24 95.79 95.12

(iv) Taylor Diagrams

In Figure 6, the dashed radial lines (blue) denote the standard deviation (SD), the
dashed straight lines (black) denote the correlation coefficient (CC), and the continuous
radial lines (red) indicate the centered root-mean-square deviation (CRMSD) between the
training and testing datasets and the experimental dataset. The Taylor diagrams (shown in
Figure 6) for the training and testing datasets provide more visualization of the accuracy
of all of the proposed models using correlations and errors between the predicted and
experimental values. These diagrams statistically summarize the data to assess the degree
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to which the observed and estimated values correspond based on root-mean-square error,
standard deviation, and Pearson’s correlation coefficient [2]. The Taylor diagrams provide
a visual summary of the predictive abilities of the proposed models in one image. They
illustrate how close the experimental and predicted results are in terms of their correlation
and biasness ratio [3]. The reference model is indicated by the white circular dot, with
a measured SD of 4.2, CC of unity, and CRMSD of zero. For the LIGHT GBM, RF, and
XGBoost models, the CC, CRMSD, and SD are approximately [0.97, 1, and 4], [0.95, 1.5, and
3.2], and [0.952, 1.3, and 3.8], respectively, for the training dataset. As for the testing phase,
the CC, CRMSD, and SD are [0.93, 1.8, and 3.6], [0.90, 2.1, and 3.1], and [0.91, 1.9, and 3.7]
for LIGHT GBM, RF, and XGBoost, respectively. Consequently, based on the statistical
indices and external validation criteria, it can be stated with sufficient confidence that
among all of the applied ML models, the LIGHT GBM model achieves the highest accuracy
in predicting the interfacial bond strength of FRP laminates bonded with concrete prisms
on grooves.

Polymers 2022, 14, x FOR PEER REVIEW 12 of 17 
 

 

  
Figure 6. Comparison of the developed models using Taylor diagrams (LHS: training, RHS: testing). 

3.1.2. SHAPASH Analysis 
The Python “SHAPASH” package was used to determine the relative relevance, di-

rection of influence, and nature of influence of predictors on the target variable. It can be 
observed that EfTf is the most significant variable, followed by bf, fc′, hg, and bg (Figure 7). 
The observations of feature importance reveal concurrence with the results obtained in a 
previous study [2]. It is evident from Figure 8 that increases in the value of EfTf positively 
contribute to the prediction. The lowest prediction of the ultimate IBS capacity was ob-
served at 8 kN for the value of EfTf at 12.9 GPa-mm, whereas the highest prediction was 
obtained at 78.2 GPa-mm. Similarly, the highest prediction of IBS was obtained at high 
compressive strength (Figure 9). Increasing the depth of the groove beyond 15 mm pre-
dicted IBS in the range of 13–20 kN (Figure 10). The specimens with a narrower groove 
yielded better IBS results compared to those with a wider groove (Figure 11).  

 
Figure 7. Feature importance of input variables using the SHAPASH library. 

Figure 6. Comparison of the developed models using Taylor diagrams (LHS: training, RHS: testing).

3.1.2. SHAPASH Analysis

The Python “SHAPASH” package was used to determine the relative relevance, di-
rection of influence, and nature of influence of predictors on the target variable. It can be
observed that EfTf is the most significant variable, followed by bf, fc′, hg, and bg (Figure 7).
The observations of feature importance reveal concurrence with the results obtained in
a previous study [2]. It is evident from Figure 8 that increases in the value of EfTf posi-
tively contribute to the prediction. The lowest prediction of the ultimate IBS capacity was
observed at 8 kN for the value of EfTf at 12.9 GPa-mm, whereas the highest prediction
was obtained at 78.2 GPa-mm. Similarly, the highest prediction of IBS was obtained at
high compressive strength (Figure 9). Increasing the depth of the groove beyond 15 mm
predicted IBS in the range of 13–20 kN (Figure 10). The specimens with a narrower groove
yielded better IBS results compared to those with a wider groove (Figure 11).
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4. Conclusions

FRP laminates are widely utilized to retrofit a variety of reinforced concrete elements
(i.e., beams, columns, joints, and slabs); therefore, it is crucial to assess their bond strength
with concrete structural members. Single-lap shear strength tests, performed on the FRP
laminates bonded to a concrete prism and its grooves, were used to develop three ensemble
models—namely, random forest (RF) regression, extreme gradient boosting (XGBoost), and
Light Gradient Boosting Machine (LIGHT GBM) models—based on machine learning (ML).
It is notable that the developed models were applicable for the extreme values of the input
variables used in the present study. It is also worth mentioning that the tested specimens
included single-lap-sheared samples bonded to the concrete using Sikadur 300 epoxy as an
adhesive material. The following conclusions can be drawn from this research:

• While investigating the optimization of the formulated models, the learning rate
(0.1), maximal depth (7), and number of trees (90) were found to govern the final
RF predictions. The same magnitude of optimal learning rate was obtained for the
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other two ML methods (i.e., XGBoost and LIGHT GBM) as well. In contrast to the RF
regression, the maximal tree depth was found to be 3 for the other two models.

• The sensitivity via SHAPASH analysis indicated that EfTf is the most prominent input
attribute, followed by the width of the FRP laminates. This is in good agreement
with the Pearson’s linear correlation yielded for these two parameters as well as the
ultimate axial capacity of FRP laminates. This suggests validation of the formulated
models and consistency in terms of the importance of the variables using different
statistical evaluation methods.

• Moreover, all of the models showed reliable performance in terms of correlation and
error evaluation; however, LIGHT GBM outclassed the other two models. In LIGHT
GBM, the values of R, RMSE, and MAE were 0.942, 3.40, and 0.80 for the training
data, respectively, and 0.865, 3.56, and 1.3 for the testing data, respectively. For the
training and validation datasets, the slopes of the regression lines were 0.9348 and
0.7678, respectively. This shows that the experimental and predicted values were in
close agreement with one another.

The LIGHT GBM framework exhibits robust training speed, greater efficacy, higher
accuracy, and is capable of handling large-scale data. It is also highly applicable in the
binary and multi-classification problems. However, the associated drawbacks include
overfitting and compatibility with the datasets. In addition, the SHAPASH analysis is
highly versatile (used for plotting interactions between the considered variables alongside
a training model that can be used for future predictions) and works with the aforementioned
classification problems as well as with regression problems.
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